Effective

MR _TEQTIRIN
ALUIINNG

A guide for Java developers

e

LASSE KOSKELA

Effective Unit Testing

Effective Unat lesting

LASSE KOSKELA

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 261

Shelter Island, NY 11964
Email: orders@manning.com

©2013 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

/l/l Manning Publications Co. Development editor: Frank Pohlman
20 Baldwin Road Copyeditor: Benjamin Berg
PO Box 261 Technical proofreader: Phil Hanna
Shelter Island, NY 11964 Proofreader: Elizabeth Martin

Typesetter: Dottie Marsico
Cover designer: Marija Tudor

ISBN 9781935182573
Printed in the United States of America
12345678910 - MAL - 18 17 16 15 14 13

www.manning.com

Few sights are as captivating as the pure joy
of learning new things.

brief contents

PART 1 FOUNDATIONS ootootooooooa0ooootooo00oooooootoooooooooaoooootooooooooooooto1

1 = The promise of good tests 3
2 = Insearch of good 15
3 = Testdoubles 27

PART 2 CATALOG . ccetutereeeererereeceserercececesescssessssscssssessssesssessssnssdD

4 = Readability 47
5 = Maintainability 78
6 ® Trustworthiness 115

PART 3 DIVERSIONS ¢ cututererererecececececesesecssesssscssssssssssssssssssssssse 137

7 = Testable design 139
8 ® Writing tests in other JVM languages 156
9 = Speeding up test execution 170

contents

preface xv

acknowledgments xvii

about this book xix

about the cover illustration — xxiv

PART 1 FOUNDATIONSO.l....................l..O.................l..'...1

The promise of good tests 3
1.1 State of the union: writing better tests 4
1.2 The value of having tests 5
Factors of productivity 8 = The curve of design potential 10
1.3 Tests as a design tool 10
Test-driven development 11 = Behavior-driven development 13

1.4 Summary 14

In search of good 15
2.1 Readable code is maintainable code 16
2.2 Structure helps make sense of things 18
2.3 It’snot good if it’s testing the wrong things 20

2.4 Independent tests run easily in solitude 21

X CONTENTS

2.5 Reliable tests are reliable 23
2.6 Every trade has its tools and tests are no exception 25

2.7 Summary 26

Test doubles 27
3.1 The power of a test double 28

Isolating the code under test 28 = Speeding up test execution 30
Making execution deterministic 31 = Simulating special
conditions 32 = Exposing hidden information 32

3.2 Types of test doubles 33

Test stubs are unusually short things 34 = Fake objects do it
without side effects 35 = Test spies steal your secrets 36
Mock objects object to surprises 38

3.3 Guidelines for using test doubles 39

Pick the right double for the test 40 = Arrange, act, assert 40
Check for behavior, not implementation 42 = Choose your
tools 42 = Inject your dependencies 43

3.4 Summary 44

PART 2 CATALOG ..ueeeeeeneencencessescessessessessessessessessessessesedD
Readability 47

4.1 Primitive assertions 48

Example 48 = What to do about it? 49 = Summary 51
4.2 Hyperassertions 51

Example 51 = What to do about it? 54 = Summary 55
4.3 Bitwise assertions 56

Example 56 = What to do about it? 56 = Summary 57
4.4 Incidental details 57

Example 57 = What to do about it? 58 = Summary 60
4.5 Split personality 60

Example 61 = What to do about it? 61 = Summary 64
4.6 Splitlogic 64

Example 65 = What to do about it? 66 = Summary 69
4.7 Magic numbers 70

Example 70 = What to do about it? 71 = Summary 71

CONTENTS

4.8 Setup sermon 72
Example 72 = What to do about it?
4.9 Overprotective tests 75
Example 75 = What to do about it?
4.10 Summary 76

Maintainability 78

5.1 Duplication 79

Example 79 = What to do about it?
5.2 Conditional logic 82

Example 83 = What to do about it?
5.3 Flaky test 85

Example 85 = What to do about it?
5.4 Crippling file path 88

Example 88 = What to do about it?
5.5 Persistent temp files 91

Example 91 » What to do about it?
5.6 Sleeping snail 94

Example 94 = What to do about it?
5.7 Pixel perfection 97

Example 97 = What to do about it?
5.8 Parameterized mess 102

Example 103 = What to do about it?
5.9 Lack of cohesion in methods 108

Example 109 = What to do about it?

510 Summary 113

Trustworthiness 115
6.1 Commented-out tests 116
Example 116 = What to do about it?

6.2 Misleading comments 118
Example 118 = What to do about it?
6.3 Neverfailing tests 121
Example 121 = What to do about it?

73 = Summary

76 = Summary

80 = Summary

83 = Summary

86 = Summary

89 = Summary

92 » Summary

95 = Summary

98 = Summary

74

76

82

84

87

90

93

96

10

1

106 = Summary 108

110 = Summary

117 = Summary

119 = Summary

122 = Summary

112

118

120

123

xi

xii CONTENTS

6.4 Shallow promises 123

Example(s) 123 » What to do about it? 125 = Summary 126
6.5 Lowered expectations 127

Example 127 = What to do about it? 128 = Summary 129
6.6 Platform prejudice 129

Example 129 = What to do about it? 130 = Summary 132
6.7 Conditional tests 133

Example 133 = What to do about it? 134 = Summary 135
6.8 Summary 135

PART 3 DIVERSIONS. ceetetereceeeerececscsesecssscsessssescssssssesecs 137

Testable design 139
7.1 What’s testable design? 140

Modular design 140 = SOLID design principles 141
Modular design in context 143 w» Test-driving toward
modular design 143

7.2 Testability issues 143

Can’t instantiate a class 144 = Can’t invoke a method 144
Can’t observe the outcome 145 = Can’t substitute a
collaborator 145 = Can’t override a method 145

7.3 Guidelines for testable design 146

Avoid complex private methods 146 = Avoid final methods 147
Avoid static methods 148 = Use new with care 148 » Avoid
logic in constructors 149 = Awvoid the Singleton 150 = Favor
composition over inheritance 151 = Wrap external libraries 152
Awvoid service lookups 152

7.4 Summary 154

Writing tests in other JVM languages 156
8.1 The premise of mixing JVM languages 157
General benefits 157 = Writing tests 159
8.2 Writing unit tests with Groovy 160
Simplified setup for tests 161 = Groovier J[Unit 4 tests 163

CONTENTS

8.3 Expressive power with BDD tools 163

Groovy specs with easyb 164 = Spock Framework: steroids for
writing more expressive tests 165 w Spock Framework’s test doubles
are on steroids, too 167

8.4 Summary 168

Speeding up test execution 170
9.1 Looking for aspeed-up 171

The need for speed 171 = Approaching the situation 172
Profiling a build 172 = Profiling tests 175

9.2 Speeding up test code 178

Don’t sleep unless you’re tired 178 = Beware the bloated base
class 179 = Watch out for redundant setup and teardown 181
Be picky about who you invite to your test 182 = Stay local, stay
fast 183 = Resist the temptation to hit the database 184
There’s no slower 1/0 than file /O 186

9.3 Speeding up the build 187
Faster I/O with a RAM disk 188 = Parallelizing the build 189
Offload to a higher-powered CPU 194 = Distribute the build 196

9.4 Summary 200
appendix A JUnit primer 202
appendix B Extending JUnit 209

index 217

xiii

preface

On the night of June 10, 2009, I found an email in my inbox from Christina Rudloff
from Manning, asking me if I knew anyone who might be a good candidate to write a
Java edition of Roy Osherove’s book, The Art of Unit Testing in .NET. 1 told her I'd do it.

That was a long time ago and what you’re looking at right now has very little in
common with Roy’s book. Let me explain.

The project started as a straight translation from .NET to Java, only rewriting where
necessary to match the changing technology platform, its tooling, and its audience. I
finished the first chapter, the second chapter, the third chapter, and suddenly I found
myself rewriting not just short passages but entire chapters. The tone of voice wasn’t
mine; sometimes I would disagree or have preferences incompatible with Roy’s, and
sometimes I simply felt strongly about saying something, setting things straight, and
putting a stake into the ground.

Eventually, I decided to start over.

It was clear that we were not in a translation project. This was a brand new title of
its own—a book that helps a Java programmer improve his tests, gaining a deeper
insight into what makes a test good and what kind of pitfalls to look out for. You can
still see Roy’s thinking in many ways in this book. For instance, the chapter titles of the
catalog in part 2 I've blatantly borrowed from Roy and chapter 7 was written largely
thanks to Roy’s counterpart in The Art of Unit Testing in .NET.

This is a book for the Java programmer. Yet, I didn’t want to straitjacket the ideas in
this book artificially, so I tried to steer away from being too language-specific even
though all of the code examples in the pattern catalog, for example, are Java. Writing
good tests is a language-agnostic problem and I heartily recommend you read this

XV

xvi

PREFACE

book thoughtfully, even if you happen to spend most of your office hours hacking on
another programming language.

Along those same lines, I didn’t want to give you a tutorial on JUnit or my favorite
mock object library. Aside from such technology being a constantly changing land-
scape and bound to become stale information within months of publication, I wanted
to write the kind of book that I would want to read. I like focused books that don’t
force me to lug around dead weight about a testing framework I already know by
heart or a mock object library I don’t use. For these reasons, I've tried to minimize the
amount of technology-specific advice. There is some but I want you to know that I've
done my best to keep it to a minimum—just enough to have meaningful conversa-
tions about the underlying concepts that I find essential in writing, running, maintain-
ing, and improving tests.

I tried to write the book I would’ve wanted to read. I hope you will enjoy it and,
most importantly, integrate some of these ideas into your own practice.

acknowledgments

When I signed up to write this book I thought it’d be a short project. Everything was
supposed to be straightforward with no wildcards in sight. I should’ve known better.
My wishful thinking was shattered as weeks turned to months and months turned to
years. Without the help of many, many people this book would definitely not be in
your hands and most likely it’d still be a work-in-progress.

From the moment this project was initiated in a casual email exchange with Man-
ning Publication’s Christina Rudloff, a massive amount of help has poured in and all
of it has been very much appreciated—and needed.

I’d like to thank the team at Manning for their support and persistence. In no
specific order, Michael Stephens, Elle Suzuki, Steven Hong, Nick Chase, Karen
Tegtmeyer, Sebastian Stirling, Candace M. Gillhoolley, Maureen Spencer, Ozren Har-
lovic, Frank Pohlmann, Benjamin Berg, Elizabeth Martin, Dottie Marsico, Janet Vail,
and Mary Piergies.

A special thanks goes to the fine individuals that served as domain experts or
reviewers and contributed their time to put their specific experience and expertise to
improving this book. Again, in no specific order, I'd like to extend my most sincere
gratitude to Jeremy Anderson, Christopher Bartling, Jedidja Bourgeois, Kevin Con-
away, Roger Cornejo, Frank Crow, Chad Davis, Gordon Dickens, Martyn Fletcher, Paul
Holser, Andy Kirsch, Antti Koivisto, Paul Kronquist, Teppo Kurki, Franco Lombardo,
Saicharan Manga, Dave Nicolette, Gabor Paller, J. B. Rainsberger, Joonas Reynders,
Adam Taft, Federico Tomassetti, Jacob Tomaw, Bas Vodde, Deepak Vohra, Rick Wag-
ner, Doug Warren, James Warren, Robert Wenner, Michael Williams, and Scott Sauyet.

xvii

xviii

ACKNOWLEDGMENTS

Special thanks to Phil Hanna for his technical review of the manuscript just before it
went into production.

And last, but definitely not least, Id like to thank my family for their continued
support. I imagine it has at times felt like a never-ending endeavor to get this book to
print. Thank you for understanding all of those late nights with a computer on my lap
and for carrying me through the rough spots.

about this book

Developer testing has been increasing its mindshare significantly among Java develop-
ers over the past 10 years or so. Today, no computer science student graduates without
having at least read about automated unit tests and their importance in software
development. The idea is simple—to ensure that our code works and keeps working—
but the skill takes significant effort to learn.

Some of that effort goes to simply writing tests and learning the technology such as
a test framework like JUnit. Some of that effort (and quite possibly most of it) that’s
required for truly mastering the practice of writing automated unit tests goes to read-
ing test code and improving it. This constant refactoring of tests—trying out different
ways of expressing your intent, structuring tests for various aspects of behavior, or
building the various objects used by those tests—is our pragmatic way of teaching our-
selves and developing our sense for unit tests.

That sense is as much about what good unit tests are like as it is about what not-so-
good unit tests are like. There may be some absolute truths involved (such as that a
code comment repeating exactly what the code says is redundant and should be
removed) but the vast majority of the collective body of knowledge about unit tests is
highly context-sensitive. What is generally considered good might be a terrible idea in
a specific situation. Similarly, what is generally a bad idea and should be avoided can
sometimes be just the right thing to do.

It turns out that often the best way to find your way to a good solution is to try one
approach that seems viable, identify the issues with that approach, and change the
approach to remove the icky parts. By repeating this process of constantly evaluating
and evolving what you have, eventually you reach a solution that works and doesn’t
smell all that bad. You might even say that it’s a pretty good approach!

p.0. ¢

ABOUT THIS BOOK

With this complexity in mind, we’ve adopted a style and structure for this book
where we don’t just tell you what to do and how to write unit tests. Instead, we aim to
give you a solid foundation on what kind of properties we want our tests to exhibit
(and why) and then give you as many concrete examples as we can to help you
develop your sense for test smells—to help you notice when something about your test
seems to be out of place.

