
www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing
with PowerMock

Discover unit testing using PowerMock

Deep Shah

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1241013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-995-0

www.packtpub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Deep Shah

Reviewer
Quentin Ambard

Acquisition Editor
Rubal Kaur

Commissioning Editor
Govindan K

Technical Editor
Aparna Kumari

Copy Editors
Alisha Aranha

Kirti Pai

Lavina Pereira

Project Coordinator
Sherin Padayatty

Proofreader
Simran Bhogal

Clyde Jenkins

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Deep Shah has been writing software for over a decade. As a child, he was always
fascinated by computers. As time passed, his fascination grew into passion, and he decided
to take up Software Development as a career choice. Deep has a degree in Computer Science
and is a big fan of open source software. Being a Software Developer at heart, he likes
exploring new programming languages, tools, and frameworks.

Deep strongly believes in writing unit tests. He thinks that any code (no matter when it’s
written) that does not have unit tests is legacy code. Deep has served stints with companies
such as Amazon, SpiderLogic, and ThoughtWorks. He speaks a number of languages including
Java, C#, JavaScript, Scala, and Haskell. In his free time, Deep likes to see the world, go to
cool places, and click lots of pictures.

I would like to thank Jayway and the Java Community for creating a great
mocking framework.

I cannot imagine finishing this book without the dedication and support of
my loving family, who put up with long nights and working weekends for far
longer than I had initially planned.

www.it-ebooks.info

http://www.it-ebooks.info/

About the reviewer

Quentin Ambard uses PowerMock daily as a Java mock framework. He is currently the
lead developer of the startup MyProcurement.fr, where he works with HBase and MongoDB,
along with a bit of Scala on top of it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Instant Mock Testing with PowerMock	 7

Saying Hello World! (Simple)	 8
Getting and installing PowerMock (Simple)	 14
Mocking static methods (Simple)	 22
Verifying method invocation (Simple)	 28
Mocking final classes or methods (Simple)	 34
Mocking constructors (Medium)	 37
Understanding argument matchers (Medium)	 42
Understanding the Answer interface (Advanced)	 48
Partial mocking with spies (Advanced)	 52
Mocking private methods (Medium)	 55
Breaking the encapsulation (Advanced)	 59
Suppressing unwanted behavior (Advanced)	 64

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
PowerMock is an open source mocking library for the Java world. It extends the existing
mocking frameworks, such as EasyMocks (see http://www.easymock.org/) and Mockito
(see http://code.google.com/p/mockito/), to add even more powerful features
to them.

PowerMock was founded by Jayway (see http://www.jayway.com/) and is hosted on
Google Code (see http://code.google.com/p/powermock/).

It has a vibrant community with a lot of contributors. Conscious efforts have been made
to ensure that PowerMock does not reinvent the wheel. It only extends existing mocking
frameworks and adds features that are missing from them. The end result is a mocking
library that is powerful and is a pleasure to use.

Sometimes, a good design might have to be tweaked to enable testability. For example, use
of final classes or methods should be avoided, private methods might need to open up a bit
by making them package-visible or protected, and use of static methods should be avoided
at all costs. Sometimes these decisions might be valid, but if they are taken only because of
limitations in existing mocking frameworks, they are incorrect. PowerMock tries to solve this
problem. It enables us to write unit tests for almost any situation.

What this book covers
Saying Hello World! (Simple) explains a basic mocking example using PowerMock. It will help
us get familiarized with basic mocking and verification syntax.

Getting and installing PowerMock (Simple) demonstrates the steps for setting up PowerMock
using IntelliJ IDEA and Eclipse. It also briefly describes other ways of setting up the
PowerMock environment.

Mocking static methods (Simple) shows how effortlessly we can mock static methods with
PowerMock. Most of the mocking frameworks have trouble mocking static methods. But for
Power Mock, it’s just another day at work.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

2

Verifying method invocation (Simple) explains various ways in which we can verify a certain
method invocation. Verification is an indispensable part of unit testing.

Mocking final classes or methods (Simple) covers how easily we can mock final classes or
methods. Mocking final classes or methods is something that most mocking frameworks
struggle with. Because of this restriction, sometimes a good design is sacrificed.

Mocking constructors (Medium) introduces the art of mocking constructors. Is a class doing
too much in its constructor? With PowerMock, we can mock the constructor and peacefully
write tests for our own code.

Understanding argument matchers (Medium) demonstrates how to write flexible unit tests
using argument matchers. Only verifying that a certain method was invoked is a job half done.
Asserting that it was invoked with correct parameters is equally important.

Understanding the Answer interface (Advanced) demonstrates the use of the Answer
interface, using which we can create some unusual mocking strategies. Sometimes mocking
requirements are extremely complex, which makes it impractical to create mocks in the
traditional way. The Answer interface can be used for such cases.

Partial mocking with spies (Advanced) explains the steps to mock only a few methods of a
given class while invoking the real implementation for all other methods. This is achieved in
PowerMock by creating spies.

Mocking private methods (Medium) covers the steps to mock and verify private methods.
Private methods are difficult to test with traditional mocking frameworks. But for PowerMock,
it’s a piece of cake.

Breaking the encapsulation (Advanced) shows how we can test the behavior of a private
method and verifies the internal state of a class using the Whitebox class. At times, a private
method might be performing an important business operation, and we need to write unit tests
for that method. The Whitebox class can be very handy in such situations.

Suppressing unwanted behavior (Advanced) explains how we can suppress unwanted
behavior, such as static initializers, constructors, methods, and fields.

Understanding Mock Policies (Advanced) demonstrates the use of Mock Policies to manage
the repeated code needed to set up mocks for a complex object better.

Listening with listeners (Medium) demonstrates the steps to listen for events from the test
framework. We might want to do some processing when the test method is invoked or create
a report about how many tests were run, how many passed, how many failed, and so on.
Listeners are a good fit for such requirements.

The Understanding Mock Policies (Advanced) and Listening with listeners (Medium) recipes
are available for download from the Packt Publishing website, http://www.packtpub.
com/sites/default/files/downloads/Bonus_Recipes.pdf

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

3

What you need for this book
For setting up PowerMock, we will need JDK 6 or a later version installed on the machine.

The detailed instructions to download and install JDK 6 or a later version can be found at
http://www.oracle.com/technetwork/java/javase/downloads/index.html.

In addition, we will need an Integrated Development Environment (IDE) to write unit tests with
PowerMock effectively.

This book covers the steps to integrate PowerMock with Eclipse and IntelliJ IDEA. Download
and install any one of your favorite IDEs from http://www.jetbrains.com/idea/ for
IntelliJ IDEA, and http://www.eclipse.org/ for Eclipse.

Who this book is for
Written specifically for new users of PowerMock with little or no experience, this book will also
help users of other mocking libraries to get familiar with PowerMock concepts. It also covers
advanced PowerMock concepts for people with intermediate knowledge of PowerMock.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: “We can include other contexts through the use of
the include directive.”

A block of code is set as follows:

public class EmployeeController {

 private EmployeeService employeeService;

 public EmployeeController(EmployeeService
 employeeService) {
 this.employeeService = employeeService;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

public class EmployeeController {

 private EmployeeService employeeService;

 public EmployeeController(EmployeeService
 employeeService) {
 this.employeeService = employeeService;
 }

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “clicking on the Next button
moves you to the next screen”.

Warnings or important notes appear in a box like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section of
that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing
with PowerMock

Welcome to Instant Mock Testing with PowerMock. This book will demonstrate the effective
use of this versatile open source mocking framework. The recipes described in this book
will introduce most of the concepts of PowerMock (see http://code.google.com/p/
powermock/) that will enable us to use it effectively.

PowerMock enables us to write good unit tests for even the most untestable code. Most
of the mocking frameworks in Java cannot mock static methods or final classes. But using
PowerMock, we can mock almost any class.

PowerMock does not intend to reinvent the wheel. It extends existing frameworks such as
EasyMocks (see http://www.easymock.org/) and Mockito (see http://code.google.
com/p/mockito/) to enable us to do some of the things that these frameworks cannot.
Because of this, PowerMock is extremely easy to learn and use.

The first part of the book will help us understand some of the basic mocking and verifying
techniques using PowerMock. The later recipes will focus on writing unit tests for more
complex scenarios.

PowerMock currently extends the EasyMock and Mockito mocking frameworks.
Depending on which extension is preferred, the syntax to write any unit test
differs slightly. All the features described in this book are supported using both
these extensions, but in the interest of time and space, all the examples in this
book will be developed using the PowerMock Mockito API.

Currently, PowerMock integrates with the JUnit (see http://junit.
org/) and TestNG (see http://testng.org/doc/index.html) test
frameworks. We will be using JUnit in all our examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

8

Saying Hello World! (Simple)
Unit testing enables us to test small bits of code in isolation. This essentially enables us to
test the behavior and functionality of our system in a very granular way.

Let's say that we want to write unit tests for a piece of code that converts an employee name
to uppercase and writes it to a database. There are two ways in which we can test this:

ff Assert that the code converts the employee name to uppercase and also verify that it
gets written to the database. In this approach we verify two things:

�� The business logic of converting the employee name to uppercase

�� The fact that it gets written to the database correctly

To verify the second statement, we need to make sure that the database is available
when the test is executing. We are essentially testing the integration of our code with
the database system. This approach of testing is different from unit testing and is
called integration testing.

ff Assert that the code converts the employee name to uppercase and verify that a call
was made to the database to write this information. In this approach we verify two
things (which are slightly different from what we verify in the first approach):

�� The business logic of converting the employee name to uppercase

�� The fact that we made a call to write this information to the database

In this approach, we do not actually go to the database and check if the employee
name was successfully written. We only verify that a call was made to write this
information to the database.

It's clear by now that we cannot work with the actual database in this approach. This
is when mocking comes into the picture. Mocks are nothing but simulated objects
that can mimic the behavior of real objects.

This recipe will demonstrate a very simple mocking example using PowerMock. It will show us
the basic syntax for creating a mock and verifying a method invocation.

How to do it...
1.	 Let's say that we have a very simple EmployeeController class. As the name

suggests, this class performs the Create, Read, Update, and Delete (CRUD)
operations on the Employee class.

2.	 This class delegates the heavy lifting to the EmployeeService class to actually
perform these operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

9

3.	 Here's the code:
/**
 * This is a very simple employee controller
 * which will make use of the EmployeeService to
 * perform Create, Read, Update and Delete (CRUD)
 * of Employee objects.
 * It delegates the heavy lifting to the
 * EmployeeService class
 * @author Deep Shah
 */
public class EmployeeController {

 private EmployeeService employeeService;

 public EmployeeController(EmployeeService
 employeeService) {
 this.employeeService = employeeService;
 }

 /**
 * This method is responsible to return the
 * projected count of employees in the system.
 * Let's say the company is growing by 20% every year,
 * then the project count of employees is 20% more than
 * the actual count of employees in the system.
 * We will also round it off to the ceiling value.
 * @return Total number of projected employees in the
 system.
 */
 public int getProjectedEmployeeCount() {
 final int actualEmployeeCount =
 employeeService.getEmployeeCount();

 return (int) Math.ceil(actualEmployeeCount * 1.2);
 }

/**
 * This class is responsible to handle the CRUD
 * operations on the Employee objects.
 * @author: Deep Shah
 */
public class EmployeeService {

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

10

 /**
 * This method is responsible to return
 * the count of employees in the system.
 * Currently this method does nothing but
 * simply throws an exception.
 * @return Total number of employees in the system.
 */
 public int getEmployeeCount() {
 throw new UnsupportedOperationException();
 }
}

4.	 Let's write the unit test for the getProjectedEmployeeCount method of
EmployeeController.

5.	 Currently, the getEmployeeCount method of EmployeeService throws an
exception. Hence, we will need to mock the EmployeeService instance used by
EmployeeController.