Audience

This book is aimed at Java programmers of all experience levels who are looking to
improve the quality of the unit tests they write. While we do provide appendices that
teach you about a test framework (JUnit), our primary goal is to help Java program-
mers who already know how to write unit tests with their test framework of choice to
write better unit tests. Regardless of how many unit tests you’ve written so far, we’re cer-
tain that you can still get better at it, and reading a book like this might be just what you
need to stimulate a line of thought that you’ve struggled to put into words.

Roadmap

Effective Unit Testing takes on a multifaceted challenge that calls for a structure that
supports each of those facets. In our wisdom (gained through several iterations of
failed attempts) we’ve decided to divide this book into three parts.

Part 1 begins our journey toward better tests by introducing what we’re trying to
achieve and why those goals should be considered desirable in the first place. These
three chapters present the fundamental tools and simple guidelines for writing a
good test.

Chapter 1 starts off with the value proposition of automated unit tests. We establish
the value by considering the many things that factor into our productivity as program-
mers and how well-written automated unit tests contribute to that productivity or pre-
vent things from dragging us down.

Chapter 2 sets the bar high and attempts to define what makes a test good. The
properties and considerations in this chapter serve as the core foundation for part 2,
touching on how we want our tests to be readable, maintainable, and reliable.

Chapter 3 steps out of the line for a moment to introduce test doubles as an essen-
tial tool for writing good tests. It’s not really using test doubles that we’re after but
rather using them well and with consideration. (They’re not a silver bullet in case you
were wondering.)

Part 2 turns the tables and offers a stark contrast to part 1 in its approach, present-
ing a catalog of test smells you should watch for. Along with describing a suspect pat-
tern in test code we’ll suggest solutions to try when you encounter such a smell. The
chapters in this part are divided into three themes: smells that suggest degraded read-
ability, smells that indicate a potential maintenance nightmare, and smells that reek of
trust issues. Many of the smells in part 2 could be featured in any of these three chap-
ters, but we’ve tried to arrange them according to their primary impact.

ABOUT THIS BOOK xxi

Chapter 4 focuses on test smells that are primarily related to the intent or imple-
mentation of a test being unnecessarily opaque. We touch on things like illegible asser-
tions, inappropriate levels of abstraction, and information scatter within our test code.

Chapter 5 walks through test smells that might lead to late nights at the office,
because it takes forever to update one mess of a unit test related to a small change or
because making that small change means we need to change a hundred tests. We take
on code duplication and logic in our test code and we expound on the horrors of
touching the filesystem. And it’s not like we’re giving a free pass to slow tests either
because time is money.

Chapter 6 concludes our catalog of test smells with a sequence of gotchas around
assumptions. Some of these assumptions are made because there’s an inconvenient
comment in our test code and some are the unfortunate products of a failure to
express ourselves unambiguously.

Part 3 could have been called “advanced topics.” It’s not, however, because the top-
ics covered here don’t necessarily build on parts 1 or 2. Rather, these are topics that a
Java programmer might stumble onto at any point on his or her test-writing journey.
After all, almost everything about “good” unit tests is context-sensitive so it’s not sur-
prising that a pressing topic for one programmer is a minor consideration for
another, whether it’s about inheritance between unit test classes, about the program-
ming language we use for writing tests, or about the way our build infrastructure exe-
cutes the tests we’ve written.

Chapter 7 picks up on where chapter 2 left off, exploring what constitutes testable
design. After a brief overview of useful principles and clarifying how we are essentially
looking for modular designs, we study the fundamental testability issues that untest-
able designs throw our way. The chapter concludes with a set of simple guidelines to
keep us on the righteous path of testable design.

Chapter 8 throws a curveball by posing the question, what if we’d write our unit
tests in a programming language other than Java? The Java Virtual Machine allows the
modern programmer to apply a number of alternative programming languages and
integrate it all with plain Java code.

Chapter 9 returns to common reality by taking on the challenge of dealing with
increasingly slow build times and delayed test results. We look for solutions both
within our test code, considering ways of speeding up the code that’s being run as
part of our build, and in our infrastructure, pondering whether we could get that
extra bit of oomph from faster hardware or from a different way of allocating work to
the existing hardware.

Despite JUnit’s popularity and status as the de facto unit test framework within the
Java community, not all Java programmers are familiar with this great little open source
library. We’ve included two appendices to help those individuals and programmers who
haven’t squeezed all the horsepower out of JUnit’s more advanced features.

Appendix A offers a brief introduction to writing tests with JUnit and how JUnit
pokes and prods those tests when you tell it to run them. After skimming through this

xxii

ABOUT THIS BOOK

appendix you’ll be more than capable of writing tests and making assertions with
JUnit’s APL

Appendix B takes a deeper dive into the JUnit API with the goal of extending its
built-in functionality. While not trying to cover everything about JUnit to the last bit of
detail, we’ve chosen to give you a brief overview of the two common ways of extending
JUnit—rules and runners—and devote this appendix to showcasing some of the built-
in rules that are not only useful, but also give you an idea of what you can do with your
custom extensions.

Code conventions

The code examples presented in this book consist of Java source code as well as a host
of markup languages and output listings. We present the longer pieces of code as list-
ings with their own headers. Smaller bits of code are run inline with the text. In all
cases, we present the code using a monospaced font |i ke thi s, to differentiate it from
the rest of the text. We frequently refer to elements in code listings taken from the
text. Such references are also presented using a monospaced font, to make them
stand out. Many longer listings have numbered annotations that we refer to in the
text.

Code downloads

The Manning website page for this book at www.manning.com/EffectiveUnitTesting
offers a source code package you can download to your computer. This includes
selected parts of the source code shown in the book, should you want to take things
further from where we left off.

The download includes an Apache Maven 2 POM file and instructions for installing
and using Maven (http://maven.apache.org) to compile and run the examples. Note
that the download doesn’t include the various dependencies, and you need to have an
internet connection when running the Maven build for the first time—Maven will
then download all the required dependencies from the internet. After that, you’re
free to disconnect and play with the examples offline.

The code examples were written against Java 6, so you’ll need to have that installed
in order to compile and run the examples. You can download a suitable Java environ-
ment from www.oracle.com. (To compile the code, you'll need to download the JDK,
not the JRE.)

We recommend installing a proper IDE as well. You may want to download and
install the latest and greatest version of Eclipse (www.eclipse.org) or another main-
stream tool like Intelli] IDEA (www.jetbrains.com) or NetBeans (www.netbeans.org). All
of these should work fine as long as you’re familiar with the tool.

What’s next?

This book should give you enough insight to start visibly improving your unit tests. It’s
going to be a long journey, and there’s bound to be a question or two that we haven’t

www.netbeans.org
www.manning.com/EffectiveUnitTesting
http://maven.apache.org
www.jetbrains.com

ABOUT THIS BOOK xxiii

managed to predict or answer in full. Fortunately, you’ll have plenty of peers on this
journey and many of them will be more than happy to share and discuss the nuances
of test code online.

Manning has set up an online forum where you can talk to the authors of Manning
titles. That includes the book you’re reading right now so head over to the Author
Online forum for this book at www.manning.com/EffectiveUnitTesting.

There’s also an active community of test-infected programmers over at the testdriv-
endevelopment and extremeprogramming Yahoo! Groups. While these forums aren’t exclu-
sively for discussions about unit tests, they are excellent places for holding those
discussions. Besides, maybe you’ll manage to pick up some new ideas outside of test
code, too.

If you’re looking for a more focused forum for having discussions about developer
testing, head over to the CodeRanch at http://www.coderanch.com and the excellent
Testing forum. Again, a lovely group of very helpful people over there.

Most importantly, however, I suggest that you actively talk about your test code with
your peers at work. Some of the best insights I've had about my code have been
through having someone else look at it on the spot.

Author Online

Purchase of Effective Unit Testing includes free access to a private web forum run
by Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to http://www.manning.com/
EffectiveUnitTesting. This page provides information on how to get on the forum once
you are registered, what kind of help is available, and the rules of conduct on the
forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest you try asking the author some challenging questions, lest his interest stray!

The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

www.mannin.com/EffectiveUnitTesting
http://www.coderanch.com
http://www.manning.com/EffectiveUnitTesting
http://www.manning.com/EffectiveUnitTesting

about the cover illustration

The figure on the cover of Effective Unit Testing is captioned “A Man from Drnis, Dal-
matia, Croatia.” The illustration is taken from a reproduction of an album of Croatian
traditional costumes from the mid-nineteenth century by Nikola Arsenovic, published
by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were
obtained from a helpful librarian at the Ethnographic Museum in Split, itself situated
in the Roman core of the medieval center of the town: the ruins of Emperor Diocle-
tian’s retirement palace from around AD 304. The book includes finely colored illus-
trations of figures from different regions of Croatia, accompanied by descriptions of
the costumes and of everyday life.

Drnis is a small town in inland Dalmatia, built on the ruins of an old medieval for-
tress. The figure on the cover is wearing blue woolen trousers and, over a white linen
shirt, a blue woolen vest which is richly trimmed with the colorful embroidery typical
for this region. He is carrying a long pipe and a burgundy jacket is slung over his
shoulder. A red cap and leather moccasins complete the outfit.

Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It is now hard to tell apart the inhabitants
of different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—
certainly for a more varied and fast-paced technological life.

Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

xXxiv

Part 1

Foundations

rI:lis first part of the book aims to give you, the reader, and me, the author,
a shared context to build upon throughout the chapters. With the ultimate pur-
pose of this book being to help you improve your ability to write good tests,
chapter 1 begins with an overview of what kind of value we can extract from writ-
ing tests in the first place. Once we’ve discussed the dynamics of programmer
productivity and the kind of impact that our tests—and the quality of our tests—
can have on it, we’ll conclude the chapter with a brief introduction to two meth-
ods that are closely related to automated tests: test-driven development (TDD) and
behavior-driven development (BDD).

Chapter 2 takes on the challenge of defining what makes for a good test. In
short, we’d like to write tests that are readable, maintainable, and reliable. Part 2
will go deeper into this rabbit hole by turning the question around and review-
ing a collection of examples of what we don’t want to get.

Part 1 concludes with chapter 3, which tackles one of the most essential tools
in the modern programmer’s tool belt—test doubles. We’ll establish the legiti-
mate uses of test doubles, such as isolating code so that it can be tested properly,
and we’ll make a distinction between the types of test doubles we might reach
out to. Finally, we’ll throw in guidelines for making good use of test doubles to
help you get the benefits without stumbling on common pitfalls.

After reading these first three chapters you should have a good idea of what
kind of tests you want to write and why. You should also have a clear understand-
ing of test doubles as a useful vehicle for getting there. The rest of this book will
then build on this foundation and give you more ammunition for your journey
in the real world.

The promise of good tests

In this chapter

= The value of having unit tests

How tests contribute to a programmer’s productivity
Using tests as a design tool

When I started getting paid for programming, the world looked a lot different.
This was more than 10 years ago and people used simple text editors like Vim and
Emacs instead of today’s integrated development environments like Eclipse, Net-
Beans, and IDEA. I vividly remember a senior colleague wielding his Emacs macros
to generate tons of calls to System.out.println as he was debugging our software.
Even more vivid are my memories of deciphering the logs those printouts ended
up in after a major customer had reported that their orders weren’t going through
like they should.

That was a time when “testing” for most programmers meant one of two
things—the stuff that somebody else does after I'm done coding, or the way you
run and poke your code before you say you’re done coding. And when a bug did
slip through, you’d find yourself poking and prodding your code again—this time
adding a few more logging statements to see if you could figure out where things
went wrong.

1.1

CHAPTER 1 The promise of good tests

Automation was a state-of-the-art concept for us. We had makefiles to compile and
package our code in a repeatable manner, but running automated tests as part of the
build wasn’t quite in place. We did have various shell scripts that launched one or two
“test classes”—small applications that operated our production code and printed what
was happening and what our code was returning for what kind of input. We were far
from the kind of standard testing frameworks and self-verifying tests that report all
failures in our assertions.

We’ve come a long way since those days.

State of the union: writing better tests

Today, it’s widely accepted that developers should write automated tests that fail the
build if they find regressions. Furthermore, an increasing number of professionals is
leaning on a testfirst style of programming, using automated tests not for protecting
against regression but for aiding them in design, specifying the behavior they expect
from code before writing that code, thereby validating a design before verifying its
implementation.

Being a consultant, I get to see a lot of teams, organizations, products, and code
bases. Looking at where we are today, it’s clear that automated tests have made their
way into the mainstream. This is good because without such automated tests, most soft-
ware projects would be in a far worse situation than they are today. Automated tests
improve your productivity and enable you to gain and sustain development speed.

Help! I’m new to unit testing

If you aren’t that familiar with writing automated tests, this would be a good time to
get acquainted with that practice. Manning has released several books on JUnit, the
de facto standard library for writing unit tests for Java, and the second edition of JUnit
in Action (written by Petar Tahchiev, et al. and published in July 2010) is a good
primer for writing tests for all kinds of Java code, from plain old Java objects to Enter-
prise JavaBeans.

In case you’re at home with writing unit tests but you’re new to Java or JUnit, perhaps
all you need to get the most out of this book is to first check out appendix A, so that
you won'’t have trouble reading the examples.

Automated tests being mainstream doesn’t mean that our test coverage is as high as it
should be or that our productivity couldn’t improve. In fact, a significant part of my
work in the last five years or so has revolved around helping people write tests, write
tests before code, and especially write better tests.