6.	 Here is how the test code would look like:
/**
 * The class that holds all unit tests for
 * the EmployeeController class.
 * @author: Deep Shah
 */
public class EmployeeControllerTest {

 @Test
 public void shouldGetCountOfEmployees() {
 EmployeeController employeeController =
 new EmployeeController(new EmployeeService());
 Assert.assertEquals(10,
 employeeController.getEmployeeCount());
 }
}

7.	 The preceding test creates an instance of EmployeeController by passing the
reference of EmployeeService. It then asserts that the count of employees is equal
to 10.

8.	 If we run the preceding test without any modification, the test case should fail with an
instance of UnsupportedOperationException.

9.	 To fix the test, we will need to mock EmployeeService. We would also need to
mock the getEmployeeCount method of EmployeeService to return the value
8, which will then be bumped up by 20%, and the value 10 will be returned from the
controller. This is what is asserted by our test.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

11

10.	 Here's how we could do it using PowerMock:
 @Test
 public void
 shouldReturnProjectedCountOfEmployeesFromTheService() {
 //Creating a mock using the PowerMockito.mock
 //method for the EmployeeService class.
 EmployeeService mock =
 PowerMockito.mock(EmployeeService.class);

 //Next statement essentially says that when
 //getProjectedEmployeeCount method
 //is called on the mocked EmployeeService instance,
 //return 8.
 PowerMockito.when(mock.getEmployeeCount())
 .thenReturn(8);

 EmployeeController employeeController = new
 EmployeeController(mock);
 Assert.assertEquals(10, employeeController
 .getProjectedEmployeeCount());
 }

11.	 If we now run the above test, it would pass.

12.	 Let's look at one more method in EmployeeController:
 /**
 * This method saves the employee instance.
 * It delegates this task to the employee service.
 * @param employee the instance to save.
 */
 public void saveEmployee(Employee employee) {
 employeeService.save(employee);
 }

13.	 This new method is called saveEmployee; its responsibility is to save the employee
instance. It achieves this by delegating this responsibility to EmployeeService.

14.	 This method does not return any value. Hence, the unit test for this controller method
has to simply assert that the saveEmployee method on the EmployeeService
instance was called.

15.	 The test for this method is as follows:
@Test
public void
shouldInvokeSaveEmployeeOnTheServiceWhileSavingTheEmployee() {
 EmployeeService mock =
 PowerMockito.mock(EmployeeService.class);

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

12

 EmployeeController employeeController = new
 EmployeeController(mock);

 Employee employee = new Employee();
 employeeController.saveEmployee(employee);

 //Verifying that controller did call the
 //saveEmployee method on the mocked service instance.
 Mockito.verify(mock).saveEmployee(employee);
}

16.	 This test is very similar to the previous test we saw. It creates a mock of
EmployeeSerivce, and then constructs the instance of EmployeeController.
It then invokes the saveEmployee method on the controller.

17.	 What is more interesting is the last statement. In the last statement, we are
asserting that the saveEmployee method was called on the mocked instance of
EmployeeService. If we run the test, it will pass.

18.	 Notice that to verify the saveEmployee method was invoked on the mocked
instance of EmployeeService, we are using Mockito.verify. This shows how
PowerMock does not reinvent the wheel. It essentially extends the functionality of the
existing mocking frameworks.

19.	 To verify that the test case is actually asserting what it's supposed to assert,
comment the call to the saveEmployee method of EmployeeService and rerun
the test.
//employeeService.saveEmployee(employee);

20.	 Running the test after this change hits us with a failure. The failure message is as
follows:
Wanted but not invoked:
employeeService.saveEmployee(
 com.gitshah.powermock.Employee@276bab54);
-> at com.gitshah.powermock.EmployeeControllerTest
 .shouldInvokeSaveEmployeeOnTheServiceWhileSaving
 TheEmployee(EmployeeControllerTest.java:39)
Actually, there were zero interactions with this mock.
...

21.	 Even the failure message is extremely easy to read and understand. It tells us that
we were expecting the saveEmployee method of the EmployeeService class
will be called. However, there were zero interactions with that mocked instance of
EmployeeService.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

13

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

How it works...
To create a mocked instance of any class, we can use PowerMockito.mock.

This mocked instance can be programmed to return dummy data on the occurrence of a
certain event (such as method invocation). To set up the dummy data, we have to use the
PowerMockito.when method.

The Mockito.verify method is used to verify that a certain method was invoked on the
mocked instance.

There's more...
The PowerMockito.mock method has a couple of overloads. One of the overloads takes in
MockSettings as an argument.

MockSettings
MockSettings is rarely used. Using MockSettings we can do the following:

1.	 Naming the mocks: This can be helpful while debugging.

2.	 Creating mocks that implement extra interfaces: This can be helpful to cover
some corner cases; for more information, visit https://groups.google.com/
forum/?fromgroups=#!topic/mockito/YM5EF0x90_4.

3.	 Enabling verbose logging: This can be helpful while debugging a test. It can be used
to find incorrect interactions with the mock.

4.	 Register a listener for notifying method invocations on the mock.

5.	 Here's an example of using MockSettings:
@Test
public void shouldInvokeSaveEmployeeOnTheServiceWhile
 SavingTheEmployeeWithMockSettings() {
 EmployeeService mock =
 PowerMockito.mock(EmployeeService.class, Mockito
 .withSettings()
 .name("EmployeeServiceMock")
 .verboseLogging());

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

14

 EmployeeController employeeController = new
 EmployeeController(mock);

 Employee employee = new Employee();
 employeeController.saveEmployee(employee);

 //Verifying that controller did call the
 //saveEmployee method on the mocked service
 //instance.
 Mockito.verify(mock).saveEmployee(employee);
}

6.	 The preceding code will set up the name of the mocked object as
EmployeeServiceMock, and enable verbose logging.

Getting and installing PowerMock (Simple)
This recipe will describe the steps for setting up PowerMock in two major Integrated
Development Environments (IDEs): IntelliJ IDEA (see http://www.jetbrains.com/idea/)
and Eclipse (see http://www.eclipse.org/).

Getting ready
For setting up PowerMock, we will need JDK 6 or the later versions installed on the machine.

The detailed instructions on downloading and installing JDK 6 or a later version can be found
at http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Download and install any one of your favourite IDEs from http://www.jetbrains.com/
idea/ for IntelliJ IDEA and http://www.eclipse.org/ for Eclipse.

How to do it...
1.	 PowerMock is an open source mocking framework that is under active development.

At the time of writing this book, PowerMock 1.5 was the most recent stable release.

2.	 Let's start by downloading PowerMock 1.5. Visit PowerMock home at http://code.
google.com/p/powermock/.

3.	 PowerMock is hosted on Google Code. Click on the Downloads Tab on the page and
you should see something as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

15

4.	 Since we are going to develop all our examples using the Mockito
extension and JUnit test framework, download the powermock-
mockito-junit-1.5.zip file from http://code.google.com/p/
powermock/downloads/detail?name=powermock-mockito-junit-
1.5.zip&can=2&q=&sort=summary.

5.	 Extract the ZIP file in the $HOME/powermock-mocks-on-steroids/lib directory.
This ZIP file has all the dependent JAR files that we will need for writing unit tests with
PowerMock.

6.	 Now let's set up PowerMock in IntelliJ IDEA.

7.	 Open IntelliJ IDEA. You should see a screen similar to the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

16

8.	 Start by clicking on Create New Project. It will ask us what type of project we want
to create. Select Java Module from the left pane. Enter powermock-mocks-on-
steroids in the Project name text field, and set the Project location as $HOME/
powermock-mocks-on-steroids:

9.	 Clicking on Finish will open up the project with the project structure displayed on the
left side. Notice that IntelliJ IDEA should have added the src folder automatically.

10.	 Next, let's add PowerMock and other dependent JARs to the project.

11.	 Right-click on the project and select Open Module Settings from the context menu.

12.	 This should open up a dialog window. In the dialog window, click on the
Dependencies tab on the right side. This is how your screen should look like:

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

17

13.	 Press ALT + Insert. This should open up a small pop up; on the pop up select Jars or
directories....

14.	 This should open up a dialog that looks similar to the Windows Explorer. Navigate to
the path $HOME/powermock-mocks-on-steroids/lib, select all the JAR files
(which we extracted in Step 5), and click on OK. This is how your screen should look:

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

18

15.	 Click on the Sources tab in the module settings dialog. Right-click on the right-most
bottom panel. This should open up a context menu, from this menu click on New
Folder.... It should look very similar to the following screenshot:

16.	 This should open up a dialog to enter the folder name; enter test.

17.	 Click on the folder test in the module settings dialog, and mark it as Test Sources.
Close the module settings dialog.

18.	 Create the source files EmployeeController.java and EmployeeService.
java with only the getEmployeeCount method (from the Saying Hello World!
(Simple) recipe) under the src folder in the com.gitshah.powermock package.

19.	 Create the test file EmployeeControllerTest.java with the method
shouldReturnCountOfEmployeesFromTheService (from the Saying Hello
World! (Simple) recipe.) under the test folder in the com.gitshah.powermock
package.

20.	 Right-click on the EmployeeControllerTest.java file, and click on Run
'EmployeeControllerTest'. This should compile the project and run the unit test. If
everything is set up correctly, we should see a screen that looks like the following
screenshot, which indicates that the test passed.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

19

21.	 Now, let's set up PowerMock in Eclipse.

22.	 Open Eclipse and click on the small down arrow next to the new icon on the toolbar.
This opens up a context menu. In the menu click on Java Project. The context menu
should look as follows:

23.	 This opens up the Create Java Project wizard. In the first step, enter the project name
as powermock-mocks-on-steroids, and click on Next. This should show the Java
Settings dialog.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

20

24.	 On the Source tab, click on the Create new source folder link and create the src
and test folders. The end result should look something like:

25.	 Click on Finish, Eclipse should now open the project and you should see the Project
Explorer on the left side.

26.	 Create the source files EmployeeController.java and EmployeeService.java
with only the getEmployeeCount method (from the Saying Hello World! (Simple)
recipe) under the src folder in the com.gitshah.powermock package.

27.	 Create the test file EmployeeControllerTest.java with the method
shouldReturnCountOfEmployeesFromTheService (from the Saying Hello
World! (Simple) recipe) under the test folder in the com.gitshah.powermock
package.

28.	 Right-click on the EmployeeControllerTest.java file, and click on Run As.
This opens up a smaller submenu, from the submenu select JUnit Test. This should
compile the project and run the unit test. If everything is set up correctly, we should
see that the test passes.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

21

There's more...
PowerMock provides various other ways in which it can be installed.

Maven integration
Maven (see http://maven.apache.org/) is a software project management and
build tool.

Add the following XML snippet to pom.xml for integrating PowerMock Mockito API with JUnit:

<properties>
 <powermock.version>1.5.1</powermock.version>
</properties>
<dependencies>
 <dependency>
 <groupId>org.powermock</groupId>
 <artifactId>powermock-module-junit4</artifactId>
 <version>${powermock.version}</version>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.powermock</groupId>
 <artifactId>powermock-api-mockito</artifactId>
 <version>${powermock.version}</version>
 <scope>test</scope>
 </dependency>
</dependencies>

Follow the links on the http://code.google.com/p/powermock/wiki/
GettingStarted page under the Maven setup heading to integrate PowerMock with Maven.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

22

Other integration options
ff PowerMock provides prebuild ZIP files for integrating the TestNG test framework and

EasyMock extension API.

ff These ZIP files can also be found at http://code.google.com/p/powermock/
downloads/list.

ff The installation process is very similar to the one described here.

Mocking static methods (Simple)
The real power of PowerMock is the ability to mock things that other frameworks can't.
One such thing is mocking static methods.

In this recipe we will see how easily we can mock static methods.

Getting ready
The use of static methods is usually considered a bad Object Oriented Programming
practice, but if we end up in a project that uses a pattern such as active record (see
http://en.wikipedia.org/wiki/Active_record_pattern), we will end up
having a lot of static methods.

In such situations, we will need to write some unit tests and PowerMock could be quite handy.

Start your favorite IDE (which we set up in the Getting and installing PowerMock (Simple)
recipe), and let's fire away.

How to do it...
1.	 We will start where we left off. In the EmployeeService.java file, we need to

implement the getEmployeeCount method; currently it throws an instance of
UnsupportedOperationException.

2.	 Let's implement the method in the EmployeeService class; the updated classes
are as follows:
/**
 * This class is responsible to handle the CRUD
 * operations on the Employee objects.
 * @author Deep Shah
 */
public class EmployeeService {
 /**

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

23

 * This method is responsible to return
 * the count of employees in the system.
 * It does it by calling the
 * static count method on the Employee class.
 * @return Total number of employees in the system.
 */

 public int getEmployeeCount() {
 return Employee.count();
 }
}

/**
 * This is a model class that will hold
 * properties specific to an employee in the system.
 * @author Deep Shah
 */

public class Employee {

 /**
 * The method that is responsible to return the
 * count of employees in the system.
 * @return The total number of employees in the system.
 * Currently this
 * method throws UnsupportedOperationException.
 */

 public static int count() {
 throw new UnsupportedOperationException();
 }
}

3.	 The getEmployeeCount method of EmployeeService calls the static method
count of the Employee class. This method in turn throws an instance of
UnsupportedOperationException.

4.	 To write a unit test of the getEmployeeCount method of EmployeeService,
we will need to mock the static method count of the Employee class.

5.	 Let's create a file called EmployeeServiceTest.java in the test directory.
This class is as follows:
/**
 * The class that holds all unit tests for
 * the EmployeeService class.
 * @author Deep Shah

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

24

 */

@RunWith(PowerMockRunner.class)
@PrepareForTest(Employee.class)
public class EmployeeServiceTest {

 @Test
 public void shouldReturnTheCountOfEmployees
 UsingTheDomainClass() {
 PowerMockito.mockStatic(Employee.class);
 PowerMockito.when(Employee.count()).thenReturn(900);

 EmployeeService employeeService = new
 EmployeeService();
 Assert.assertEquals(900,
 employeeService.getEmployeeCount());
 }
}

6.	 If we run the preceding test, it passes. The important things to notice are the two
annotations (@RunWith and @PrepareForTest) at the top of the class, and the
call to the PowerMockito.mockStatic method.

�� The @RunWith(PowerMockRunner.class) statement tells JUnit to
execute the test using PowerMockRunner.

�� The @PrepareForTest(Employee.class) statement tells PowerMock
to prepare the Employee class for tests. This annotation is required when
we want to mock final classes or classes with final, private, static, or native
methods.

�� The PowerMockito.mockStatic(Employee.class) statement tells
PowerMock that we want to mock all the static methods of the Employee
class.

�� The next statements in the code are pretty standard, and we have looked
at them earlier in the Saying Hello World! (Simple) recipe. We are basically
setting up the static count method of the Employee class to return 900.
Finally, we are asserting that when the getEmployeeCount method on the
instance of EmployeeService is invoked, we do get 900 back.

7.	 Let's look at one more example of mocking a static method; but this time, let's mock
a static method that returns void.

8.	 We want to add another method to the EmployeeService class that will increment
the salary of all employees (wouldn't we love to have such a method in reality?).

9.	 Updated code is as follows:
/**

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

25

* This method is responsible to increment the salary
* of all employees in the system by the given percentage.
* It does this by calling the static giveIncrementOf method
* on the Employee class.
* @param percentage the percentage value by which
* salaries would be increased
* @return true if the increment was successful.
* False if increment failed because of some exception
* otherwise.
*/
public boolean giveIncrementToAllEmployeesOf(int
 percentage) {
 try{
 Employee.giveIncrementOf(percentage);
 return true;
 } catch(Exception e) {
 return false;
 }
}

10.	 The static method Employee.giveIncrementOf is as follows:
/**
* The method that is responsible to increment
* salaries of all employees by the given percentage.
* @param percentage the percentage value by which
* salaries would be increased
* Currently this method throws
* UnsupportedOperationException.
*/
public static void giveIncrementOf(int percentage) {
 throw new UnsupportedOperationException();
}

11.	 The earlier syntax would not work for mocking a void static method. The test case
that mocks this method would look like the following:
@RunWith(PowerMockRunner.class)
@PrepareForTest(Employee.class)
public class EmployeeServiceTest {

 @Test
 public void shouldReturnTrueWhenIncrementOf10
 PercentageIsGivenSuccessfully() {
 PowerMockito.mockStatic(Employee.class);
 PowerMockito.doNothing().when(Employee.class);
 Employee.giveIncrementOf(10);

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

26

 EmployeeService employeeService = new
 EmployeeService();
 Assert.assertTrue(employeeService.giveIncrementTo
 AllEmployeesOf(10));
 }

 @Test
 public void shouldReturnFalseWhenIncrementOf10
 PercentageIsNotGivenSuccessfully() {
 PowerMockito.mockStatic(Employee.class);
 PowerMockito.doThrow(new
 IllegalStateException()).when(Employee.class);
 Employee.giveIncrementOf(10);

 EmployeeService employeeService = new
 EmployeeService();
 Assert.assertFalse(employeeService.giveIncrementTo
 AllEmployeesOf(10));
 }
}

12.	 Notice that we still need the two annotations @RunWith and @PrepareForTest,
and we still need to inform PowerMock that we want to mock the static methods of
the Employee class.

13.	 Notice the syntax for PowerMockito.doNothing and PowerMockito.doThrow:

�� The PowerMockito.doNothing method tells PowerMock to literally
do nothing when a certain method is called. The next statement of the
doNothing call sets up the mock method. In this case it's the Employee.
giveIncrementOf method. This essentially means that PowerMock will do
nothing when the Employee.giveIncrementOf method is called.

�� The PowerMockito.doThrow method tells PowerMock to throw an
exception when a certain method is called. The next statement of the
doThrow call tells PowerMock about the method that should throw an
exception; in this case, it would again be Employee.giveIncrementOf.
Hence, when the Employee.giveIncrementOf method is called,
PowerMock will throw an instance of IllegalStateException.

How it works...
PowerMock uses custom class loader and bytecode manipulation to enable mocking of
static methods. It does this by using the @RunWith and @PrepareForTest annotations.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

27

The rule of thumb is whenever we want to mock any method that returns a non-void value, we
should be using the PowerMockito.when().thenReturn() syntax. It's the same syntax
for instance methods as well as static methods.

But for methods that return void, the preceding syntax cannot work. Hence, we have to use
PowerMockito.doNothing and PowerMockito.doThrow. This syntax for static methods
looks a bit like the record-playback style.

On a mocked instance created using PowerMock, we can choose to return canned values only
for a few methods; however, PowerMock will provide defaults values for all the other methods.
This means that if we did not provide any canned value for a method that returns an int
value, PowerMock will mock such a method and return 0 (since 0 is the default value for the
int datatype) when invoked.

There's more...
The syntax of PowerMockito.doNothing and PowerMockito.doThrow can be used on
instance methods as well.

.doNothing and .doThrow on instance methods
The syntax on instance methods is simpler compared to the one used for static methods.

1.	 Let's say we want to mock the instance method save on the Employee class. The
save method returns void, hence we have to use the doNothing and doThrow
syntax. The test code to achieve is as follows:
/**
 * The class that holds all unit tests for
 * the Employee class.
 * @author Deep Shah
 */
public class EmployeeTest {

 @Test()
 public void shouldNotDoAnythingIfEmployeeWasSaved() {
 Employee employee =
 PowerMockito.mock(Employee.class);

 PowerMockito.doNothing().when(employee).save();

 try {
 employee.save();
 } catch(Exception e) {
 Assert.fail("Should not have thrown an
 exception");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

28

 }

 @Test(expected = IllegalStateException.class)
 public void shouldThrowAnExceptionIf
 EmployeeWasNotSaved() {
 Employee employee =
 PowerMockito.mock(Employee.class);
 PowerMockito.doThrow(new
 IllegalStateException()).when(employee).save();

 employee.save();
 }
}

2.	 To inform PowerMock about the method to mock, we just have to invoke it on
the return value of the when method. The line PowerMockito.doNothing().
when(employee).save() essentially means do nothing when the save method
is invoked on the mocked Employee instance.

3.	 Similarly, PowerMockito.doThrow(new IllegalStateException()).
when(employee).save() means throw IllegalStateException when the
save method is invoked on the mocked Employee instance.

4.	 Notice that the syntax is more fluent when we want to mock void instance methods.

Verifying method invocation (Simple)
Verification is a process where we assert that a certain method was invoked by the code
under test. PowerMock provides various ways in which we can perform the verification of a
method call. This recipe will cover the steps required to verify a method invocation in
various scenarios.

Getting ready
Let's start by verifying an instance method. The EmployeeService class had a method
called saveEmployee; we are going to implement this method and write tests for it. Fire off
your favorite IDE and let's begin.

How to do it...
1.	 The responsibility of the saveEmployee method is to save the employee's

information to the database (DB). Here is how the code looks for this method:
/**
* The method that will save
* the employee instance to the DB.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

29

* @param employee instance to save.
*/
public void saveEmployee(Employee employee) {
 if(employee.isNew()) {
 employee.create();
 return;
 }
 employee.update();
}

2.	 The corresponding code for the Employee class is as follows:
/**
 * The method that identifies if the employee
 * is not yet persisted in the DB.
 * @return true if employee is not yet
 * persisted in the DB, false otherwise.
 * Currently this method throws
 * UnsupportedOperationException
 */
public boolean isNew() {
 throw new UnsupportedOperationException();
}

/**
 * This method is responsible to update
 * an existing employee's information into the DB.
 * Currently this method throws
 * UnsupportedOperationException
 */

public void update() {
 throw new UnsupportedOperationException();
}

/**
 * This method is responsible to create
 * a new employee into the DB.
 * Currently this method throws
 * UnsupportedOperationException
 */

public void create() {
 throw new UnsupportedOperationException();

}

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

30

3.	 The saveEmployee method of EmployeeService checks whether the employee
exists in the DB. Based on that, it does the following:

�� If it exists, saveEmployee updates the employee's information by invoking
employee.update()

�� Else, it creates the employee's information by invoking employee.
create()

4.	 The Employee.java methods currently throw exceptions.

5.	 Let's write the test case for the EmployeeService.saveEmployee method:
@Test
public void shouldCreateNewEmployeeIfEmployeeIsNew() {
 Employee mock = PowerMockito.mock(Employee.class);
 PowerMockito.when(mock.isNew()).thenReturn(true);

 EmployeeService employeeService = new EmployeeService();
 employeeService.saveEmployee(mock);

//Verifying that the create method was indeed invoked
//on the employee instance.
 Mockito.verify(mock).create();

//Verifying that while creating a new employee
//update was never invoked.
 Mockito.verify(mock, Mockito.never()).update();
}

6.	 The test method first creates a mock instance of the Employee class. It then mocks
out the isNew method on the mocked instance and returns true.