Why is it so important to write better tests? What'll happen if we don’t pay atten-
tion to the quality of our tests? Let’s talk about what kind of value tests give us and why
the quality of those tests matters.

1.2

The value of having tests 5

The value of having tests

Meet Marcus. Marcus is a prominent programming wiz who graduated two years ago
and joined the IT group of a local investment bank, where he’s been developing the
bank’s online self-service web application. Being the youngest member of the team,
he kept a low profile at first and focused his energy on learning about the banking
domain and getting to know “the way things are done here.”

A few months on, Marcus started noticing that a lot of the team’s work was rework:
fixing programmer mistakes.! He started paying attention to the types of mistakes the
team was fixing and noticed that most of them would’ve been caught fairly easily by
unit tests. Marcus started writing unit tests here and there when he felt that the code
was particularly prone to having mistakes in it.

Tests help us catch mistakes.

Time went on and the rest of the team was writing unit tests, too, here and there. Mar-
cus had become test-infected and rarely left a piece of code that he touched without
fairly good coverage from automated tests.? They weren’t spending any more time fix-
ing errors than they had before, but for the first time, their total number of open
defects was on the decline. The tests started having a clearly visible impact on the
quality of the team’s work.

Almost a year had passed since Marcus wrote the first test in their code base. On
his way to the company Christmas party, Marcus realized how time had flown and
started thinking back to the changes they’d seen. The team’s test coverage had grown
quickly and had started stabilizing in the recent weeks and months, peaking at 98%
branch coverage.

For a while Marcus had thought that they should push that number all the way to
100%. But in the last couple of weeks, he’d more or less made up his mind—those
missing tests wouldn’t give them much more value, and putting any more effort into
writing tests wouldn’t yield additional benefit. A lot of the code that wasn’t covered
with tests was there only because the APIs they used mandated the implementation
of certain interfaces that Marcus’s team wasn’t using, so why test those empty
method stubs?

100% CODE COVERAGE ISN'T THE GOAL 100% sure sounds better than, say,
95%, but the difference in how valuable those tests are to you may be negligi-
ble. It really depends on what kind of code isn’t covered by tests and whether
the tests you have are able to highlight programming mistakes. Having 100%
coverage doesn’t guarantee the lack of defects—it only guarantees that all of
your code was executed, regardless of whether your application behaves like it
should. So rather than obsessing about code coverage, focus your attention
on making sure that the tests you do write are meaningful.

I For some reason, people referred to them as errors, defects, bugs, or issues.
2 The term test-infected was coined by Erich Gamma and Kent Beck in their 1998 Java Report article, “Test-
Infected: Programmers Love Writing Tests.”

CHAPTER 1 The promise of good tests

The team had reached the plateau—the flat part A
of the curve where additional investments have
diminishing returns. In the local Java user group
meetings, many teams had reported similar expe-
riences and drawn sketches like figure 1.1.

What changed Marcus’s thinking was Sebas-
tian, a senior software architect who’d previously
consulted for the investment bank. Sebastian
joined the self-service team and quickly became a

Value of tests

mentor for the more junior team members, >
including Marcus. Sebastian was an old fox who Effort and attention to writing tests

seemed to have worked with almost every major

Figure 1.1 The more tests we have,

0 . the less value an additional test is likely

web applications. The effect Sebastian had on g yield. The first tests we write most

Marcus was the way he wrote unit tests. likely target some of the most crucial
Marcus had formed a habit of back-filling unit ~ 2reas of the code base and as such tend

R . . . to be high-value and high-risk. When
tests for any code he’d written before checking it | oo written tests for almost

into the team’s version control system. But Sebas- everything, most likely the bits that are

tian’s style focused on starting with a test that still lacking test coverage are the least
crucial and least likely to break.

programming language suitable for developing

would fail (obviously), writing enough code to
make that test pass, and then writing another failing test. He’d work in this loop until
he was done with the task.

Working with Sebastian, Marcus had noticed how his own style of programming
was starting to evolve. He’d structure his objects differently and his code looked some-
how different, simply because he started looking at the design and behavior of his
code from the caller’s perspective.

Tests help us shape our design to actual use.

Pointing out what he’d noticed, Marcus felt as if something clicked. As he tried to put
into words how his programming style had changed and what kind of effects it had on
the outcome, it dawned on Marcus that the tests he’d writen weren’t merely a quality
assurance tool and protection from mistakes and regression. The tests served as a way
of designing code such that it served a concrete purpose. The code Marcus wrote to pass
those failing tests tended to be much simpler than what he used to write, and yet it did
everything it needed to.

Tests help us avoid gold-plating by being explicit

about what the required behavior is.
What Marcus, our protagonist in this story, experienced is not unlike what many test-
infected programmers go through as their awareness and understanding about tests
develops. We often start writing automated unit tests because we believe they’ll help
us avoid embarrassing, time-consuming mistakes. Later on, we may learn that having
the tests as a safety net is just part of the equation and another—perhaps bigger—

The value of having tests 7

part of the benefit is the thinking process we go through as we formulate those tests
into code.

Earlier I suggested that it’s widely accepted that developers should write auto-
mated tests. What’s much less widely accepted is how many and what kind of tests to
write. In my consulting work I’ve noticed that most programmers agree they should
write some tests. Similarly, I've noticed that few programmers hold the opinion that
they should aim for a 100% code coverage—meaning that their tests exercise every
possible execution path through the production code.

So what can we make of this? We agree that writing some tests is a no-brainer, but
our certainty decreases as we get closer to full code coverage—we’ve written tests for
pretty much everything and the remaining code without any tests is almost too trivial
to break. This is what some folks call a diminishing return and it’s often visualized with a
curve similar to figure 1.1.

In other words, adding a hundred carefully chosen automated tests to a code base
is a clear improvement, but when we already have 30,000 tests, those additional hun-
dred tests aren’t as likely to make much difference. But as Marcus, our young pro-
grammer in an investment bank, learned while working with his mentor, it’s not as
simple as that. The preceding reasoning fails to acknowledge what I call the Law of the
Two Plateaus:

The biggest value of writing a test
lies mot in the resulting lest
but in what we learn from writing it.

The Law of the Two Plateaus refers to the two A
levels of thinking about tests that Marcus’s Using tests as
story highlighted. In order to realize the full adesign tool _ -
potential of tests, we need to climb not one < -
but two hills, shown in figure 1.2. " id
As long as we perceive tests merely as a 3 e
uality assurance tool, our potential is © / Using tests as
q y > P g /7 a quality tool
bounded by the lower arc in figure 1.2. Chang- g //
ing our frame of mind toward tests as a pro- /
gramming tool—a design tool—is the catalyst ,’
that allows us to move past the quality plateau
toward the second plateau, the fest-as-design-
tool plateau.
Unfortunately, most code bases seem to Effort and attention to writing tests

stagnate somewhere along the first curve, Figure 1.2 The first plateau lies where

with the developers not taking that catalyst writing more tests or better tests no longer
step in using their tests to drive design. Corre- yields additional value. The second plateau is

. , further up the hill, where we uncover further
spondlngly, the develop ers don’t focus payoffs from changing our mindset—thinking

enough of their attention on the cost of main- apout tests and testing as a resource richer
taining the constantly growing test suite. than a mere tool for verification.

1.2.1

CHAPTER 1 The promise of good tests

From this position, the big question is what are the factors influencing a program-
mer’s productivity, and what role do unit tests have in that dynamic?

Factors of productivity

The fastest way to write tests is to type them in as quickly as you can without paying
attention to the health of an important part of your code base—the test code. But as
we’ll soon discuss, there are good reasons why you should take the time to nurture
your test code, refactor away duplication, and generally pay attention to its structure,
clarity, and maintainability.

Test code naturally tends to be simpler than production code.? Nevertheless, if you
cut corners and take on this technical debt of code quality within your tests, it’s going
to slow you down. In essence, test code ridden with duplication and superfluous com-
plexity lowers your productivity, eating away some of the positive impact of having
those tests in place.

It’s not just about your tests’ readability, but also their reliability and general trust-
worthiness as well as the time it takes to run those tests. Figure 1.3 illustrates the sys-
tem of forces around tests that influences our productivity.

Note how the two direct influences for productivity I've identified in this figure are
the length of the feedback cycle and debugging. In my experience these are the two main
culprits that consume a programmer’s time while on the keyboard. Time spent
debugging is rework that could’ve largely been avoided if you’d learned about the
mistake soon after it happened—and the longer your feedback cycle is, the longer it
takes to even begin debugging.

Readability of

Speed of test
tests

execution

shortens

Length of
feedback cycle

helps
prevent

reduces

Debugging

reduces

Developer lead to

productivity

Accuracy of
test results

improves

Reliability of
tests

Trust-
worthiness
of tests

improves

Figure 1.3 Multiple forces of influence related to tests directly or indirectly affect productivity.

3 For instance, few tests make use of conditional statements, loops, and so on.
* There’s a lot to be said about meetings as the ultimate killer of productivity, but that’s another book.

The value of having tests 9

The rising cost of fixing a bug

What do you think fixing a bug would cost on average? At the XP Day 2009 conference
in London, Google’s Mark Striebeck reported on Google’s estimates around the cost
of delay in fixing defects.

Google had estimated that it cost $5 to fix a bug immediately after a programmer had
introduced it. Fixing the same defect would cost $50 if it escaped the programmer’s
eyes and was found only after running a full build of the project. The cost surged to
$500 if it was found during an integration test, and to $5000 if it managed to find its
way to a system test.

Considering these numbers, surely it’s better to find out about such issues as soon
as you possibly can!

Waiting for validation and verification of a change you’ve made is largely bound to the
speed of test execution, which is one of the root causes highlighted with bold in the dia-
gram. The other three root causes all contribute to the amount of debugging a pro-
grammer does.

Lack of readability naturally makes you slower in your analysis and encourages you
to pick up a debugger because reading the test code doesn’t make you any wiser—it’s
so hard to understand what’s going on. Such a lack of readability also induces more
defects, as it’s difficult to see a mistake you’re making, and defects lead to more debug-
ging sessions.

Another factor that tends to increase the number of defects slipping through is the
accuracy of your lest results. This accuracy is a fundamental requirement for you to be able
to rely on your test suite in identifying when you’ve made a mistake and introduced a
defect. The two remaining test-related root causes that influence productivity are direct
contributors to the tests’ accuracy, namely their trustworthiness and reliability. In order to
rely on your tests being accurate in their reports, the tests need to assert what they
promise to and they have to provide that assertion in a reliable, repeatable manner.

It’s by paying attention to these influences to your productivity that you can scale
the quality plateau. These few root causes we’ve identified are the key for a program-
mer to become more productive. The prerequisite to being productive is to know
your tools well enough that they are not a constant distraction. Once you know your
programming language, you can navigate its core APIs. When you are familiar with
the problem domain, focus on the root causes—the readability, reliability, trustworthi-
ness, and speed of your tests.

It is by paying attention to these influences to your productivity that you can scale
the quality plateau.

This is also the stuff that most of the rest of this book will revolve around—helping
you improve your ability, awareness, and sensibility toward the test code’s readability,
trustworthiness, and reliability, and making certain that you can sustain this way of
working with the test code, ensuring its maintainability.

Before we go there, let’s address that second curve from figure 1.2.

10

1.2.2

1.3

CHAPTER 1 The promise of good tests

The curve of design potential

Let’s assume you’ve written the most crucial tests first—for the most common and
essential scenarios and for the most critical hotspots in the software’s architecture.
Your tests are of high quality, and you’ve mercilessly refactored away duplication,
keeping your tests lean and maintainable. Now imagine you’ve accumulated such
high coverage with your tests that the only ones that you haven’t written are those that
directly test trivial behaviors such as field accessors. It’s fair to say that there’s little
value to be added by writing those tests. Hence, the earlier gesture toward diminish-
ing returns—you’ve reached an upper limit for the value you can extract from “just”
writing tests.

This is the quality plateau, caused by what we don’t do. I say that because to go
beyond this point and continue your journey toward a higher level of productivity, you
need to stop thinking about tests the way you’re thinking about them. In order to
recover that lost potential I’'m talking about, you need to harness a whole different
kind of value from the tests you write—creative, design-oriented value rather than the
kind of protective, verification-oriented value of tests protecting you from regression
and defects.

To summarize, in order to get across both of these two plateaus and reach the full
potential of your tests, you need to:

1 Treat your test code like you treat production code—refactoring it mercilessly,
creating and maintaining high quality tests that you can trust and rely on.

2 Start using your tests as a design tool that informs and guides the design of your
code toward its actual purpose and use.

As we established earlier, it’s the former of these two that most programmers stumble
over, struggling to produce the kind of high quality that we’re looking for from test
code while minimizing the operational cost of writing, maintaining, and running
those tests. That’s also the focus of this book—having good tests.

That means that we’re not going to devote much time and space to discussing the
aspect of using tests as a design tool.” With that said, I do want to give you an overall
understanding of the kind of dynamics and a way of working that I'm referring to, so
let’s elaborate on that topic before moving on.

Tests as a design tool

Automated tests written by programmers have traditionally been considered a quality
assurance effort targeted at the dual purposes of verifying the correctness of an imple-
mentation at the time of its writing and verifying its correctness in the future as the code
base evolves. That’s using tests as a verification tool—you envision a design, write code
to implement the design, and write tests to verify that you’ve implemented it correctly.

® Tt so happens that I've written an excellent book on that topic— Test Driven (Manning Publications, 2007).
Another great pick would be Growing Object-Oriented Software, Guided by Tests by Steve Freeman and Nat Pryce
(Addison-Wesley, 2009).