7.	 After invoking the saveEmployee method on the instance of EmployeeService,
we perform our verifications.

8.	 In this example, we are verifying that the create method was invoked on the
Employee instance since the employee is a new employee. We are also verifying
that we do not call the update method, since we are creating a new employee.

9.	 Let's see one more example of verifying a static method. In the Mocking
static methods (Simple) recipe, we saw the EmployeeService.
giveIncrementToAllEmployeesOf method. The tests of this method
didn't verify that the Employee.giveIncrementOf static method was invoked.

10.	 To refresh our memory, here's the code for the EmployeeService.
giveIncrementToAllEmployeesOf method:
/**
 * This method is responsible to increment the salary
 * of all employees in the system by the given percentage.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

31

 * It does this by calling the static giveIncrementOf
 * method
 * on the Employee class.
 * @param percentage the percentage value by which
 * salaries would be increased
 * @return true if the increment was successful.
 * False if increment failed because of some exception
 * otherwise.
 */
public boolean giveIncrementToAllEmployeesOf(int
 percentage) {
 try{
 Employee.giveIncrementOf(percentage);
 return true;
 } catch(Exception e) {
 return false;
 }
}

11.	 The test case to verify that the Employee.giveIncrementOf method was actually
invoked is as follows:
@RunWith(PowerMockRunner.class)
@PrepareForTest(Employee.class)
public class EmployeeServiceTest {

 @Test
 public void shouldInvoke_giveIncrementOfMethod
 OnEmployeeWhileGivingIncrement() {
 PowerMockito.mockStatic(Employee.class);
 PowerMockito.doNothing().when(Employee.class);
 Employee.giveIncrementOf(9);

 EmployeeService employeeService = new
 EmployeeService();
 employeeService.giveIncrementToAllEmployeesOf(9);

 //We first have to inform PowerMock that we will now
 //verify
 //the invocation of a static method by calling
 //verifyStatic.
 PowerMockito.verifyStatic();
 //Then we need to inform PowerMock
 //about the method we want to verify.
 //This is done by actually invoking the static

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

32

 //method.
 Employee.giveIncrementOf(9);
 }
}

12.	 Reiterating, to mock or verify a static method, we need the two annotations,
@RunWith and @PrepareForTest, at the test class level.

13.	 The syntax to verify a static method is slightly different. We first need to
inform PowerMock that we are now going to verify a static method by calling
PowerMockito.verifyStatic().

14.	 Next we need to perform the verification. This is done by actually invoking the desired
static method; in this case, Employee.giveIncrementOf, and passing 9 as
the argument.

How it works...
Mocks created using PowerMock will remember all method invocations made on them. To
verify that a certain operation was invoked or never invoked, we have to use the Mockito.
verify method. This method is to be used when we want to verify method invocation of
instance methods.

This is an example of how PowerMockito does not try and reinvent the wheel. Instead, it
reuses the functionality developed by the underlining mocking framework (in this case,
Mockito).

To verify the invocation of static methods, we first need to inform PowerMock that we are
going to verify the invocation of static methods by calling PowerMockito.verifyStatic().
Then we actually have to invoke the static method. This is not considered as an actual method
invocation but as a static method verification.

There's more...
While writing tests for a decently complex method, we will end up with more than one test for
testing the different aspects of the method. In such cases, we might have to write duplicate
setup code in every test.

To get around this problem, we could create a method. Let's call it initialize and annotate
it with the @org.junit.Before annotation. This method will automatically be invoked by
JUnit before every test run. This is a common feature provided by unit testing frameworks to
get rid of the repeated setup code across tests. An example of using the @Before annotation
would be as follows:

@Before
public void initialize() {
 PowerMockito.mockStatic(Employee.class);

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

33

 PowerMockito.doNothing().when(Employee.class);
 Employee.giveIncrementOf(9);
}

@Test
public void shouldInvoke_giveIncrementOfMethodOn
 EmployeeWhileGivingIncrement() {
 EmployeeService employeeService = new EmployeeService();
 employeeService.giveIncrementToAllEmployeesOf(9);

 //We first have to inform PowerMock that we will now verify
 //the invocation of a static method by calling verifyStatic.
 PowerMockito.verifyStatic();
 //Then we need to inform PowerMock
 //about the method we want to verify.
 //This is done by actually invoking the static method.
 Employee.giveIncrementOf(9);
}

In the above example, notice how we have moved the mock setup code in the initialize
method. This method is annotated with the @Before annotation. This method will be
automatically invoked by JUnit before every test method is executed.

Other verification modes
We saw one overload of the verify method, the one that takes in Mockito.never(). The
second argument to the verify method is of type VerificationMode. There are various
other useful verification modes as well. The following verification modes are also valid for the
PowerMockito.verifyStatic() method:

ff Mockito.times(int n): This verification mode asserts that the mocked method
was invoked exactly 'n' times

ff Mockito.atLeastOnce(): This verification mode asserts that the mocked method
was invoked at least once

ff Mockito.atLeast(int n): This verification mode asserts that the mocked
method was invoked at least 'n' times

ff Mockito.atMost(int n): This verification mode asserts that the mocked method
was invoked at most 'n' times

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

34

InOrder verification
Sometimes, we want to make sure that methods are invoked in a certain sequence only. For
example, while testing the EmployeeService.saveEmployee method, we want to make
sure that employee.isNew() is called before calling either employee.create() or
employee.update(). Let's look at an example of doing this:

@Test
public void shouldInvokeIsNewBeforeInvokingCreate() {
 Employee mock = PowerMockito.mock(Employee.class);

 EmployeeService employeeService = new EmployeeService();
 employeeService.saveEmployee(mock);

 //First we have to let PowerMock know that
 //the verification order is going to be important
 //This is done by calling Mockito.inOrder and passing
 //it the mocked object.
 InOrder inOrder = Mockito.inOrder(mock);

 //Next, we can continue our verification using
 //the inOrder instance using the same technique
 //as seen earlier.
 inOrder.verify(mock).isNew();
 inOrder.verify(mock).update();
 inOrder.verify(mock, Mockito.never()).create();
}

To verify that method invocations occur in a certain order, we have to do the following:

1.	 Let PowerMock know that the verification order is important. This is done by calling
Mockito.inOrder(mock) and passing to it the mocked object.

2.	 Next, we can verify the method invocations in a given order using the instance of
InOrder. The syntax to do the verification using the instance of InOrder is exactly
the same as seen earlier.

Mocking final classes or methods (Simple)
One of the features that separates PowerMock from other mocking frameworks is its ability to
mock final classes or methods with ease.

In this recipe, we will see how effortless it is to mock final methods and classes using
PowerMock.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

35

Getting ready
When we create new employees in the DB, we should have some unique identifier (such as
EmployeeId) associated with them. This identifier will help us look up the employee records
easily. Let's start by assigning a unique EmployeeId to all new employees.

How to do it...
1.	 The requirement is to assign a unique EmployeeId to all new employees.

2.	 Let's say we have a class called EmployeeIdGenerator.

�� This class is responsible for generating a unique EmployeeId

�� We want to implement very complex EmployeeId generation logic in
this class

�� Because of this, we do not want anyone to make it a subclass

�� We will make this class a final class with all its methods as static final

3.	 The updated saveEmployee method is as follows:
/**
 * The method that will save
 * the employee instance to the DB.
 * @param employee instance to save.
 */
public void saveEmployee(Employee employee) {
 if(employee.isNew()) {
 employee.setEmployeeId
 (EmployeeIdGenerator.getNextId());
 employee.create();
 return;
 }
 employee.update();
}

4.	 Notice that we are using the static method getNextId of EmployeeIdGenerator
to generate EmployeeId. The result of this method call is passed to the
setEmployeeId method of the instance employee.

5.	 We generate EmployeeId if and only if the employee is new.

6.	 The EmployeeIdGenerator method is as follows:
/**
 * The class that is responsible
 * to generate employee Ids new employees.
 * @author Deep Shah

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

36

 */
public final class EmployeeIdGenerator {

 /**
 * Static method that is responsible to generate
 * the next employee id.
 * @return The next employee id.
 * Currently this method throws
 * UnsupportedOperationException.
 */
 public final static int getNextId() {
 throw new UnsupportedOperationException();
 }
}

7.	 This is the class that is going to hold the complex logic to generate EmployeeId,
hence we have marked the class as final and the method getNextId is final
static.

8.	 The test case to test this change to the saveEmployee method would be as follows:
@RunWith(PowerMockRunner.class)
@PrepareForTest(EmployeeIdGenerator.class)
public class EmployeeServiceTest {

 @Test
 public void shouldGenerateEmployeeIdIfEmployeeIsNew() {
 Employee mock = PowerMockito.mock(Employee.class);
 PowerMockito.when(mock.isNew()).thenReturn(true);

 PowerMockito.mockStatic(EmployeeIdGenerator.class);
 PowerMockito.when(EmployeeIdGenerator.getNextId())
 .thenReturn(90);

 EmployeeService employeeService = new
 EmployeeService();
 employeeService.saveEmployee(mock);

 PowerMockito.verifyStatic();
 EmployeeIdGenerator.getNextId();
 Mockito.verify(mock).setEmployeeId(90);
 Mockito.verify(mock).create();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

37

9.	 The test looks very similar, right? To mock a final class having final static methods,
we have to do the following:

�� Annotate the test class with two annotations; that is, @RunWith and @
PrepareForTest. Since the EmployeeIdGenerator class is final, and its
methods are final static, we have to prepare this class for the test.

�� Then we simply mock the final static method EmployeeIdGenerator.
getNextId() like it was a normal static method using the
PowerMockito.when().thenReturn() syntax.

�� Again, to verify the invocation of the final static methods, we have to use the
same syntax we used for normal static methods.

How it works...
Mocking of final classes or methods is no different from mocking any normal class or method.
This is the beauty of using PowerMock; we do not have to do anything special to mock final
classes or methods.

Most of the mocking frameworks are based on the use of the Proxy pattern (see http://
en.wikipedia.org/wiki/Proxy_pattern#Example). The Proxy pattern is heavily
dependent on the fact that a class can be subclassed and a method can be overridden.
Because of this reason, most of the mocking frameworks cannot mock final methods
or classes.

Since PowerMock uses a custom class loader and bytecode manipulation, it is able to achieve
what other mocking frameworks fail to do.

Mocking constructors (Medium)
At times, we come across a class that does a lot of work in its constructor itself. This can
cause the constructor to become overly complicated and a road block for testing
other classes.

In this recipe, we will learn how to mock and verify the invocation of a constructor.

Getting ready
A new requirement has come up while creating new employees. We want to send an e-mail
message to welcome the new employees.

We will encapsulate the functionality of sending an e-mail in a class called WelcomeEmail.
With this requirement in mind, let's look at how we can mock and verify constructors.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

38

How to do it...
1.	 Let's start off by creating a class called WelcomeEmail:

/**
 * The class that is responsible to send the Welcome Email
 * to new employees.
 * @author Deep Shah
 */
public class WelcomeEmail {

 /**
 * The constructor for the WelcomeEmail
 * is going to connect to the SMTP server
 * and keep the message ready to be relayed.
 * Currently this constructor throws
 * UnsupportedOperationException.
 */
 public WelcomeEmail(final Employee employee, final
 String message) {
 //Initialize the connection to SMTP server
 //Compose the message body.
 throw new UnsupportedOperationException();
 }

 /**
 * This method is responsible for actually sending the
 * email.
 * Currently this method throws
 * UnsupportedOperationException.
 */
 public void send() {
 throw new UnsupportedOperationException();
 }
}

2.	 It's the responsibility of this class to send a welcome e-mail to the employees.
To achieve this, it does the following:

�� It talks to the SMTP server

�� It initializes a connection to the SMTP server

�� It composes the message in the constructor itself

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

39

3.	 In short, the construction of this class is going to be a complex operation. Currently,
we are just throwing an instance of UnsupportedOperationException from
the constructor.

4.	 This means that whoever constructs an instance of this class is going
to get an exception. Even the send method throws an instance of
UnsupportedOperationException.

5.	 The EmployeeService class with the modified saveEmployee method code is
as follows:
 /**
 * The method that will save
 * the employee instance to the DB.
 * @param employee instance to save.
 */
 public void saveEmployee(Employee employee) {
 if(employee.isNew()) {
 employee.setEmployeeId(EmployeeIdGenerator
 .getNextId());
 employee.create();
 WelcomeEmail emailSender = new
 WelcomeEmail(employee,
 "Welcome to Mocking with PowerMock How-to!");
 emailSender.send();
 return;
 }
 employee.update();
 }

6.	 Since we want to send a welcome e-mail to the new employees, we are creating an
instance of WelcomeEmail by passing to it the employee object and the welcome
message. Then we are invoking the send method on WelcomeEmail itself.

7.	 Usually, methods like this would be considered difficult to test, since we are
constructing an instance of WelcomeEmail, which throws an exception from
the constructor itself. But nothing is difficult for PowerMock, right?

8.	 Let's look at the test to test this new behavior:
@RunWith(PowerMockRunner.class)
@PrepareForTest({EmployeeIdGenerator.class,
 EmployeeService.class})
public class EmployeeServiceTest {

 @Test
 public void shouldSendWelcomeEmailToNewEmployees()
 throws Exception {
 Employee employeeMock =

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

40

 PowerMockito.mock(Employee.class);
 PowerMockito.when(employeeMock.isNew())
 .thenReturn(true);

 PowerMockito.mockStatic(EmployeeIdGenerator.class);

 //Creating the mock for WelcomeEmail.
 WelcomeEmail welcomeEmailMock =
 PowerMockito.mock(WelcomeEmail.class);

 /**
 *Notice the whenNew syntax.
 *PowerMockito.whenNew().withArguments().thenReturn()
 *informs PowerMock that,
 *1. When New instance of WelcomeEmail is created,
 *2. With employee instance and "Welcome to Mocking
 *with PowerMock How-to!" text,
 *3. Then return a mock of WelcomeEmail class.
 */
 PowerMockito.whenNew(WelcomeEmail.class)
 .withArguments(employeeMock, "Welcome to Mocking
 with PowerMock How-to!")
 .thenReturn(welcomeEmailMock);

 EmployeeService employeeService = new
 EmployeeService();
 employeeService.saveEmployee(employeeMock);

 /**
 * Verifying that the constructor for the
 * WelcomeEmail class is invoked
 * with arguments as the mocked employee instance and
 * text "Welcome to Mocking with PowerMock How-to!".
 */
 PowerMockito
 .verifyNew(WelcomeEmail.class)
 .withArguments(employeeMock, "Welcome to Mocking
 with PowerMock How-to!");

 //Verifying that the send method was called on the
 //mocked instance.
 Mockito.verify(welcomeEmailMock).send();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

41

9.	 The following are a couple of points to notice in the test:

�� Notice the annotation @PrepareForTest, we have to pass the
EmployeeService.class file as an argument to it

�� PowerMockito.whenNew().withArguments(...).thenReturn() is
the syntax used to mock constructors

�� To verify that the constructor was actually invoked, we have to use the
PowerMockito.verifyNew().withArguments() syntax

How it works...
The @PrepareForTest annotation is used to inform PowerMock about the classes to be
prepared for the test. When we want to mock the constructor call of a class (in our case,
WelcomeEmail), the class that makes the actual call (in our case, EmployeeService)
needs to be prepared for the test; hence, we need to pass EmployeeService.class to
the annotation.

The PowerMockito.whenNew().withArguments(employeeMock, "Welcome to
Mocking with PowerMock How-to!").thenReturn(welcomeEmailMock) syntax is
read as follows:

1.	 When a new instance of the WelcomeEmail class is created.

2.	 With arguments as the instance of Employee and welcome message.

3.	 Return a mocked instance of the WelcomeEmail class.

And the PowerMockito.verifyNew().withArguments() syntax is read as follows:

1.	 Verify that a new instance of the WelcomeEmail class was created.

2.	 And the instance of Employee and welcome message were passed to the
constructor as arguments.

There's more...
The PowerMockito.verifyNew method has an overloaded method that takes in an
instance of the VerificationMode class as the second argument. All verification mode
options described in the Verifying method invocation (Simple) recipe are valid for this method
as well.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

42

Understanding argument matchers (Medium)
Asserting that correct arguments are being passed to the method calls is as important as
asserting that the correct method was invoked. PowerMock verifies the argument values using
the equals method. But sometimes, we need some extra flexibility to assert that correct
arguments are being passed. We can achieve this by using argument matchers. In this recipe,
we will look at the effective use of argument matchers to assert that methods are invoked
with correct arguments.

This is another example of how PowerMock does not reinvent the wheel. It simply uses this
functionality from the underlining mocking frameworks (EasyMock and Mockito).

Getting ready
We want to add two new methods in EmployeeController:

ff findEmployeeByEmail: To find the employee via an e-mail

ff isEmployeeEmailAlreadyTaken: To check if the e-mail address is already taken

How to do it...
1.	 The code for the two new methods of EmployeeController is as follows:

/**
 * The method that will
 * find an employee by their email.
 * It delegates this task to the employee service.
 *
 * @param email the employee email to search.
 * @return Employee matching the email.
 */
public Employee findEmployeeByEmail(String email) {
 return employeeService.findEmployeeByEmail(email);
}

/**
 * This method is responsible to check if
 * email is already taken or not.
 * It delegates this task to the employee service.
 *
 * @param email The employee email to validate.
 * @return true if the employee email is taken,
 * false otherwise.
 */

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

43

public boolean isEmployeeEmailAlreadyTaken(String email) {
 return employeeService.employeeExists(new
 Employee(email));
}

2.	 The code is very straightforward. The findEmployeeByEmail method calls the
employeeService.findEmployeeByEmail method to find the employee via
an e-mail.

3.	 The isEmployeeEmailAlreadyTaken method calls the employeeService.
employeeExists method to check if the e-mail is already taken. It creates a new
instance of the Employee class by passing in the e-mail address.

4.	 The corresponding methods in the EmployeeService class do nothing; currently,
they just throw UnsupportedOperationException:
/**
 * Finds the employee by email.
 * Currently this method throws
 * UnsupportedOperationException.
 * @param email the employee email to search.
 * @return Employee matching the email.
 */
public Employee findEmployeeByEmail(String email) {
 throw new UnsupportedOperationException();
}

/**
 * The method that will check whether
 * the employee exists based on various criterion's.
 * Currently this method throws
 * UnsupportedOperationException.
 * @param employee the employee instance to match.
 * @return true if th employee exists, false otherwise.
 */
public boolean employeeExists(Employee employee) {
 throw new UnsupportedOperationException();
}

5.	 So far, we have always written tests that match exact arguments. Let's look at a test
that is a little more flexible to match arguments:
@Test
public void shouldFindEmployeeByEmail() {
 final EmployeeService mock =
 PowerMockito.mock(EmployeeService.class);

 final Employee employee = new Employee();

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

44

 //Notice that we are just check if the email address
 //starts with "deep" then we have found the matching
 //employee.
 PowerMockito.when(mock.findEmployeeByEmail(Mockito
 .startsWith("deep"))).thenReturn(employee);

 final EmployeeController employeeController = new
 EmployeeController(mock);

 //Following 2 invocations will match return valid
 //employee,
 //since the email address passed does start with "deep"
 Assert.assertSame(employee, employeeController
 .findEmployeeByEmail("deep@gitshah.com"));
 Assert.assertSame(employee, employeeController
 .findEmployeeByEmail("deep@packtpub.com"));

 //However, this next invocation would not return a valid
 //employee,
 //since the email address passed does not start with
 //"deep"
 Assert.assertNull(employeeController
 .findEmployeeByEmail("noreply@packtpub.com"));
}

6.	 The intent of this test is to verify that when we pass a certain e-mail address, the
employee associated with that e-mail would be found. A few points to notice about
this test are as follows:

�� The syntax we have used to match the arguments in the PowerMockito.
when() method is a little different

�� Instead of passing the exact e-mail address, we are using the argument
matcher Mockito.startWith("deep")

�� As the name suggests, this argument matcher will match any string that
starts with the text deep.

�� This makes our mocks a little more flexible. Because of this, we are able to
find an employee via the e-mail addresses deep@gitshah.com or deep@
packtpub.com

�� However, in the last assert, we are not able to find the employee via the
e-mail address noreply@packtpub.com, since it does not start with the
text deep

7.	 Let's look at one more form of argument matcher:
@Test
public void shouldReturnNullIfNoEmployeeFoundByEmail() {

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

45

 final EmployeeService mock =
 PowerMockito.mock(EmployeeService.class);

 //No matter what email is passed
 //calling the findEmployeeByEmail on the
 //mocked EmployeeService instance is now going to return
 //null.
 PowerMockito.when(mock.findEmployeeByEmail(Mockito
 .anyString())).thenReturn(null);

 final EmployeeController employeeController = new
 EmployeeController(mock);

 Assert.assertNull(employeeController.findEmployeeByEmail
 ("deep@gitshah.com"));
 Assert.assertNull(employeeController.findEmployeeByEmail
 ("deep@packtpub.com"));
 Assert.assertNull(employeeController.findEmployeeByEmail
 ("noreply@packtpub.com"));
}

8.	 In this test, we want to assert that if the employee is not found, the method returns
null:

�� Notice the Mockito.anyString() argument matcher. This argument
matcher matches any (all) strings passed as an argument.

�� Because of this, when we invoke the employeeController.
findEmployeeByEmail method passing various arguments, we always get
the null response.