Tests as a design tool 11

Test Code Refactor Figure 1.4 The test-driven
development process starts by
t writing a failing test, writing code to

pass the test, and refactoring the
(repeat) code base to improve its design.

Using automated tests as a design tool turns everything upside down. When you use
tests to design your code, you transform the canonical sequence of “design, code, test”
into “test, code, design.” Yes, that’s right. Test comes before code, and you conclude
with a retroactive design activity. That concluding design activity is better known as
refactoring, making the sequence into test-code-refactor, visualized as figure 1.4.

If this sounds familiar, you’ve probably heard of a practice called test-first program-
ming or lest-driven development (TDD).% That’s exactly what we’re talking about here so
let’s call it what it is.

1.3.1 Test-driven development

TDD, illustrated in figure 1.5, is a disciplined programming technique built around a
simple idea: no production code is written before theve’s a failing lest that justifies the existence
of that code. That’s why it’s sometimes referred to as test-first programming.

It’s more than that; by writing a test first, you drive your production code toward a
design called for by the test. This has the following desirable consequences:

= Code becomes usable—The design and API of your code are suitable for the kind of
scenarios you’re going to use it for.

= Code becomes lean—The production code only implements what’s required by
the scenarios it’s used for.

First, regardless of where in the system’s blueprints you’re currently working and what
other components, classes, or interfaces exist or don’t exist, you always have a con-
crete scenario for which you design a solution. You encode that scenario into an exe-
cutable example in the shape of an automated unit test. Running that test and seeing
it fail gives you a clear goal of making that test pass by writing just enough production
code—and no more.

Sketching that scenario into compiling executable test code is a design activity.
The test code becomes a client for the production code you’re developing and lets
you validate your design before you’ve written a single line. Expressing your needs in
the form of concrete examples is a powerful validation tool—value that we can only
extract by using tests as a design tool.

Second, by ruthlessly following the rule of only writing enough code to make the
tests pass, you can keep your design simple and fit for a purpose. There’s no sign of
gold-plating anywhere because no line of code exists without a test—a scenario—that

® Or you actually read the story about Marcus and his mentor, Sebastian, a few pages earlier...

12 CHAPTER 1 The promise of good tests

Start v yes
Make tests
Write a new . no pass by -
> Run all tests writing d
test N
production
code
\4
Run all tests
yes ¢
Refactor
— Run all tests < production
and test code yes no
no
Revert to
refactoring

Figure 1.5 Test-driven development is a cyclic process of writing a failing test, making it pass, and
refactoring the code to amplify clarity of intent while minimizing duplication. Every step along the way,
you’re constantly running tests to make sure that you know where you stand.

warrants it. One of the worst offenders of code quality and a major contributor to
developers’ productivity crawling to a halt is accidental complexity.

Accidental complexity is unnecessary complexity. It’s complexity that could
be avoided by substituting a simpler design that still meets the requirements. Some-
times we programmers like to demonstrate our mental capacity by producing such
complex designs that we have trouble understanding them ourselves. I will bet you
recognize that primal instinct in yourself, too. The problem with complex designs is
that complexity kills productivity and unnecessary complexity is, well, unnecessary
and counterproductive.

The combination of a test specifying a flaw or missing functionality in the code, the
rule of writing only enough code to make the tests pass, and the ruthless refactoring
toward a simple design’ are enormously powerful at keeping such accidental complex-
ity at bay. It’s not a magic potion, and ultimately what you end up with is influenced by
the programmer’s design sense and experience.

There’s much more to TDD than this—so much more that entire books have been
written about the method, including my previous book, Test Driven (Manning, 2007),
and the more recent Growing Object-Oriented Software, Guided by Tests by Steve Freeman
and Nat Pryce (Addison-Wesley, 2009). If you’d prefer a more compact introductory

7 Simple design isn’t the same as simplistic design.

1.3.2

Tests as a design tool 13

title on TDD, I recommend picking up a copy of Kent Beck’s Test Driven Development: By
Example (Addison-Wesley, 2002).

With such widely available and thorough descriptions of TDD around, we’re going
to keep it short and let you refer to those titles for a more in-depth exploration. But I
do want to discuss one aspect of TDD because it has close ties to our main topic of
good tests—a style of programming called behavior-driven development.

Behavior-driven development

You may have heard of something called BDD, which stands for behavior-driven devel-
opment. Though people have programmed in some kind of a test-first manner for sev-
eral decades, the method we know as test-driven development was described and
given a name during the 1990s.

Some 10 years later, a London-based consultant named Dan North stepped up to
champion the next evolution of test-first programming, after realizing that the vocab-
ulary and mindset of TDD speaking about “tests” was leading people along the wrong
path. Dan gave this style of TDD the name behavior-driven development and, in his
introductory article published in Better Sofiwarein 2006, he described BDD like this:

It suddenly occurred to me that people’s misunderstandings about TDD almost
always came back to the word “test.”

That’s not to say that testing isn’t intrinsic to TDD—the resulting set of
methods is an effective way of ensuring your code works. However, if the meth-
ods do not comprehensively describe the behaviour of your system, then they
are lulling you into a false sense of security.

I started using the word “behaviour” in place of “test” in my dealings with
TDD and found that not only did it seem to fit but also that a whole category of
coaching questions magically dissolved. I now had answers to some of those
TDD questions. What to call your test is easy—it’s a sentence describing the
next behaviour in which you are interested. How much to test becomes moot—
you can only describe so much behaviour in a single sentence. When a test
fails, simply work through the process described above—either you introduced
a bug, the behaviour moved, or the test is no longer relevant.

I found the shift from thinking in tests to thinking in behaviour so profound
that I started to refer to TDD as BDD, or behaviour-driven development.

After Dan started writing and talking about BDD, others in the global community of
software developers stepped forward to further develop the ideas of example-driven,
specification-of-behavior oriented thinking that was embodied in Dan North’s BDD. As
aresult, people today refer to BDD in contexts and domains wider than that of code—
most notably integrating BDD with business analysis and specification activities at the
requirements level.

A particular concept that BDD practitioners vouch for is outside-in development
with acceptance tests. This is how Matt Wynne and Aslak Hellesgy, authors of The
Cucumber Book: Behaviour-Driven Development for Testers and Developers, describe it:

Behaviour-Driven Development builds upon Test-Driven Development by for-
malizing the good habits of the best TDD practitioners. The best TDD practi-

14

14

CHAPTER 1 The promise of good tests

tioners work from the outside-in, starting with a failing customer acceptance
test that describes the behavior of the system from the customer’s point of
view. As BDD practitioners, we take care to write the acceptance tests as exam-
ples that anyone on the team can read. We make use of the process of writing
those examples to get feedback from the business stakeholders about
whether we’re setting out to build the right thing before we get started.

As testament to this development, a crop of BDD tools and frameworks has popped up
seeking to embed the underlying ideas, practices, and conventions into the software
developer’s tool chain. We’ll see some of those tools in chapter 8.

When we speak of “good tests” in the remainder of this book, keep in mind the
realization Dan made and pay attention to words. Vocabulary matters.

Summary

We’ve come a long way from the days of “cowboy coding” with programmers hacking
away at code without any tests to catch them when they fall from the saddle. Developer
testing and automated tests are commonplace or, if not exactly standard practice, are
definitely a topic of active discussion. The value of having a thorough suite of auto-
mated tests for your code is undeniable.

In this chapter you familiarized yourself with the Law of the Two Plateaus. The first
plateau is where the value programmers are getting out of their tests is limited
because they already have full test coverage. But you can get further. Programmers
who pay attention to the quality of their tests zoom right past the first plateau, aiming
for the top. It’s one thing to have tests, and it’s a whole nother thing to have good
tests. That’s why you’re reading this book and that’s the challenge we’re going to take
up in the remaining chapters.

After all, you get much more out of the climb if you go all the way to the top rather
than stopping halfway.

In search of good

In this chapter

= What makes a test “good”?
= Testing relevant behavior
= The importance of reliable tests

We’re on a journey of learning about good tests. We want to learn to identify good
tests, write good tests, and improve not-so-good tests so they become good tests—or
at least closer to being good tests. The question is, What makes a test “good”? What
are the magic ingredients? There are several aspects to consider, including:

= The test code’s readability and maintainability

= How the code is organized both within the project and within a given
source file

= What kinds of things a test is checking for

= How reliable and repeatable a test is

= How a test makes use of test doubles

We’ll be taking a closer look at all of these aspects in this chapter.
The preceding list is far from being comprehensive. The range of factors that
may tip your test-quality scale either way is endless. Similarly, some of the factors

15

16

2.1

CHAPTER 2 In search of good

don’t matter that much in all contexts. For some tests, their execution speed may be
crucial, whereas for other tests, being extremely focused is key.

Furthermore, some of the quality of test code is in the eye of the beholder. As is the
case with code in general, personal preference has a role in defining what “good” is—
I’m not going to pretend that it wouldn’t. I'm also not going to pretend that I can
avoid my bias and preference from coming through in this book. Though I've tried to
steer away from pure matter-of-taste questions, you’ll find numerous sections where
my opinions clearly show through. I think that’s fine. After all, the best I can offer is
my honest (and opinionated) view of things based on my experience, shaped by the
wonderful individuals and software professionals from whom I've learned about code
and, specifically, about test code.

With that disclaimer out of the way, let’s discuss some of those aspects of test qual-
ity and establish what about them makes them relevant to our interests.

Readable code is maintainable code

Yesterday I popped into our office on my way back from a consulting gig and struck up
a conversation with a colleague about an upcoming 1K competition that my colleague
was going to attend. Such competitions are an age-old tradition at demo parties —a
type of geek gathering where hackers gather at a massive arena for a long weekend
with their computers, sleeping bags, and energy drinks. Starting from the first gather-
ings, these hackers have faced off, wielding their mad skills at producing 3D anima-
tions with what most people would today consider antiquated hardware.

A typical constraint for such animations has been size. In the case of the competi-
tion my colleague was preparing for, the name IK refers to the maximum size of the
code compiled into a binary executable, which must be less than 1,024 bytes. Yes,
that’s right—1,024 bytes. In order to squeeze a meaningful program into such a tiny
space, the competitors need to resort to all kinds of tricks. For example, one common
trick to pack your code more tightly is to use the same name for many variables—
because the resulting code compresses a bit better like that. It’s crazy.

What’s also crazy is the resulting code. When they’re done squeezing the code
down to 1,024 bytes, the source code is undecipherable. You can barely recognize
which programming language they’ve used! It’s essentially a write-only code base—
once you start squeezing and compressing, you can’t make functional changes
because you wouldn’t be able to tell what to edit where and how.

To give you a vivid taste of what such code might look like, here’s an actual submis-
sion from a recent JS1k competition where the language of choice is JavaScript and it
needs to fit into 1,024 bytes:
<script>with(document.body.style){margin="0px";overflow="hidden";}
var w=window. innerWidth;var h=window.innerHeight;var ca=document.
getElementByld(''c');ca.width=w;ca.height=h;var c=ca.getContext(''2d");
m=Math;fs=m.sin;fc=m.cos;fm=m.max;setinterval (d,30);function p(x,y,z){
return{x:x,y:y,z:z};}function s(a,z){r=w/10;R=w/3;b=-20*fc(a*5+t);
return p(w/2+(R*fc(a)+r*fs(z+2*t))/z+fc(a)*b,h/2+(R*fs(a))/z+fs(a)*b);
}Hfunction g(a,da,z,dz){var v=[s(a,z),s(a+da,z),s(a+da,z+dz),s(a,z+dz)]

Readable code is maintainable code 17

;c.beginPath();c.moveTo(Vv[0]-x,v[0].y);For(i in v)c.lineTo(v[i]-x,Vv[i]
y);c.FillQQ;}var Z=-0.20;var t=0;function dQ{t+=1/30.0;c.FfillStyle=
"#000";c.FillRect(0,0,w,h);c.FillStyle="#f00";var n=30;var a=0;var da=
2*Math.P1/n;var dz=0.25;for(var z=Z+8;z>Z;z-=dz){for(var i=0;i<n;i++){
fog=1/(fm((z+0.7)-3,1)); if(z<=2){fog=fm(0,z/2*z/2) ; }var k=(205*(fog*
Math.abs(fs(i/n*2*3.14+t))))>>0;k*=(0.55+0.45*Fc((i/n+0.25)*Math.P1*5)
):k=k>>0;c.FillStyle="rgb(*"+k+","+k+","+k+")";q(a,da, z,dz) ; if(i%3==0){
c.FillStyle="#000";q(a,das10,z,dz);}a+=da;}}Z-=0.05; if(Z<=dz)Z+=dz;}
</script>

Granted, that is a couple of magnitudes more extreme a situation than what you’d
find at a typical software company. But we’ve all seen code at work that makes our
brains hurt. Sometimes we call that kind of code legacy because we’ve inherited it from
someone else and now we’re supposed to maintain it—except that it’s so difficult that
our brains hurt every time we try to make sense of it. Maintaining such unreadable
code is hard work because we expend so much energy understanding what we’re look-
ing at. It’s not just that. Studies have shown that poor readability correlates strongly
with defect density.!

Automated tests are a useful protection against defects. Unfortunately, automated
tests are also code and are also vulnerable to bad readability. Code that’s difficult to
read tends to be difficult to test, too, which leads to fewer tests being written. Further-
more, the tests we do write often turn out to be far from what we consider good tests
because we need to kludge our way around the awkwardly structured, difficult-to-
understand code with APIs and structures that aren’t exactly test-friendly.