9.	 The final test we are going to see in this recipe is going to test the
EmployeeController.isEmployeeEmailAlreadyTaken method:
@Test
public void shouldReturnTrueIfEmployeeEmailIsAlreadyTaken()
{
 final EmployeeService mock =
 PowerMockito.mock(EmployeeService.class);

 //A little more complex matcher using the
 //ArgumentMatcher class.
 //By implementing the matches method in this class we
 //can write any kind of complex logic
 //to validate that the correct arguments are being
 //passed.
 final String employeeEmail = "packt@gitshah.com";
 PowerMockito.when(mock.employeeExists(Mockito

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

46

 .argThat(new ArgumentMatcher<Employee>() {
 /**
 * This method currently only checks that
 * the email address set in the employee instance
 * matches the email address we passed to the
 * controller.
 * {@inheritDoc}
 */
 @Override
 public boolean matches(Object employee) {
 return ((Employee) employee).getEmail()
 .equals(employeeEmail);
 }
 }))).thenReturn(true);

 final EmployeeController employeeController = new
 EmployeeController(mock);
 Assert.assertTrue(employeeController
 .isEmployeeEmailAlreadyTaken(employeeEmail));
}

10.	 This is a little more involved example. The following points should be noted:

�� This test uses the class ArgumentMatcher to match the arguments
passed.

�� When using this class, we have to implement the matches method.
Returning true from this method indicates that the arguments are
matching.

�� In the preceding test, we verified that the instance of Employee passed
to the employeeService.employeeExists method has the e-mail
address equal to the value passed in the employeeController.
isEmployeeEmailAlreadyTaken method.

How it works...
Argument matchers add great deal of flexibility to the tests. These matchers are powerful ways
of matching what gets passed. That said, one has to be reasonable with custom matchers as
they can make the tests less readable. Sometimes, it's just better to implement the equals
method for the arguments.

Argument matchers can also be used for matching arguments in the Mockito.verify calls.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

47

If we are using argument matchers for a certain method that takes more
than one argument, all the arguments have to be provided using
argument matchers.

For example, if we had a method
findEmployeeByFirstNameAndLastName in EmployeeController,
we would have to specify both the arguments using argument matchers to
mock it. The following syntax is invalid since only the second argument uses
an argument matcher:

PowerMockito.when(mock
 . findEmployeeByFirstNameAndLastName("Deep",
 Mockito.anyString())).thenReturn(null);

The correct syntax would be as follows:
PowerMockito.when(mock. findEmployeeByFirstNameAnd
LastName(Mockito.eq("Deep"), Mockito.anyString())).
thenReturn(null);

There's more...
There are various other built-in argument matchers that can be used.

Other built-in argument matchers
Some of the other built-in argument matchers are as follows:

ff Mockito.eq: The matcher to verify that the argument is exactly equal to the
passed value

ff Mockito.matches: It matches the String argument using a regular expression

ff Mockito.any: There are various any methods to match the different types of
arguments, such as anyBoolean, anyByte, anyShort, anyChar, anyInt,
anyLong, anyFloat, anyDouble, anyList, anyCollection, anyMap, anySet,
and so on

ff Mockito.isNull: It matches the null argument value for a certain class

ff Mockito.isNotNull: It matches the not null argument value for a certain class

ff Mockito.isA: It matches the argument value which is an instance of A

ff Mockito.endsWith: Similar to startsWith, this argument matcher matches
String arguments with values that end with the given value.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

48

Understanding the Answer interface
(Advanced)

In some edge cases, it might be impossible or impractical to create the mocks by simply
using the PowerMockito.when().thenReturn() syntax. In such cases, the generic
Answer interface could be very handy.

In this recipe, we will learn how to make use of the Answer interface to create some unusual
mocking strategies.

Getting ready
Remember the EmployeeController.findEmployeeByEmail method we saw in the
previous recipe? We are going to write one more test for that method in this recipe.

How to do it...
1.	 The requirement is as follows:

�� A valid employee would be found if the e-mail starts with deep

�� Or, if the e-mail address ends with packtpub.com

2.	 We can certainly use a custom argument matcher to write this test, but let's have a
look at yet another method of achieving the same result using the Answer interface.

3.	 The test would be as follows:
@Test
public void
 shouldFindEmployeeByEmailUsingTheAnswerInterface() {
 final EmployeeService mock =
 PowerMockito.mock(EmployeeService.class);

 final Employee employee = new Employee();

 //Notice use of Answer interface.
 //Depending on what argument is passed we could either
 //return a valid employee
 //or return null.
 PowerMockito
 .when(mock.findEmployeeByEmail(Mockito.anyString()))
 .then(new Answer<Employee>() {
 /**
 * Implementing the answer method to return a valid
 * employee,

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

49

 * if email starts with "deep" or ends with
 * "packtpub.com"
 * in all other cases we return null.
 * {@inheritDoc}
 */
 @Override
 public Employee answer(InvocationOnMock invocation)
 throws Throwable {
 final String email = (String)
 invocation.getArguments()[0];
 if(email == null) return null;
 if(email.startsWith("deep"))
 return employee;
 if(email.endsWith("packtpub.com"))
 return employee;
 return null;
 }
 });

 final EmployeeController employeeController = new
 EmployeeController(mock);

 //Following 3 invocations will match and return valid
 //employee,
 //since the email address passed does start with "deep"
 //or ends with "packtpub.com"
 Assert.assertSame(employee, employeeController
 .findEmployeeByEmail("deep@gitshah.com"));
 Assert.assertSame(employee, employeeController
 .findEmployeeByEmail("deep@packtpub.com"));
 Assert.assertSame(employee, employeeController
 .findEmployeeByEmail("noreply@packtpub.com"));

 //However, this next invocation would not return a valid
 //employee,
 //since the email address passed does not start with
 //"deep" or ends with "packtpub.com"
 Assert.assertNull(employeeController.findEmployeeByEmail
 ("hello@world.com"));
}

4.	 Notice the use of the PowerMockito.when().then() syntax in the test.

5.	 The then method accepts an instance of the generic Answer interface. This
interface has just one method called answer, which needs to be implemented.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

50

6.	 In the implementation of the answer method, we get the arguments passed to the
method invocation using the InvocationOnMock.getArguments method.

7.	 We then do our checks as follows:

�� If the argument passed is null then, no employee will be returned

�� If the argument passed starts with deep then, a valid employee will be
returned

�� If the argument passed ends with packtpub.com then, a valid employee
will be returned

�� In all other cases, no employee will be returned

8.	 Next, we put asserts in place:

�� In this test, the e-mail addresses deep@gitshah.com, deep@packtpub.
com, and noreply@packtpub.com are all valid since they either start with
the text deep or end with packtpub.com

�� However, the e-mail address hello@world.com is not valid since it does
not match our criterion

How it works...
The Answer interface specifies an action to execute along with the return value. The return
value is returned when the given method is invoked on the mock.

The instance of InvocationOnMock passed as an argument to the answer method of the
Answer interface is quite resourceful. Using this we can do the following:

�� callRealMethod(): Call the real method

�� getArguments(): Get all arguments passed to the method invocation

�� getMethod(): Return the method that was invoked on the mock instance

�� getMock(): Get the mocked instance

There's more...
One of the overloads of PowerMockito.mock is that it takes in an instance of the generic
Answer interface, which would act as the default answer to all un-stubbed methods.

PowerMockito.mock with default Answer
This instance of Answer passed to the PowerMockito.mock method will act as a catch for
all clauses. This instance will be invoked when no specific dummy data has been set up for a
given method.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

51

Consider the following example:

 @Test
 public void shouldReturnCountOfEmployeesFromTheService
 WithDefaultAnswer() {
 //Creating a mock using the PowerMockito.mock method for the
 //EmployeeService class.
 EmployeeService mock = PowerMockito
 .mock(EmployeeService.class,
 /**
 * Passing in a default answer instance.
 * This method will be called when no matching mock
 methods have been setup.
 */
 new Answer() {
 /**
 * We are simply implementing the answer method of the
 interface
 * and returning hardcoded 10.
 * @param invocation The context of the invocation.
 * Holds useful information like what arguments where
 passed.
 * @return Object the value to return for this mock.
 */
 @Override
 public Object answer(InvocationOnMock invocation) {
 return 10;
 }
 });

 EmployeeController employeeController = new
 EmployeeController(mock);
 Assert.assertEquals(10, employeeController
 .getEmployeeCount());
 }

In the preceding example, notice that we are not setting up any dummy data when the
getEmployeeCount method of the EmployeeService mocked instance is invoked but
because our default instance of Answer returns the hardcoded value 10, our test case passes.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

52

Partial mocking with spies (Advanced)
Sometimes, there is a real need when we want to mock only a few methods of a class,
and invoke the real implementation of certain other methods of the same class. For such
situations we could create spies. With spies, real methods will be invoked, unless we have
explicitly mocked a method. This concept is also called as partial mocking.

In this recipe, we will look at the use of spies to partially mock a class.

Getting ready
The EmployeeService.saveEmployee method has started to look ugly. We can probably
refactor it a little, by extracting out the create employee part in a separate method.

How to do it...
1.	 Currently, the EmployeeService.saveEmployee method is as follows:

 /**
 * The method that will save
 * the employee instance to the DB.
 * @param employee instance to save.
 */
 public void saveEmployee(Employee employee) {
 if(employee.isNew()) {
 employee.setEmployeeId(EmployeeIdGenerator
 .getNextId());
 employee.create();
 WelcomeEmail emailSender = new
 WelcomeEmail(employee,
 "Welcome to Mocking with PowerMock How-to!");
 emailSender.send();
 return;
 }
 employee.update();
 }

2.	 The highlighted part of the code is responsible to create a new employee in the
system. Let's extract it into a separate method called createEmployee.

3.	 The updated code would be as follows:
 /**
 * The method that will save
 * the employee instance to the DB.
 * @param employee instance to save.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

53

 */
 public void saveEmployee(Employee employee) {
 if(employee.isNew()) {
 createEmployee(employee);
 return;
 }
 employee.update();
 }

 /**
 * The createEmployee method
 * extracted from the saveEmployee.
 * This method is only responsible
 * to do things that are required
 * to create a new employee.
 * @param employee instance to save.
 */
 void createEmployee(Employee employee) {
 employee.setEmployeeId(EmployeeIdGenerator
 .getNextId());
 employee.create();
 WelcomeEmail emailSender = new
 WelcomeEmail(employee,
 "Welcome to Mocking with PowerMock How-to!");
 emailSender.send();
 }

4.	 Looks better? Now, let's test the saveEmployee method (for the create flow),
in such a way that we will only assert that it invokes the EmployeeService.
createEmployee method.

5.	 We will assume that other things specific to create Employee flow are tested as part
of testing the createEmployee method itself. This includes the following:

�� Generating the EmployeeId

�� Saving the employee

�� Sending the welcome e-mail

6.	 Basically, in this case we want to invoke the real EmployeeService.
saveEmployee method but mock the EmployeeService.createEmployee
method. Feels like an ideal candidate for using spies!

7.	 The test that achieves this requirement is as follows:
 @Test
 public void shouldInvokeTheCreateEmployeeMethod
 WhileSavingANewEmployee() {

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

54

 //Following is the syntax to create a spy using the
 //PowerMockito.spy method.
 //Notice that we have to pass an actual instance of
 //the EmployeeService class.
 //This is necessary since a spy will only mock few
 //methods of a class and
 //invoke the real methods for all methods that are
 //not mocked.
 final EmployeeService spy = PowerMockito.spy(new
 EmployeeService());

 final Employee employeeMock = PowerMockito
 .mock(Employee.class);
 PowerMockito.when(employeeMock.isNew())
 .thenReturn(true);

 //Notice that we have to use the PowerMockito
 //.doNothing().when(spy).createEmployee()
 //syntax to create the spy. This is required
 //because if we use the
 //PowerMockito.when(spy.createEmployee())
 //syntax will result in calling the actual method
 //on the spy.
 //Hence, remember when we are using spies,
 //always use the doNothing(), doReturn() or the
 //doThrow() syntax only.
 PowerMockito.doNothing().when(spy)
 .createEmployee(employeeMock);

 spy.saveEmployee(employeeMock);

 //Verification is simple enough and
 //we have to use the standard syntax for it.
 Mockito.verify(spy).createEmployee(employeeMock);
 }

8.	 There are a few things to notice about this test:

�� The first step is to create the spy. This is done by passing an instance of the
class that we want to partially mock to the PowerMockito.spy method (in
our case an instance of the EmployeeService class)

�� The next step is to mock the methods on the spy. Here, we have to use the
PowerMockito.doNothing().when(spy).createEmployee() syntax

�� This tells PowerMock to do nothing when the createEmployee method is
called on spy

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

55

�� Next we invoke the method to test, which in this case is saveEmployee

�� To verify that the createEmployee was called on spy, we just use our
regular Mockito.verify() syntax

How it works...
Spies are designed in such a way that they will invoke real methods for all methods that
are not mocked. This is the reason we need to pass in an instance of the class that is to be
partially mocked (in our case the EmployeeService class) while creating a spy using the
PowerMockito.spy method.

To mock any method on a spy, we have to necessarily use the PowerMockito.
doNothing()/doReturn()/doThrow() syntax only. This is necessary because with the
PowerMockito.when().thenReturn() syntax, PowerMock will not know whether we are
setting up an expectation on the partial mock or actually invoking the real method. Hence, be
careful while using spies with PowerMock, and remember to use the correct syntax.

Mocking private methods (Medium)
In a good Object Oriented Design, we will want to enforce the fact that some methods should
be kept private. This poses a challenge for writing tests, since these private methods will not
be visible outside the enclosing class. But with PowerMock we don't have to worry, as it can
mock private methods as well.

In this recipe, we will learn to mock private methods.

Getting ready
In the previous recipe, we refactored the EmployeeService.saveEmployee method, and
extracted the EmployeeService.createEmployee method. We kept this method visible at
the package level.

How do we test the EmployeeService.saveEmployee method if EmployeeService.
createEmployee was private?

How to do it...
1.	 Let's start by making the EmployeeService.createEmployee method private:

 /**
 * The createEmployee method
 * extracted from the saveEmployee.
 * This method is only responsible
 * to do things that are required

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

56

 * to create a new employee.
 * @param employee instance to save.
 */
 private void createEmployee(Employee employee) {
 employee.setEmployeeId(EmployeeIdGenerator
 .getNextId());
 employee.create();
 WelcomeEmail emailSender = new
 WelcomeEmail(employee,
 "Welcome to Mocking with PowerMock How-to!");
 emailSender.send();
 }

2.	 The only change is in the method signature; we have made the method private.

3.	 Let's look at the modified test that enables us to mock, and verify the
createEmployee private method:
 @Test
 public void shouldInvokeThePrivateCreateEmployeeMethod
 WhileSavingANewEmployee() throws Exception {
 final EmployeeService spy = PowerMockito.spy(new
 EmployeeService());

 final Employee employeeMock = PowerMockito
 .mock(Employee.class);
 PowerMockito.when(employeeMock.isNew())
 .thenReturn(true);
 //Since we cannot access the private method outside
 //the class,
 //We have to pass the name of the private method
 //along with the arguments passed
 //To the PowerMockito.doNothing().when() method.
 PowerMockito.doNothing().when(spy,
 "createEmployee", employeeMock);

 spy.saveEmployee(employeeMock);

 //Verification is similar to setting up the mock.
 //We have to inform PowerMock about which private
 //method to verify by invoking the
 //invoke method on PowerMockito.verifyPrivate().
 //The name of the private method along with its
 //arguments are passed to invoke method.
 PowerMockito.verifyPrivate(spy)
 .invoke("createEmployee", employeeMock);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

57

4.	 A few things to notice about this test are as follows:

�� To mock the private method, we have to pass the method name along with
its arguments to the when method. In our case, we have to pass the method
name as createEmployee, and the argument as the mocked Employee
class instance employeeMock.

�� To verify the invocation of the private method, we have to use the
PowerMockito.verifyPrivate().invoke() syntax. Again, we have
to pass the name of the private method and its arguments to the invoke
method.

How it works...
PowerMock enables us to test our code without compromising our design in anyway. Its ability
to mock private methods is one of its unique features that other mocking frameworks do
not have.

Private methods cannot be accessed outside the enclosing class. This is the reason we see a
slight variation in the syntax.

ff The PowerMockito.doNothing().when(spy, "createEmployee",
employeeMock) syntax tells PowerMock to do nothing, when the createEmployee
method is called with employeeMock as argument

ff The PowerMockito.verifyPrivate(spy).invoke("createEmployee",
employeeMock) syntax tells PowerMock to verify the invocation of private method
called createEmployee with employeeMock as argument

There's more...
Having the name of the private method passed as the argument while mocking and
verification is not ideal; because of this, PowerMock provides one more alternate way of
mocking and verifying private methods.

Alternate way of mocking private methods
PowerMock has overloaded methods that can help us mock and verify the private method
without mentioning the method name.

1.	 Consider the following example:
 @Test
 public void shouldInvokeThePrivateCreateEmployeeMethod
 WithoutSpecifyingMethodName() throws Exception {
 final EmployeeService spy = PowerMockito.spy(new
 EmployeeService());

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

58

 final Employee employeeMock = PowerMockito
 .mock(Employee.class);
 PowerMockito.when(employeeMock.isNew())
 .thenReturn(true);

 //Finding the methods from EmployeeService class
 //that take Employee as their argument.
 final Method createEmployeeMethod = PowerMockito
 .method(EmployeeService.class, Employee.class);

 //Passing the method instance found in previous
 //step to the when method.
 //This sets up the mock on the private method.
 PowerMockito.doNothing().when(spy,
 createEmployeeMethod)
 .withArguments(employeeMock);

 spy.saveEmployee(employeeMock);

 //Verifying that the private method was indeed
 //invoked
 //using the same method instance we found earlier.
 PowerMockito.verifyPrivate(spy)
 .invoke(createEmployeeMethod)
 .withArguments(employeeMock);
 }

2.	 In the preceding example, notice the following points:

�� We find the private method to invoke using the PowerMockito.method
method. This method takes in the class on which we want to find the private
method and the argument types of the private method as arguments.

�� In our case, we want to find the private method on EmployeeService.class
and which takes in an instance of Employee.class as argument.

�� Next, to mock this private method, we pass it as an argument to the
overloaded when method. We can also specify what argument this private
method takes using the withArguments method.

�� To verify the invocation of this private method, we can simply pass it to the
invoke method.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

59

The PowerMockito.method method will throw
TooManyMethodsFoundException if the class (which encloses
the private method) has more than one method with the same set of
arguments but different names.

Basically, PowerMock does not make any assumptions about which
method to mock. If there is more than one method matching the
given signature, then we cannot use the previous approach. If we
run the the preceding test with the current code base, it throws
TooManyMethodsFoundException.

Breaking the encapsulation (Advanced)
Encapsulation is one of the fundamental principles of Object Oriented Programming. In a good
Object Oriented Design, we will end up with some private methods that perform important
business operations and fields that hold important state information. Sometimes, it might be
important to test these in isolation. In this recipe, we will learn how to write tests for
such situations.

Getting ready
Let's make our domain model a little richer. We will add a Department class. One employee
will be associated with only one department, but a department can have many employees
associated with it. In addition to this, Department will keep track of highest salary offered.

How to do it...
1.	 Let's start by looking at the Department class:

/**
 * The Department class that will
 * have a relationship with Employee class.
 * One Employee will be
 * associated with at max one Department,
 * but one Department will be associated with
 * one or more Employees
 *
 * @author Deep Shah
 */
public class Department {

 /**
 * The internal list of employee associated with

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

60

 department.
 */
 private List<Employee> employees = new
 ArrayList<Employee>();

 /**
 * The max salary offered by this department.
 */
 private long maxSalaryOffered;

 /**
 * The method to add a new employee to this department.
 * @param employee the instance to add to this
 departmnet.
 */
 public void addEmployee(final Employee employee) {
 employees.add(employee);
 updateMaxSalaryOffered();
 }

 /**
 * The private method that keeps track of
 * max salary offered by this department.
 */
 private void updateMaxSalaryOffered() {
 maxSalaryOffered = 0;
 for (Employee employee : employees) {
 if(employee.getSalary() > maxSalaryOffered) {
 maxSalaryOffered = employee.getSalary();
 }
 }
 }
}

2.	 As shown in the code, this class has two methods:

�� addEmployee: This method adds an employee to the employees list
held privately

�� updateMaxSalaryOffered: This method updates the max salary offered
by this department.

3.	 First, let's test the addEmployee method. In the test for addEmployee, we want to
assert that the privately held employee list is updated correctly, and the passed-in
employee is added to it. The test code is as follows:
 @Test
 public void shouldVerifyThatNewEmployeeIs
 AddedToTheDepartment() {
 final Department department = new Department();

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

61

 final Employee employee = new Employee();

 //Adding the employee to the department.
 department.addEmployee(employee);

 //Getting the privately held employees list
 //from the Department instance.
 final List<Employee> employees = Whitebox
 .getInternalState(department, "employees");

 //Asserting that the employee was added to the
 //list.
 Assert.assertTrue(employees.contains(employee));
 }

 @Test
 public void shouldAddNewEmployeeToTheDepartment() {
 final Department department = new Department();
 final Employee employee = new Employee();

 final ArrayList<Employee> employees = new
 ArrayList<Employee>();
 //Setting the privately held employees list with
 // our test employees list.
 Whitebox.setInternalState(department, "employees",
 employees);

 //Adding the employee.
 department.addEmployee(employee);

 //Since we substituted the privately held employees
 //within the department instance
 //we can simply assert whether our list has the
 // newly added employee or not.
 Assert.assertTrue(employees.contains(employee));
 }

4.	 We can test the addEmployee method using two approaches:

5.	 First Approach:

�� We are adding the employee to Department

�� Then getting the value of privately held employees list from the
Department instance using the Whitebox.getInternalState method

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

62

�� From the value retrieved, we assert that employee was actually added
successfully

6.	 Second Approach:

�� We first substitute the privately held employees list within the Department
instance using our own test list. This is done with the help of the Whitebox.
setInternalState method.

�� Then we add the employee to the Department instance.

�� Finally, we assert that the employee was successfully added into our test
employees list.