We’ve established (almost to the point of a rant) that code readability has a dire
impact on the code’s maintainability. Now what about the readability of test code?
How is that different, or is it any different? Let’s take a look at a notso-far-fetched
example of unreadable test code, shown in this listing:

Listing 2.1 Code doesn’t have to be complex to lack readability

@Test
public void flatten() throws Exception {
Env e = Env.getlnstance();
Structure k = e.newStructure();
Structure v = e.newStructure();
//int n = 10;
int n = 10000;
for (int 1 = 0; 1 < n; ++i) {
k.append(e.newFixnum(i));
v.append(e.newFixnum(i));
3
Structure t = (Structure) k.zip(e.getCurrentContext(),
new 10bject[] {v}, Block.NULL_BLOCK);
v = (Structure) t.flatten(e.getCurrentContext());
assertNotNull(v);

}

! Raymond P.L. Buse, Westley R. Weimer. “Learning a Metric for Code Readability.” IEEE Transactions on Soft-
ware Engineering, 09 Nov. 2009. IEEE computer Society Digital Library. IEEE Computer Society, http://
doi.ieeecomputersociety.org/10.1109/TSE.2009.70

http://doi.ieeecomputersociety.org/10.1109/TSE.2009.70
http://doi.ieeecomputersociety.org/10.1109/TSE.2009.70

18

2.2

CHAPTER 2 In search of good

What is this test checking? Would you say that it’s easy to decipher what’s going on
here? Imagine yourself being the new guy on this team—how long would it take you to
figure out the test’s intent? What kind of code forensics would you have to go through
to grok the situation if this test suddenly starts failing? Based on how I feel about that
hideous snippet of code, I'll wager that you immediately identified a handful of things
that could be improved about the poor little test—and that readability is a common
theme with those improvements.

Structure helps make sense of things

I've had the pleasure and horror of seeing numerous code bases that weren’t full of
beautiful strides of genius flowing from one source file to the next. Some of them
never jumped to another source file because it was all there—all of the code and logic
triggered by, say, the submission of a web form would reside in a single source file. I've
had a text editor crash due to the size of a source file I foolishly tried to open. I've
seen a web application vomit an error because a JavaServer Pages file had grown so big
that the resulting byte code violated the Java class file specification. It’s not just that
structure would be useful—the lack of structure can be damaging.

What’s common among most of these instances of never-ending source listings is
that nobody wanted to touch them. Even the simplest conceptual changes would be
too difficult to map onto the source code in front of you. There was no structure your
brain could rely on. Divide and conquer wasn’t an option—you had to juggle the
whole thing in your head or be prepared for a lot of contact between your forehead
and the proverbial brick wall.

As illustrated by figure 2.1 you don’t want just any structure to help make sense of
things. You need structure that makes sense as such—one that’s aligned with the way
your brain and your mental models are prepared to slice and dice the world. Blindly
externalizing snippets of code into separate source files, classes, or methods does
reduce the amount of code you’re looking at a given point in time, thereby alleviating
the problem of overloading your brain. But it doesn’t get you much closer to isolating
and understanding the one aspect of the program’s logic that we’re interested in right
now. For that you need a structure that makes sense.

Conceptual change is Any change implies a
hard to map into code break-and-fix firefight

Code has no
structure

Nobody wants
to touch it...

. ..butis it useful structure?

. code will have \\
\
__________ Chop it up into ...but you haveto
smaller chunks ‘\/‘

Figure 2.1 It’s not just about having structure—it needs to be a useful structure.

Structure helps make sense of things 19

When faced with monolithic, never-ending source listings, the obvious solution is to
chop them up into smaller pieces, extracting blocks of code into methods. You might
go from a huge 500-line method in one class to dozens of methods on 10 classes with
the average length dropping below 10 lines per method. That would introduce more
structure into the code—at least if you ask a compiler. You’d also be able to see whole
methods on your screen at once instead of scrolling back and forth.

But if the boundaries for splitting up that monolith don’t make sense—if they
don’t map to the domain and your abstractions—we might be doing more harm than
good because the concepts might now be physically scattered farther from each other
than before, increasing the time you spend going back and forth between source files.
It’s simple. What matters is whether the structure of your code helps you locate the
implementation of higher-level concepts quickly and reliably.

Test code is an excellent example of this phenomenon. Let’s say you have an appli-
cation that’s fairly well covered by an automated test—one automated test. Imagine
that this test exercises all of the application’s business logic and behavior through a
single monolithic test method that takes half an hour to execute. Now say that the test
eventually fails, as illustrated in figure 2.2, because you’re making a change in how
mailing addresses are represented internally in the application and you mess up some-
thing while you're at it. There’s a bug. What happens next?

I’d imagine it’s going to take a while to pinpoint the exact place in the test code
where your programming error manifests itself. There’s no structure in the test code
to help you see what affects what, where a certain object is instantiated, what the value
of a given variable is at the point where things fall apart, and so forth. Eventually,
when you’ve managed to identify and correct your mistake, you have no choice but to
run the whole test—all 30 minutes of it—to make sure that you really did fix the prob-
lem and that you didn’t break something else in the process.

Continuing this thought experiment, fast-forwarding an hour or so, you’re about
to make another change. This time, having learned from your previous mistake,
you’re careful to make sure you’'ve understood the current implementation in order
to ensure that you’ll make the right kind of change. How would you do that? By read-
ing the code, and especially perusing test code that shows you in concrete terms how
the production code is expected to behave. Except that you can’t find the relevant
parts of the test code because there’s no structure in place.

Programmer

error brok
I |
30-minute wait time begins... Hey! It broke!

i Monolithic test

Figure 2.2 Long delay in feedback is a real productivity-killer

20

2.3

CHAPTER 2 In search of good

What you need are focused tests that are readable, accessible, and comprehensible so
that you can:

= Find test classes that are relevant for the task at hand
= Identify the appropriate test methods from those classes
= Understand the lifecycle of objects in those test methods

These are all things that you can get by paying attention to your tests’ structure and
making sure that it’s useful. Having a useful structure is hardly enough, of course.

It’s not good if it’s testing the wrong things

More than once I've concluded a journey of reading and debugging code to find the
cause for an undesirable system behavior at almost the same place I started looking. A
particularly annoying detail overlooked in such a bug-hunt is the contents of a test.
The first thing I tend to do when digging into code is to run all the tests to tell me
what’s working and what’s not. Sometimes I make the mistake of trusting what the
tests’ names tell me they’re testing. Sometimes it turns out that those tests are testing
something completely different.

This is related to having a good structure—if a test’s name misrepresents what it
tests, it’s akin to driving with all the road signs turned the wrong way. You should be
able to trust your tests.

A couple of years ago I was carrying out a code audit for a product that had been
under development for more than a decade. It was a big codebase and I could tell
from its structure that some parts were clearly newer than others. One of the things
that distinguished more recent code from the older was the presence of automated
tests. But I quickly found out that I couldn’t tell from the tests’ names what they were
supposed to verify and, looking closer, it turned out that the tests weren’t actually test-
ing what they promised to test. It wasn’t a Java codebase but I've taken the freedom to
translate a representative example to Java:
public class TestBmap {

@Test
public void mask() {
Bmap bmap = new Bmap(Q);
bmap .addParameter (1PSEC_CERT_NAME) ;
bmap .addParameter (IPSEC_ACTION_START_DAYS, 0);

bmap .addParameter (IPSEC_ACTION_START_HOURS, 23);
assertTrue(bmap.validate());

}

Looking at this code you’ll immediately notice that the test’s name is less than perfect.
But on a closer look it turns out that whatever “mask” means for a “Bmap,” the test is
only checking that certain parameters are a valid combination. Whether the valida-
tion works is somewhat irrelevant if the actual behavior isn’t correct even when the
input is valid.

24

Independent tests run easily in solitude 21

There’s a lot to be said about testing the right things, but it’s also crucial to test
those right things the right way. Of particular importance from a maintainability point
of view is that your tests are checking for the intended behavior and not a specific
implementation. That’s a topic we’ll touch on in the next chapter, so let’s leave it at
that for now.

Independent tests run easily in solitude

There’s a lot to be said about tests, what they should or shouldn’t contain, what they
should or shouldn’t specify, and how they should be structured in the name of read-
ability. What goes on around tests sometimes plays an equally vital role.

Human beings—our brains to be more exact—are enormously powerful informa-
tion processors. We can make seemingly instant evaluations of what’s going on in our
physical surroundings and react in a blink. We dodge that incoming snowball before
we even realize what we’re reacting to. These reactions are in our DNA. They’re behav-
ioral recipes that instruct our body to move when our senses observe a familiar pat-
tern. Over time our cookbook of these recipes grows in sophistication, and we’re soon
lugging around a complex network of interconnected patterns and behaviors.

This happens at work, too. Exploring a foreign code base for the first time, we’ll
have formed a clear picture of the most prevalent conventions, patterns, code smells,
and pitfalls within 15 minutes. What makes this possible is our ability to recognize a
familiar pattern and be able to tell what else we’re likely to see nearby.

WHAT’S A CODE SMELL? A smell in code is a hint that something might be
wrong with the code. To quote the Portland Pattern Repository’s Wiki, “If
something smells, it definitely needs to be checked out, but it may not actu-
ally need fixing or might have to just be tolerated.”

For example, one of the first things I pay attention to when introducing myself to a
new codebase is the size of methods. If methods are long I know that there are a bunch
of other issues to deal with in those particular modules, components, or source files.
Another signal I’'m tuning to is how descriptive the names of the variables, methods
and classes are.

Specifically in terms of test code, I pay attention to the tests’ level of independence,
especially near architectural boundaries. I do this because I've found so many code
smells by taking a closer look at what’s going on in those boundaries, and I've learned
to be extra careful when I see dependencies to:

= Time

= Randomness

= Concurrency

= Infrastructure

= Pre-existing data

= Persistence

= Networking

22

CHAPTER 2 In search of good

What these things have in common is that
they tend to complicate what I consider
the most basic litmus test for a project’s
test infrastructure: can I check out a fresh
copy from version control to a brand new
computer I just unboxed, run a single
command, lean back, and watch a full
suite of automated tests run and pass?

Isolation and independence are
important because without them it’s
much harder to run and maintain tests.
Everything a developer needs to do to
their system in order to run unit tests
makes it that much more burdensome.

Whether you need to create an
empty directory in a specific location in
your filesystem, make sure that you have
a specific version of MySQL running at a
specific port number, add a database
record for the user that the tests use for
login, or set a bunch of environment
variables—these are all things that a
developer shouldn’t need to do. All of
these small things add up to increased
effort and weird test failures.?

A characteristic of this type of depen-
dency is that things like the system clock
at the time of test execution or the next
value to come out from a random num-
ber generator are not in your control. As a
rule of thumb, you want to avoid erratic
test failures caused by such dependen-
cies. You want to put your code into a
bench vise and control everything by
passing it test doubles and otherwise iso-
lating the code to an environment that
behaves exactly like you need it to.

2

3

Don’t rely on test order within a
test class

The general context for the advice of
not letting tests depend on each other
is that you should not let tests in one
class depend on the execution or out-
come of tests in another class. But it
really applies to dependencies within a
single test class, too.

The canonical example of this mistake
is when a programmer sets up the sys-
tem in a starting state in a @Before-
Class method and writes, say, three
consecutive @Test methods, each
modifying the system’s state, trusting
that the previous test has done its
part. Now, when the first test fails, all
of the subsequent tests fail, but that’'s
not the biggest issue here—at least
you're alerted to something being
wrong, right?

The real issue is when some of those
tests fail for the wrong reason. For
instance, say that the test framework
decides to invoke the test methods in
a different order. False alarm. The JVM
vendor decides to change the order in
which methods are returned through
the Reflection API. False alarm. The
test framework authors decide to run
tests in alphabetical order. False
alarm again.®

You don’t want false alarms. You don’t
want your tests failing when the behav-
ior they're checking isn’t broken.
That's why you shouldn’t intentionally
make your tests brittle by having them
depend on each other’s execution.

If you can’t find a way to avoid such manual configuration, at least make sure developers need to do it only
once.

If this sounds far-fetched, you should know that JUnit doesn’t promise to run test methods in any particular
order. In fact, several tests in the NetBeans project started breaking when Java 7 changed the order in which
declared methods are returned through Class#getDeclaredMethods(). Oops. I guess they didn’t have
independent tests...

2.5

Reliable tests are reliable 23

One of the most unusual examples of a surprising test failure is a test that passes as
part of the whole test suite but fails miserably when it’s run alone (or vice versa).
Those symptoms reek of interdependent tests. They assume that another test is run
before they are, and that the other test leaves the system in a particular state. When
that assumption kicks you in the ankle, you have one hellish debugging session ahead.

To summarize, you should be extra careful when writing tests for code that deals
with time, randomness, concurrency, infrastructure, persistence, or networking. As a
rule of thumb, you should avoid these dependencies as much as you can and localize
them into small, isolated units so that most of your test code doesn’t need to suffer
from the complications and you don’t have to be on your toes all the time—just in
those few places where you tackle the tricky stuff.

So how would that look in practice? What exactly should you do? For example, you
could see if you can find a way to:

= Substitute test doubles for third-party library dependencies, wrapping them
with your own adapters where necessary. The tricky stuff is then encapsulated
inside those adapters that you can test separately from the rest of application
logic.

= Keep test code and the resources they use together, perhaps in the same
package.

= Let test code produce the resources it needs rather than keeping them separate
from the source code.

= Have your tests set up the context they need. Don’t rely on any other tests being
run before the one you’re writing.

= Use an in-memory database for integration tests that require persistence, as it
greatly simplifies the problem of starting tests with a clean data set. Plus, they're
generally superfast to boot up.

= Split threaded code into asynchronous and synchronous halves, with all applica-
tion logic in a regular, synchronous unit of code that you can easily test without
complications, leaving the tricky concurrency stuff to a small, dedicated group
of tests.

Achieving test isolation can be difficult when working with legacy code that wasn’t
designed for testability and therefore doesn’t have the kind of modularity you’d like
to have. But even then, the gain is worth the effort of breaking those nasty dependen-
cies and making your tests independent from their environment and from each other.
After all, you need to be able to rely on your tests.

Reliable tests are reliable

In the previous section I said that sometimes a test is testing something completely dif-
ferent than what you thought it tests. What’s even more distracting is that sometimes
they don’t test a damn thing.

24

CHAPTER 2 In search of good

A colleague used to call such tests happy tests, referring to a test happily executing a
piece of production code—possibly all of its execution paths—without a single asser-
tion being made. Yes, your test coverage reports look awesome as the tests are thor-
oughly executing every bit of code you've written. The problem is that such tests can
only fail if the production code being invoked throws an exception. You can hardly
rely on such tests to watch your back, can you? Especially if the programmers have had
a convention to encapsulate all of the test methods’ bodies into a try-catch.* This
listing shows an example of one such bugger.

Listing 2.2 Can you spot the flaw in this test?

@Test
public void shouldRefuseNegativeEntries() {
int total = record.total();
try {
record.add(-1);
} catch (1llegalArgumentException expected) {
assertEquals(total, record.total());
}
}
Some tests are less likely to fail than others, and the previous listing is a prime example
of the other extreme, where the test is likely to never fail (and likely never has in the
past either). If you look carefully, you’ll notice that the test won’t fail even if add(-1)
doesn’t throw an exception as it’s supposed to.

Tests that can hardly ever fail are next to useless. With that said, a test that passes
or fails intermittently is an equally blatant violation toward fellow programmers; see
figure 2.3.

Some years ago I was consulting on a project and spent most of my days pair pro-
gramming with the client’s technical staff and other consultants. One morning I took
on a new task with my pair and ran the related test set as the first thing to do as usual.
My pair was intimately familiar with the codebase, having written a significant part of it,
and was familiar with its quirks, too. I noticed this when a handful of the tests failed on
the first run before we’d touched anything. What tipped me off was how my pair
responded to the test failure—he routinely started rerunning the tests again and again
until after four or five times all of the tests had passed at least once. I’'m not 100% sure,
but I don’t think those particular tests all passed at the same time even once.

Diminishing value Pure noise

| |
Figure 2.3 Tests have

Test [| Test . . g
never always little value if they’'ve

fails fails never failed or if they’re

"Happy" tests Random tests
P —— - @ failing all the time.

* True story. I spent an hour removing them and the rest of the day fixing or deleting the failed tests that were
uncovered by my excavation.

2.6

Every trade has its tools and tests are no exception 25

As flabbergasted as I was, I realized that I was looking at a bunch of tests that repre-
sented a whole different cast of unreliable tests. These particular tests turned out to be
failing randomly because the code under test incorporated nondeterministic logic
that screwed up the tests some 50% of the time. In addition to the use of pseudo-ran-
dom generators in the code being tested, a common cause for such intermittently fail-
ing behavior is the use of timerelated APIs. My favorite is a call to
System.currentTimeMillis(), but a close second is a ubiquitous Thread
-sleep(1000) sprinkled throughout in an attempt to test asynchronous logic.

In order to rely on your tests, they need to be repeatable. If I run a test twice, it must
give me the same result. Otherwise, I'll have to resort to manual arbitration after every
build I make because there’s no way to tell whether 1250/2492 tests means that every-
thing’s all right or that all hell’s broken loose with that last edit. There’s no way to tell.

If your logic incorporates bits that are asynchronous or dependent on current
time, be sure to isolate those bits behind an interface you can use for substituting a
“test double” and make the test repeatable—a key ingredient of a test being reliable.

Every trade has its tools and tests are no exception

What’s this test double I speak of? If you don’t have test doubles in your programmer’s
toolkit, you’re missing out on a lot of testing power. Test double is an umbrella term for
what some programmers have come to know as stubs, fakes, or mocks (which is short for
mock object). Essentially they’'re objects that you substitute for the real implementa-
tion for testing purposes. See figure 2.4.

You could say that test doubles are a test-infected programmer’s best friend. That’s
because they facilitate many improvements and provide many new tools for our dis-
posal, such as:

= Speeding up test execution by simplifying the code that would otherwise be
executed

= Simulating exceptional conditions that would otherwise be difficult to create

= Observing state and interaction that would otherwise be invisible to your test
code

There’s a lot more to test doubles than this and we’ll come back to this topic in more
detail in the next chapter. But test doubles aren’t the only tool of the trade for writing
good automated tests.

Duck

Campbell Duck Crested Duck Test Double Duck

Figure 2.4 A test double for a duck looks just like a duck and quacks almost like a
duck—but certainly isn’t a real duck.

26

2.7

CHAPTER 2 In search of good

Perhaps the most essential tool of the trade is a test framework such as JUnit. I still
remember some of my first attempts at getting a piece of code to work like I wanted it
to. When I messed up and got stuck, I'd uncomment half a dozen statements that
would print to the console and relaunch the program so I could analyze the console
output and figure out what I'd broken and how.

It wasn’t more than a couple of months into my professional career when I first
bumped into this same practice being upheld by commercial software developers. I
trust that I don’t need to point out how incredibly unprofessional and wasteful such a
practice is compared to writing automated, repeatable tests with tools like JUnit.

In addition to a proper test framework and test doubles, my top three tools of the
trade for software developers writing automated tests include one more tool in the
chain—the build tool. Whatever your build process looks like, whichever tool or tech-
nology your build scripts use under the hood, there’s no good excuse for not integrat-
ing your automated tests as part of that build.

Summary

In this chapter we’ve established several coarse properties for what a good test is. We
noted that these things are dependent on context and that there are few absolute
truths when it comes to what makes a test “good.” We did identify a number of issues
that generally have a major impact on how good or appropriate—how fit for its pur-
pose—an automated test is.

We began by noting that one of the essential virtues for a test is its readability,
because lacking the ability to be read and understood, test code becomes a mainte-
nance problem that solves itself very soon—by getting deleted because it’s too costly to
maintain.

We then pointed out how test code’s structure makes it usable, allowing the pro-
grammer to quickly find their way to the right pieces and helping the programmer
understand what’s going on—a direct continuation on readability.

Next we shed light on how tests sometimes test the wrong things and how that can
create problems by leading you down the wrong path or by muddying the waters, hid-
ing the test’s actual logic and making the test itself unreadable.

To conclude the underlying theme of tests sometimes being unreliable, we identi-
fied some of the common reasons for such unreliability and how important it is for
tests to be repeatable.

Lastly, we identified three essential tools of the trade for writing automated tests—
a test framework, an automated build that runs tests written with that framework, and
test doubles for improving your tests and ability to test. This third topic is important
enough that we’ve dedicated the next chapter to discussing the use of test doubles for
writing good tests.

Test doubles

In this chapter

= What can we do with test doubles?

= What kind of test doubles do we have at our disposal?
= Guidelines for using test doubles

The concept of stubs or dummies has been around about as long as we’ve had the
ability to structure software code into classes and methods. Once the primary rea-
son for creating such utilities was to serve as a placeholder until the real thing
became available—to allow you to compile and execute one piece of code before
its surrounding pieces were in place.

These objects have much more diverse purposes in the context of modern
developer testing. Instead of merely allowing the compilation and execution of
code without certain dependencies present, the test-infected programmer creates a
variety of such “for testing only” facilities in order to isolate the code under test,
speed up test execution, make random behavior deterministic, simulate special
conditions, and to give tests access to otherwise hidden information.

These purposes are served by similar and yet different types of objects that we
collectively refer to as test doubles."

! Though the term lest double was first introduced to me by fellow Manning author J. B. Rainsberger. I credit
Gerard Meszaros and his book, xUnit Test Patterns: Refactoring Test Code (Addison Wesley, 2007), for popu-
larizing the term and the related taxonomy within the software development community.

27

28

3.1

3.1.1

CHAPTER 3 Test doubles

We’ll begin exploring test doubles by first establishing why a developer might turn
to test doubles. Understanding the potential benefits of using test doubles, we’ll look
at the different types at our disposal. We’ll conclude this chapter with a handful of
simple guidelines for using test doubles.

But now, let’s ask ourselves, What’s in it for me?

The power of a test double

Mahatma Gandhi said, “Be the change you want to see in the world.” Test doubles ful-
fill Gandhi’s call to action by becoming the change you want to see in your code. Far-
fetched? Let me elaborate.

Code is a mass. It’s a network of code that refers to other code. Each of these
chunks has a defined behavior—behavior you, the programmer, have defined for
them. Some of that behavior is atomic and contained within a single class or method.
Some of that behavior implies interaction between different chunks of code.

Every now and then, in order to verify that the behavior of one chunk of code is
what you want it to be, your best option is to replace the code around it so that you
gain full control of the environment in which you’re testing your code. You're effec-
tively isolating the code under test from its collaborators to test it, as illustrated in figure 3.1.

This is the most fundamental of the reasons for employing a test double—to iso-
late the code you want to test from its surroundings. There are many other reasons,
too, as implied in the opening of this chapter, where we suggested the need for “for
testing only” facilities in order to:

= Isolate the code under test

= Speed up test execution

= Make execution deterministic

= Simulate special conditions

= Gain access to hidden information

There are multiple types of test doubles that you could use for achieving these effects.
Most of them can be gained with any one type of a test double, whereas some are a
better fit for a particular type of test double. We’ll come back to these questions in sec-
tion 3.2. Right now, I’d like to create a shared understanding of the reasons listed
here—the reasons we have test doubles in the first place and the purposes we use
them for.

Isolating the code under test

When we talk about isolating code under test in the context of an object-oriented pro-
gramming language such as Java, our world consists of two kinds of things:

= The code under test

= Code that the code under test interacts with

The power of a test double 29

Real

/ Test \
collaborator !

Test

Figure 3.1 Test doubles help you isolate the code under test so that you can test all
facets of its behavior. In this example we’ve replaced three of the four collaborators
with test doubles, deciding to scope the test to the behavior and collaboration of the
code under test and one particular collaborator.

When we say we want to “isolate the code under test” we mean we’re isolating the code
we want to test from all other code. By doing this we not only make our tests more
focused and approachable, but also easier to set up for. In practice, “all other code”
includes code that’s invoked from the code we want to test. The following listing illus-
trates this through a simple example.

Listing 3.1 Code under test (Car) and its collaborators (Engi ne and Rout e)

public class Car {
private Engine engine;

public Car(Engine engine) {
this.engine = engine;

}

public void start() {
engine.start();

}

public void drive(Route route) {
for (Directions directions : route.directions(Q)) {
directions.follow();
3
¥

public void stop(Q {
engine.stop();

}
3
As you can see, this example consists of a Car, the car’s Engine, and Route, a sequence
of Directions to follow. Let’s say we want to test the Car. We have a total of four
classes, one of which is the code under test (Car) and two of which are collaborators

30

3.1.2

CHAPTER 3 Test doubles

.
1 . . 1

Car Route = - - - Directions |
~ ! |

N

A SN Figure 3.2 A Car uses its
yPirections £ Engi ne and its Rout es
directly and the Rout e’s
Di r ecti ons only indirectly.

Engine

(Engine and Route). Why isn’t Directions also a collaborator? Well, it is in the sense
that Car references and invokes methods on Directions. But there’s another way to
look at this scenario. Let’s see if figure 3.2 helps clarify this notion.

If we raise our attention up one level of abstraction from the classes that are refer-
enced from Car’s methods and place ourselves in the shoes of the Car, what we see—as
illustrated in figure 3.2—is that Directions are accessed through Route. Because
Directions are acquired through Route, isolating the Car from all of its collaborators
can be done by replacing Engine and Route with test doubles. As we substitute a faux
implementation of Route, we’re in total control of the kind of Directions it provides
to the Car.

Now that you understand the underlying principle of how you can gain control by
substituting a couple of test doubles, let’s see what kinds of nice things you can accom-
plish with them.

Speeding up test execution

One of the pleasant side effects of replacing real collaborators with test doubles is that
a test double’s implementation is often faster to execute than that of the real thing.
Sometimes, a test double’s speed isn’t just a side effect but rather the primary reason
for using a test double.

Consider the driving example from figure 3.2. Let’s say that initializing a Route
involves a weighted-graph search algorithm for finding the shortest path between the
Car’s current location and its desired destination. With the complexity of today’s
street and highway networks, this calculation takes some time. Though the algorithm
might churn through once relatively fast, even small delays in test execution add up. If
every one of the tests initializes a Route, you might be wasting seconds or even min-
utes worth of CPU cycles in this algorithm—and minutes is forever when talking about a
developer getting immediate feedback by running automated tests.

With a test double in place that always returns a canned example, a precalculated
route to the destination, the unnecessary wait is avoided and tests run that much faster.
Which is nice. You’ll want to test those slow Route algorithms somewhere—with sepa-
rate focused tests—but you don’t want to be running those slow algorithms everywhere.

Though speed is almost always a good thing, it’s not always the most important
thing. After all, a faster car isn’t that useful if you're heading in the wrong direction.