7.	 The last thing we are going to do in this recipe is write a test for the Department.
updateMaxSalaryOffered method:
 @Test
 public void shouldVerifyThatMaxSalaryOfferedFor
 ADepartmentIsCalculatedCorrectly() throws Exception
{
 final Department department = new Department();
 final Employee employee1 = new Employee();
 final Employee employee2 = new Employee();
 employee1.setSalary(60000);
 employee2.setSalary(65000);

 //Adding two employees to the test employees list.
 final ArrayList<Employee> employees = new
 ArrayList<Employee>();
 employees.add(employee1);
 employees.add(employee2);

 //Substituting the privately held employees list
 // with our test list.
 Whitebox.setInternalState(department, "employees",
 employees);

 //Invoking the private method
 // updateMaxSalaryOffered on the department
 // instance.
 Whitebox.invokeMethod(department,
 "updateMaxSalaryOffered");

 //Getting the value of maxSalary from the private
 // field.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

63

 final long maxSalary = Whitebox.getInternalState
 (department, "maxSalaryOffered");

 Assert.assertEquals(65000, maxSalary);
 }

8.	 Things to notice in this test are:

�� We are first setting up our test employees list by adding two Employee
instances in it: one with a salary of 60000, and other with a salary of 65000

�� Next, we are substituting the privately held employees list in the
Department instance with our test list using the Whitebox.
setInternalState method

�� Then, using the Whitebox.invokeMethod method, we are invoking the
updateMaxSalaryOffered method on the Department instance

�� Next, we get the value of maxSalaryOffered from the private field of the
Department instance using the Whitebox.getInternalState method

�� Finally, we are asserting that maxSalary is equal to 65000

How it works...
For any mutable object, the internal state may change after invoking any method. PowerMock
helps us unit test such behavior using the Whitebox class.

ff The Whitebox.getInternalState(department, "employees") method:
This statement can be read as, get the value of private employees field from the
department instance.

�� The first argument to this method is the instance which holds the private
field (that is the department object)

�� The second argument is the name of private member (that is employees).

ff The Whitebox.setInternalState(department, "employees",
employees) method: This statement can be read as, set the employees field
of the department instance with value held by the employees variable.

�� The first argument to this method is the instance which holds the private
member (that is the department object).

�� The second argument is the name of the private member (that is
employees).

�� The third argument is the value to set (that is the value held by the
employees variable).

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

64

ff The Whitebox.invokeMethod(department, "updateMaxSalaryOffered")
method: This statement can be read as, invoke the method
updateMaxSalaryOffered on the department instance.

�� The first argument to this method is the instance on which we need to invoke
the private method (that is the department object).

�� The second argument is the name of the private method (that is
updateMaxSalaryOffered).

�� The next arguments are any parameters that need to be passed
to the private method. In our example, the private method
updateMaxSalaryOffered does not take any parameters, hence we don't
need to pass anything.

There's more...
There are many other methods to the Whitebox class. Using the Whitebox class, we can
even instantiate a class that has a private constructor.

I strongly recommend visiting the API docs at http://powermock.googlecode.com/svn/
docs/powermock-1.5/apidocs/org/powermock/reflect/Whitebox.html for
more details.

Suppressing unwanted behavior (Advanced)
There are times when we may need to suppress a constructor, method, field, or static
initializer because they perform some operations that are not very desirable for doing unit
testing of their own code. Such a situation may arise while dealing with third-party libraries or
legacy code.

In this recipe, we will look at ways to suppress such unwanted behaviors.

Getting ready
Let's modify the Department class and make it extend a base class called BaseEntity.
This new BaseEntity class will make it difficult to unit test the Department class.

How to do it...
1.	 The code for the BaseEntity class is as follows:

/**
 * The base class which
 * is going to do things,
 * that would make its derived classes difficult to test.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

65

 * @author Deep Shah
 */
public class BaseEntity {
 /**
 * The default constructor throws
 * UnsupportedOperationException.
 */
 public BaseEntity() {
 throw new UnsupportedOperationException();
 }
}

2.	 This is a very simple class whose default constructor throws
UnsupportedOperationException.

3.	 The updated Department class is as follows:
/**
 * The Department class that will
 * have a relationship with Employee class.
 * One Employee will be
 * associated with at max one Department,
 * but one Department will be associated with
 * one or more Employees
 *
 * @author Deep Shah
 */
public class Department extends BaseEntity {
 /**
 * The department id field.
 */
 private int departmentId;

 /**
 * The constructor that takes in
 * departmentId as argument.
 * @param departmentId department id to set.
 */
 public Department(int departmentId) {
 super();
 this.departmentId = departmentId;
 }

//Rest of the code remains as it is.
}

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

66

4.	 The only change is that the Department class now extends BaseEntity. Since the
BaseEntity constructor throws an exception, anyone who tries to instantiate the
Department class will also get an exception.

5.	 We have also added a constructor that takes in departmentId as the argument.
This constructor will first invoke the default constructor of the BaseEntity class,
and then save the value of departmentId in its member field.

6.	 If we write the test for this constructor assignment without doing anything special,
then we will get back an exception right in our face.

7.	 To test the Department class constructor, we will have to suppress the BaseEntity
constructor. The code to do that is as follows:
@RunWith(PowerMockRunner.class)
@PrepareForTest(Department.class)
public class DepartmentTest {
 @Test
 public void shouldSuppressTheBase
 ConstructorOfDepartment() {
 PowerMockito.suppress(PowerMockito
 .constructor(BaseEntity.class));
 Assert.assertEquals(10, new
 Department(10).getDepartmentId());
 }
}

8.	 Two important things to note about this test are:

�� We will need to prepare the Department class for testing. This is required
because we want to suppress the constructor of the BaseEntity class,
which is invoked from the Department class.

�� Next, the syntax to suppress the constructor is PowerMockito.
suppress(PowerMockito.constructor(BaseEntity.class));.
This tells PowerMock that the constructor of BaseEntity, which does not
take any argument, needs to be suppressed.

9.	 Let's add one more method to the Department class to set the department name.
We would also want to audit this change and write to some log file. The code to audit
the change will be placed in the BaseEntity class.
 /**
 * Setter for the departmentId.
 * @return the value of departmentId.
 */
 public void setName(String name) {
 this.name = name;
 super.performAudit(this.name);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

67

10.	Department.setName is a very simple setter method for updating department
name. This method in turn calls super.performAudit(this.name) to do the
auditing of department name.
 /**
 * This method is responsible to write audit trails.
 * Currently this method throws an
 * UnsupportedOperationException.
 * @param auditInformation the audit information to
 * log.
 */
 protected void performAudit(String auditInformation) {
 throw new UnsupportedOperationException();
 }

11.	 The code to test Department.setName is as follows:
 @Test
 public void shouldSuppressThePerformAudit
 MethodOfBaseEntity() {
 PowerMockito.suppress(PowerMockito
 .constructor(BaseEntity.class));
 PowerMockito.suppress(PowerMockito
 .method(BaseEntity.class, "performAudit",
 String.class));
 final Department department = new Department();
 department.setName("Mocking with PowerMock");
 Assert.assertEquals("Mocking with PowerMock",
 department.getName());
 }

12.	 The code looks very similar to what we have seen earlier:

�� First, we have to suppress the BaseEntity constructor

�� The PowerMockito.suppress(PowerMockito.method(BaseEntity.
class, "performAudit", String.class)) syntax tells PowerMock
to suppress the performAudit method of the BaseEntity class, which
takes in String as its only argument.

�� Then we test the Department.setName method

13.	 Let's do one last change to the BaseEntity class. We will add a static initializer to
the BaseEntity class that will throw an exception:
public class BaseEntity {

 /**
 * Static initializer that will throw a
 * NullPointerException.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

68

 */
 static {
 String x = null;
 x.toString();
 }
//Rest of the code is not shown in the interest of space.
}

14.	 As shown in the preceding code, the static initializer of BaseEntity will throw an
instance of NullPointerException.

15.	 The test to suppress the static initializer of BaseEntity is as follows:
@RunWith(PowerMockRunner.class)
@PrepareForTest(Department.class)
@SuppressStaticInitializationFor("com.gitshah.powermock
 .BaseEntity")
public class DepartmentTest {

 @Test
 public void shouldSuppressTheInitializerForBaseEntity() {
 PowerMockito.suppress(PowerMockito
 .constructor(BaseEntity.class));
 Assert.assertNotNull(new Department());
 }
}

16.	 Things to notice about this test are as follows:

�� We need to inform PowerMock that we want to suppress the static initializer
of the BaseEntity class. This is done by the annotation @SuppressStati
cInitializationFor("com.gitshah.powermock.BaseEntity").

�� Next, we simply suppress the default constructor of BaseEntity and assert
that new instance of Department is not null.

How it works...
We have to inform PowerMock about the method to suppress by passing the method name
as string. In our example, we are doing it as PowerMockito.suppress(PowerMockito.
method(BaseEntity.class, "performAudit", String.class));.

The PowerMockito.when().thenReturn() syntax will not work when we want to
suppress a method. That's because if we use the PowerMockito.when().thenReturn()
syntax, it will result into a method invocation, and we don't want that to happen.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Mock Testing with PowerMock

69

To suppress the static initializer, we had to give the fully qualified class name as an argument
such as @SuppressStaticInitializationFor("com.gitshah.powermock.
BaseEntity"). We cannot use @SuppressStaticInitializationFor(BaseEntity.
class), because as soon as we use the BaseEntity.class, it will load the class and call
the static initializer. PowerMock will never get an opportunity to suppress the static initializer.
Hence, to get around this problem, we have to pass fully qualified class name string to the
@SuppressStaticInitializationFor annotation.

There's more...
PowerMock can suppress constructors, methods, and fields as well.

Suppressing constructors
PowerMockito.suppress(PowerMockito.constructor(BaseEntity.class,
String.class, Integer.class)): This syntax would suppress a constructor in the
BaseEntity class, which takes in String as its first argument and Integer as its
second argument.

Suppressing fields
PowerMockito.suppress(PowerMockito.field(BaseEntity.class,
"identifier")): This tells PowerMock to suppress the field called identifier in
the class BaseEntity. This syntax looks very similar to the suppress method syntax.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Instant Mock Testing with PowerMock

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

Instant Testing with QUnit
[Instant]
ISBN: 978-1-78328-217-3 Paperback: 64 pages

Employ QUnit to increase your efficiency when testing
JavaScript code

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2.	 Learn about cross-browser testing with QUnit

3.	 Learn how to use popular QUnit plugins and
develop your own plugins

4.	 Hands-on examples on all the essential QUnit
methods

Web Services Testing with
soapUI
ISBN: 978-1-84951-566-5 Paperback: 332 pages

Build high quality service-oriented solutions by learning
easy and efficient web services testing with this
practical, hands-on guide

1.	 Become more proficient in testing web services
included in your service-oriented solutions

2.	 Find, analyze, reproduce bugs effectively by
adhering to best web service testing approaches

3.	 Learn with clear step-by-step instructions and
hands-on examples on various topics related to
web services testing using soapUI

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

TestNG Beginner's Guide
ISBN: 978-1-78216-600-9 Paperback: 276 pages

Write robust unit and functional tests with the power
of TestNG

1.	 Step-by-step guide to learn and practise any given
feature

2.	 Detailed understanding of the features and core
concepts

3.	 Learn about writing custom reporting

Arquillian Testing Guide
ISBN: 978-1-78216-070-0 Paperback: 242 pages

Get familiarized with the Arquillian framework and its
capabilities to carry out integration and functional on a
Java virtual machine

1.	 Build effective unit tests and integration using
Arquillian and JUnit

2.	 Leverage Arquillian to test all aspects of
your application – UI, SOAP and REST based
applications

3.	 Run your tests the easy way using Arquillian in a
container

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Instant Mock testing with Powermock
	Saying Hello World! (Simple)
	Getting and installing PowerMock (Simple)
	Mocking static methods (Simple)
	Verifying method invocation (Simple)
	Mocking final classes or methods (Simple)
	Mocking constructors (Medium)
	Understanding argument matchers (Medium)
	Understanding the Answer interface (Advanced)
	Partial mocking with spies (Advanced)
	Mocking private methods (Medium)
	Breaking the encapsulation (Advanced)
	Suppressing unwanted behavior (Advanced)