The power of a test double 31

3.1.3 Making execution deterministic

I once listened to Tony Robbins, the well-known motivational speaker, talk about sur-
prises and how, even though we all say we like surprises, we only like the surprises that
we wanted. That’s so true and it applies to software as well, especially when talking
about testing code.

Testing is about specifying behavior and verifying conformance to that specifica-
tion. This is simple and straightforward as long as our code is totally deterministic and
its logic doesn’t contain even a hint of randomness. In essence, for code (and tests) to
be deterministic, you need to be able to run your tests repeatedly against the same
code and always get the same result.

It’s not uncommon to find a situation where your production code needs to incor-
porate an element of randomness or otherwise compromise your demand for identical
results for repeated executions. For example, if you were developing a craps game,
you’d better make it so that the way the dice will fall can’t be predicted—so it’s random.?

Perhaps the most typical case where an element of nondeterministic behavior is
called for is time-dependent behavior. Coming back to the example of a Car asking a
Route for Directions, imagine that the algorithm used to calculate the route considers
the time of day among other things, like traffic, speed limits, and so on, as shown next.

Listing 3.2 Sometimes code’s behavior is inherently nondeterministic

public class Route {
private Clock clock = new Clock();
private ShortestPath algorithm = new ShortestPath(); Calculated route
public Collection<Directions> directions() { qJ different during
if (clock.isRushHour()) { rush hour!
return algorithm.avoidBusylntersections();

¥

return algorithm.calculateRouteBetween(...);

}
}
If this is the case, how could you check that the algorithm calculates the correct route
regardless of when the test is executed? After all, the algorithm surely acquires the
time from some kind of a clock and, though the algorithm might suggest taking the
highway at 3:40 p.m. and 3:45 p.m., the best result might suddenly be to take the inter-
state when it’s now 3:50 p.m. and the afternoon traffic starts choking up the highway.

Again, test doubles can lend a hand with these kinds of sources for nondetermin-
istic behavior. For example, a particular instance of a game of craps is suddenly much
easier to simulate when your dice are test doubles rigged to yield a known sequence
of faces. Similarly, it’s much easier to describe the expected output for a log file if

2 Craps is a dice game in which players bet on the outcome of one or more rolls of a pair of dice. That’s what
the gangsters are playing in the movies as they crouch on a street corner throwing dice over stacks of paper
money.

32

3.1.4

3.1.5

CHAPTER 3 Test doubles

you’ve just replaced the system clock with a test double that always yields the same
moment in time.

Making execution deterministic is at the core of being in control of your collabora-
tors and being able to eliminate all variables while setting up the exact scenario and
setup you want to test. Speaking of scenarios, test doubles also enable you to simulate
conditions that normally shouldn’t happen.

Simulating special conditions

Most of the software we write tends to be simple and straightforward—at least in the
sense that most of the code is deterministic. As a result of this we can reconstruct
almost any situation we want by instantiating a suitable object graph to pass as argu-
ments to the code we’re testing. We could test that the Car from listing 3.1 ends up in
the right place when we start from “I Infinite Loop, Cupertino, CA,” set the destina-
tion to “1600 Amphitheatre Parkway, Mountain View, CA,” and say drive().

Some conditions we can’t create using just the APIs and features of our production
code. Say that our Route gets its directions over the internet from Google Maps. How
would we test that Route behaves well even in the unfortunate scenario that our inter-
net connection dies while requesting directions to the destination?

Short of having your test disable the computer’s network interfaces for the dura-
tion of the test, there’s not much you can do to fabricate such a network-connection
error but substitute a test double somewhere that throws an exception when asked to
connect.’

Exposing hidden information

Our last (but not least important) raison d’étre for test doubles is to give our tests
access to information that’s otherwise inaccessible. Especially in the context of Java,
the first association with “exposing information” might point toward giving tests
access to read, or write to, other objects’ private fields. Though you might sometimes
decide to go that way,* the kind of information I'm thinking of is about the interac-
tions between the code under test and its collaborators.

Let’s use our trusty Car example one more time to help you grasp this dynamic.
Here’s a snippet of code inside the Car class, reproduced from listing 3.1:
public class Car {

private Engine engine;

public void start() {
engine.start();

}

// rest omitted for clarity
}

¥ Though programming a Lego Mindstorms robot to physically unplug your network cable would be infinitely
more awesome.

* It’s generally not a good idea to probe objects’ internals from outside. Whenever I feel the need to do some-
thing like that, it turns out that a missing abstraction was hiding in my design.

3.2

Types of test doubles 33

As you see from the listing, a Car starts its Engine when someone starts the Car. How
would you test that this actually happens? You’d expose the private field to your test
code and add a method to Engine for determining whether the engine is running.
But what if you don’t want to do that? What if you don’t want to litter your production
code with methods that are only there for testing purposes?

By now you’ve probably guessed that the answer is a test double. By substituting a
test double for the Car’s Engine, you can add that for-testing-only method to fest code
and avoid littering your production code with an isRunning() method that will never
be used in production. In test code, that approach might look like the following:

Listing 3.3 A test double can deliver the inside scoop

public class CarTest {

@Test

public void enginelsStartedWhenCarStarts() { Test double
TestEngine engine = new TestEngine(); to the rescue!
new Car(engine).start();
assertTrue(engine.isRunning(Q); S Method exists

}

only on TestEngine,
3 not on Engine

public class TestEngine extends Engine {
private boolean isRunning;

public void start() {
isRunning = true;

}

public boolean isRunning() {
return isRunning;

b
3
As you can see in the listing, our sample test configures the Car with a test double 0°
starts the Car, and uses the test double’s knowledge to verify that the engine was
started @ as expected. Let me emphasize that isRunning() is not a method on the
Engine—it’s something we’ve added to TestEngine to reveal information that a regu-
lar Engine doesn’t.®

All right. You now understand the most common reasons for wanting to reach for a
test double. That means it’s time to look at the different types of test doubles and the
kinds of advantages each has to offer.

Types of test doubles

You’ve seen a number of reasons to use test doubles, and we’ve hinted at there being
multiple types of test doubles to choose from. It’s time we take a closer look at those
types. Figure 3.3 illustrates four types of objects that fall under this umbrella term.

5 This style of passing dependencies through a constructor is called constructor injection.
% Speaking of test doubles extending the real object’s interface, there’s no reason why you couldn’t add a
method like assertlsRunning() on TestEngine!

34

3.2.1

CHAPTER 3 Test doubles

Test double

| | | |

[Test stub J [Fake object } ‘ Test spy] [Mock object

Figure 3.3 There are four types of objects we clump under the umbrella term test double.

Now that we’ve laid out the taxonomy around test doubles, let’s establish what they
are, how they differ, and for which of the aforementioned purposes they're typically
applied. Let’s start with the simplest of them all.

Test stubs are unusually short things
My dictionary offers the following definition for a stub:
stub: (noun) a truncated or unusually short thing.

That turns out to be an accurate definition for what test stubs are. A test stub’s (or just
stub for short) purpose is to stand in for the real implementation with the simplest
possible implementation. The most basic example of such an implementation would
be an object with all of its methods being one-liners that return an appropriate default
value.

Say you’re working on code that’s supposed to generate an audit log of its opera-
tions by writing onto a remote log server, accessible through an interface named
Logger. Assuming the Logger interface only defined one method for producing such
logs, our test stub for the Logger interface might look like this:

public class LoggerStub implements Logger {
public void log(LogLevel level, String message) { }

}

Notice how the log() method doesn’t do anything? That’s a typical example of what a
stub does—nothing. After all, you’re stubbing out the real Logger implementation
precisely because you don’t care about the log when testing something completely dif-
ferent, so why log anything? But sometimes doing nothing isn’t enough. For example,
if the Logger interface also defines a method for determining the currently set Log-
Level, your stub implementation might end up looking like this:

public class LoggerStub implements Logger {
public void log(LogLevel level, String message) {
// still a no-op

}

public LogLevel getLogLevel() {
return LogLevel .WARN; // hard-coded return value
¥
¥

3.2.2

Types of test doubles 35

Whoa! We’re hard-coding the getLoglLevel() method on this class to always return
LogLevel \WARN. Isn’t that wrong? In most cases that’s perfectly OK. After all, we're
using a test stub as a stand-in for the real Logger for three excellent reasons:

1 Our testisn’t interested in what the code under test is logging.

2 We don’t have a log server running so it would fail miserably anyway.

3 We don’t want our test suite to generate gazillion bytes of output on the console
either (let alone writing all of that data to a file).

In short, a stub implementation of Logger is a perfect match for what we need.

There are times when a simple hard-coded return statement and a bunch of empty
void methods won’t do the trick. Sometimes you need to fill in at least some behavior,
and sometimes you need your test double to behave differently depending on the
kind of messages it receives. In those situations you might turn to a fake object instead.

Fake objects do it without side effects

Compared to test stubs, a fake object is a more elaborate variation of a test double.
Whereas a test stub can return hard-coded return values and each test may instantiate
its own variation to return different values to simulate a different scenario, a fake
object is more like an optimized, thinned-down version of the real thing that repli-
cates the behavior of the real thing, but without the side effects and other conse-
quences of using the real thing.

The canonical example of a case where you might pull out a fake object is persis-
tence. Say your application architecture is such that persistence services are provided
by a number of repository objects that know how to store and look up certain types of
objects. Here’s an example of the kind of API such a repository might provide:
public interface UserRepository {

void save(User user);

User findByld(long id);

User findByUsername(String username);

}

Without some kind of a test double, your tests for application code that uses a repos-
itory object would all try to hit a real database somewhere. You might be well off
stubbing out this UserRepository interface to return exactly what your test wants.
But simulating more complicated scenarios might prove to be complicated. On the
other hand, the UserRepository interface is simple enough so that you could imple-
ment a stupid-simple, in-memory database on top of basic data types. The next list-
ing serves as an example:

Listing 3.4 Fake objects aren’t necessarily difficult to implement

public class FakeUserRepository implements UserRepository {
private Collection<User> users = new ArrayList<User>();

public void save(User user) {
if (findByld(user.getld()) == null) {

36

3.23

CHAPTER 3 Test doubles

users.add(user);

¥
}

public User findByld(long id) {
for (User user : users) {
if (user.getld() == id) return user;
3

return null;

}

public User findByUsername(String username) {
for (User user : users) {
iT (user.getUsername().equals(username)) {
return user;

¥
}

return null;

¥
¥
The good thing about this kind of an alternative implementation as a substitute for
the real thing is that it quacks and wobbles like a duck, but it wobbles much faster
than a real duck—even if you’d loop through a 50-item list every time someone wants
to look up a User.

Test stubs and fake objects are often a lifesaver, as you can throw them in to
replace the real thing that’s slow and depends on all kinds of things you don’t have
while running tests. These two basic test doubles aren’t always sufficient, though.
Every now and then you find yourself facing a brick wall you wish you could see
through—in order to verify that your code behaves like it should. In those cases you
might reach for a test spy instead.

Test spies steal your secrets
How would you test the following method?
public String concat(String first, String second) { ... }

Most people would say, pass in this and that and check that the return value is such
and such. And that would likely make a lot of sense. After all, the return value being
correct is what you’re most interested in about this method. Now, how about the fol-
lowing method—how would you test it?

public void filter(List<?> list, Predicate<?> predicate) { ... }

There’s no return value here to assert against. The only thing this method does is take
in a list and a predicate and filter out from the given list all the items that don’t fulfill
the given predicate. In other words, the only way to verify that this method works as it
should is by examining the list afterward. It’s like a cop going undercover and report-
ing afterward what he observed.” Often you can do this without a test double. In this
example you can ask the List object whether it contains what you expect it to contain.

7 Tadmit—I've watched too much television—but test spies arejust like that.

Types of test doubles 37

Where a test double—a test spy, since that’s what we’re discussing now—comes in
handy is when none of the objects passed in as arguments can reveal through their API
what you want to know. The following listing shows an example where this is the case.

Listing 3.5 Case for a test spy—the arguments don’t provide enough intel for a test

public class DLog {

= s . DLog is given
private final DLogTarget[] targets; j anugmbfr of
public DLog(DLogTarget... targets) { DLogTargets
this.targets = targets;
}
public void write(Level level, String message) { @ Each target
for (DLogTarget each : targets) { receives the
each.write(level, message); < same message
}
}
¥ DLogTarget only
public interface DLogTarget { j defines the
void write(Level level, String message); write() method

}

Let’s walk through the scenario in the prevous listing. The object under test is a dis-
tributed log object, DLog, which represents a group of DLogTargets @. When the DLog
is written to, it should write that same message @ to all of its DLogTargets. From the
test’s point of view, things are awkward, as the DLogTarget interface only defines one
method—write() @—and that none of the real implementations of DLogTarget,
ConsoleTarget, and RemoteTarget provides a method that would reveal whether a
given message has been written to it.

Enter the test spy. The next listing illustrates how a smart programmer whips up
his own secret agent and puts her to work.

Listing 3.6 Test spies are often simple to implement

public class DLogTest {
@Test
public void writesEachMessageToAllTargets() throws Exception {
SpyTarget spyl = new SpyTarget();
SpyTarget spy2 = new SpyTarget();

DLog log = new DLog(spyl, spy2); <) Spies sneak in
log.write(Level . INFO, "‘message');
assertTrue(spyl.received(Level . INFO, "message')); Spies
assertTrue(spy2.received(Level . INFO, "message')); k" report back
T
private class SpyTarget implements DLogTarget {
Make write() private List<String> log = new ArrayList<String>();
dosome @0verride
bookkeeping public void write(Level level, String message) {

log.add(concatenated(level, message));

}

38

3.2.4

CHAPTER 3 Test doubles

boolean received(Level level, String message) { Let test ask for
return log.contains(concatenated(level, message)); T what it wants
} to know
private String concatenated(Level level, String message) {
return level.getName() + ': " + message;
3

}
}
That’s all there is to test spies. You @ pass them in like any other test double. Then
you make the spy (2] keep track of which messages it was sent and © let the test
debrief the spy afterward, asking whether a given messages was received. Neat!

In short, test spies are test doubles built to record what’s happening with them so
that the test will know afterward what happened. Sometimes we take this concept far-
ther and our test spies become full-blown mock objects. If test spies are like undercover
cops, then mock objects are like having a remote-controlled cyborg infiltrate the mob.
This might need some explanation...

Mock objects object to surprises

A mock object is a special kind of test spy. It’s an object that’s configured to behave in
a certain way under certain circumstances. For example, a mock object for the User-
Repository interface might be told to return null when findByld() is invoked with
the parameter 123 and to return a given instance of User when findByld() is invoked
with 124. At this point we’re basically talking about stubbing certain method calls, con-
sidering their parameters.

But mock objects can be much more precise by failing the test as soon as some-
thing unexpected happens. For instance, assuming we’ve told the mock object how it
should behave when findByld() is called with 123 or 124, it'll do exactly as told
when those calls come in. For any other invocation—whether it’s to a different
method or to FindByld() with a parameter other than what we’ve told the mock
object about—the mock will throw an exception, effectively failing the test. Similarly,
the mock will complain if findByld() is called too many times—unless we’ve told it
to allow any number of invocations—and it will complain if an expected interaction
never took place.

Mock object libraries such as JMock, Mockito, and EasyMock are mature tools that
a test-infected programmer can realize a lot of power from. Each of these libraries has
its own style of doing things, but mostly you can do all the same stuff with any of these
libraries.

This isn’t intended to be a comprehensive tutorial on mock object libraries du jous,
but let’s take a quick look at the example in the next listing, which illustrates more
concretely how you might make use of one such library. We’re using JMock here
because I happened to have an active project ongoing where JMock was used.

3.3

Guidelines for using test doubles 39

Listing 3.7 JMock lets you configure mock objects at runtime

public class TestTranslator {
protected Mockery context;

@Before
public void createMockery() throws Exception {
context = new JUnit4Mockery();

}

@Test
public void useslinternetForTranslation() throws Exception {
final Internet internet = context.mock(Internet.class);
context.checking(new Expectations() {{
one(internet).get(with(containsString(''langpair=en®%7Cfi'")));
will(returnValue("{\"translatedText\" :\"kukka\"}'"));

D:

Translator t = new Translator(internet);
String translation = t_translate("flower™, ENGLISH, FINNISH);
assertEquals(“'kukka', translation);

}

For such a short snippet of test code, this sample features a lot of typical constructs for
a test that uses a mock object library. To start, we’re telling the library to create a mock
object for a given interface.

That somewhat awkward block inside context.checking() is where the test is
teaching the mock Internet what kind of interactions it should expect and what to do
when those interactions take place. In this case, we’re saying we expect one call to its
get() method with a parameter that contains the string "langpair=en%7Cfi" and
that the mock should respond to that invocation by returning the provided string.

Finally, we pass the mock object on to the Translator object we’re testing, exercise
the Translator, and assert that the Translator provides the correct translation for
our scenario.

That’s not all the asserting we’re doing here, though. As we established earlier,
mock objects can be strict about the expected interactions actually taking place. In
our case of the mock Internet, the mock is effectively asserting that it received exactly
one call to the get() method with a parameter that did contain the defined substring.

Guidelines for using test doubles

Test doubles are the programmer’s tools, just like hammers and nails are for a carpen-
ter. There are appropriate ways to bang a nail with a hammer and there are less appro-
priate ways—and it’s good to be able to identify which is which.

Let’s start with what I consider perhaps the most important guideline to keep in
mind when you’re about to reach for a test double—picking up the right tool from
your toolbox.

40

3.3.1

3.3.2

CHAPTER 3 Test doubles

Pick the right double for the test

There are many kinds of test doubles to choose from and they all seem to be slightly
different. What are their sweet spots, and which one should we choose?

There’s no hard and fast rule for much of this stuff, but in general you should
probably mix and match a little. What I mean by that is that there are certain cases
where you only want “an object that returns 5,” and other cases where you’re also keen
on knowing that a certain method was invoked. Sometimes, both of these interests are
combined within a single test, leading you to use both a stub or a fake and a mock
object in the same test.

Having said that, there’s no clear-cut principle here beyond picking the option
that results in the most readable test. I can’t resist the temptation to try to impose
some logic and heuristics on this problem of when to use which:

= Ifyou care about a certain interaction taking place in the form of method calls
between two objects, the odds are you’ll want to go with a mock object.

= Ifyou decided to go with a mock object but your test code ends up looking less
pretty than you’d like, see whether a simple, hand-made test spy would do the
trick.

= If you only care about the collaborator objects being there and feeding the
object under test with responses your test is in control of, go with a stub.?

= If you want to run a complex scenario that relies on a service or component
that’s unavailable or unusable for your test’s purposes, and your quick attempt
at stubbing all of those interactions grinds to a halt or results in messy test code
that’s going to be a pain to maintain, consider implementing a fake instead.

= If none of the above sufficiently describes your particular situation at hand, toss
a coin—heads is a mock, tails is a stub, and if the coin is standing on its side, you
have my permission to whip up a fake.

If that list is too much to memorize, don’t fret. J.B. Rainsberger, author of JUnit Recipes
(Manning, 2004), has an easy to remember rule for picking the right type of test double:

Stub queries; mock actions.

There! Now that we’re on a roll with heuristics for when to use which kind of test dou-
ble, let’s continue with guidelines for how to use them.

Arrange, act, assert

There’s something to be said about coding conventions. The problem with standards
is that there are so many of them. Luckily, when it comes to structuring your unit tests,
there’s a fairly established practice that most programmers consider sensible. It’s
called arrange-act-assert and it basically means that you want to organize your tests such

8 If you decided to go with a stub but your test also has a mock object in it, consider using your chosen mock
object library to create that stub—it can do that, too, and the resulting test code might be easier for the eye.

Guidelines for using test doubles 41

that you first arrange the objects used in the test, then trigger the action and make
assertions about the outcome last.

Let’s take another look at the test in listing 3.7, reproduced in the next listing, and
see how it complies with this convention of organizing a test method.

Listing 3.8 Arrange-act-assert makes for a clear structure

@Test
public void useslinternetForTranslation() throws Exception {
final Internet internet = context.mock(lnternet.class); /"

context.checking(new Expectations() {{
one(internet).get(with(containsString(*'langpair=en%7Cfi**)));
will(returnvValue("{\"translatedText\":\"kukka\"}'"));

D

Translator t = new Translator(internet);

Arrange

String translation = t.translate("flower”, ENGLISH, FINNISH); <@ Act

assertEquals(“'kukka', translation); q—e Assert
3
Note how I've added whitespace between the three blocks of code. This is to under-
line the role of the three blocks.’

The first five lines in this test are all about @ arranging the collaborator objects to
be used in the test. In this case we’re only dealing with one mock object for the
Internet interface, but it’s not uncommon to set up more than one collaborator in
the beginning of a test. Then there’s the object under test, Translator—its initializa-
tion is also part of arranging objects for the test. !¢

In the next block of code we invoke the translation @ (the behavior under test)
and eventually make assertions © about the expected outcome, whether it’s direct
output or a bunch of side effects.

GIVEN, WHEN, THEN The behavior-driven development movement has popular-
ized the use of a vocabulary and structure similar to arrange-act-assert: Given
(a context), When (something happens), Then (we expect certain outcome).
The idea is to specify desired behavior in a more intuitive language and,
though arrange-act-assert does make for an easy mnemonic, the given-when-
then alternative flows better and tends to direct one’s thinking more naturally
toward behavior (rather than implementation details).

This structure is fairly common and helps keep our tests focused. If one of the three
sections feels “big,” it’s a sign that the test might be trying to do too much and needs
more focus. While we’re on the topic, let’s talk about what tests should focus on.

9 Though whitespace can definitely be overused, a consistent use of whitespace can help programmers see the
structure of tests more easily.

10 Technically, setting an expectation on a mock object is an act of verification—an assertion rather than mere
arrangement. But in this case we’re using the mock object as a stub. Some might call heresy on this—and
they’d be right.

42

3.3.3

3.3.4

CHAPTER 3 Test doubles

Check for behavior, not implementation

People make mistakes. One mistake that programmers new to mock object libraries
tend to make often is overly detailed expectations for their mock objects. I'm talking
about those tests where every possible object involved in the test is a mock and every
single method call between those objects is strictly specified.

Yes, testing gives us certainty in the sense that it’ll break and sound the alarm as
soon as anything changes. And therein lies the problem—even the smallest change
that may be irrelevant from the perspective of what the test is supposed to verify will
break the test. It’s like hammering so many nails into that two-by-four, nailing it down
so tight that the poor thing looks like Swiss cheese squashed into a bed of nails.

The fundamental problem with such tests is created by lack of focus. A test should
test just one thing and test it well while communicating its intent clearly. Looking at
an object you're testing, you need to ask yourself what is the desired behavior you
want to verify, and what is an implementation detail that isn’t necessary to nail down
in our test?

The desired, intended behavior is something you should configure your mock
objects to expect. The implementation detail is something you should seek to provide
by stubs or non-strict mock objects that don’t mind if an interaction never happens or
if it happens more than once.

Check for behavior, not implementation. That should be always in your mind
when you pull out your favorite mock object library. Speaking of which...

Choose your tools

Java programmers are at an advantage when it comes to mock object libraries—there
are plenty to choose from. As I said earlier, you can do more or less the same stuff with
any of the leading libraries, but they have slight differences in APIs and may have some
distinct features that tip the scale in a particular direction for your particular needs.

Perhaps the most distinctive of such features is Mockito’s separation of stubbing and
verification. This requires elaboration, so let’s look at an example where I've used
Mockito to write the same test we saw implemented with JMock:

@Test

public void useslnternetForTranslation() throws Exception {
final Internet internet = mock(lnternet.class);
when(internet.get(argThat(containsString(*'langpair=en%7Cfi'"))))

-thenReturn(*{\"translatedText\" :\"kukka\"}"");

Translator translator = new Translator(internet);
String result = translator.translate(""flower'™, ENGLISH, FINNISH);
assertEquals(“kukka™, result);

}

Mockito’s API is more compact than JMock’s. Other than that, looks more or less the
same, right? Yes, except that this test written with Mockito is just stubbing the get()
method—it would pass with flying colors even if that interaction never happened. If
we truly were interested in verifying that the Translator uses Internet, we’d add
another call to Mockito’s API for checking that:

3.3.5

Guidelines for using test doubles 43

verify(internet)._get(argThat(containsString(''langpair=en%7Cfi'")));
Or, if we’re not feeling that precise:
verify(internet).get(anyString());

When it comes to mock object library APIs it’s often a matter of preference. But
Mockito has a clear advantage for a style of testing that relies mostly on stubbing—and
that may or may not be an advantage in your particular context. This is key—test code
is just as important to keep readable and concise, maintainable today and tomorrow.
It’s worth stopping for a moment to weigh the alternatives on the table and make an
informed choice of tooling.

Let me borrow from J.B. again to crystallize the difference between JMock and
Mockito’s approach and sweet spot:!!

When I want to rescue legacy code, I reach for Mockito. When I want to
design for new features, I reach for JMock.

Different central assumptions of JMock and Mockito make each one bet-
ter at its respective task. By default, JMock assumes that a test double (a
“mock”) expects clients not to invoke anything at any time. If you want to
relax that assumption, then you have to add a stub. On the other hand,
Mockito assumes that a test double (sadly, also a “mock”) allows clients to
invoke anything at any time. If you want to strengthen that assumption, then
you have to verify a method invocation. This makes all the difference.

Regardless of which library you decide to go with today, our third and final guideline
for using test doubles is as relevant as ever.

Inject your dependencies

In order to be able to use test doubles, you need a way to substitute them for the real
thing. When it comes to dependencies—collaborator objects that you'd like to replace
for the purposes of testing—our guideline says that they shouldn’t be instantiated in
the same place they’re used. In practice, that means storing such objects as private
members or acquiring them, for example, through factory methods.

Once you've isolated the dependency, you need access to it. You could break
encapsulation with visibility modifiers—making private things public or package pri-
vate—or use the Reflection API to assign a test double to a private field. That could
turn ugly real soon. A better option would be to employ dependency injection and pass
dependencies into the object from outside, typically using constructor injection like we
did in the Translator example.'?

We’ve now talked about test doubles for a long time and I'm itching to move on
to part 2, so let’s wrap this chapter up with a recap of what we’ve learned about test
doubles.

1 J-B. Rainsberger blog, “JMock v. Mockito, but Not to the Death,” October 5, 2010, http://mng.bz/yW2m.
12 Note that dependency injection doesn’t necessarily mean that you must use a dependency injection framework.
Simply passing in dependencies through constructors already goes a long way!

http://mng.bz/yW2m

44

3.4

CHAPTER 3 Test doubles

Summary

We began exploring the topic of test doubles by looking at the reasons why you might
want to reach for a test double. The common denominator behind these reasons is
the need to isolate the code under test so that you can simulate all scenarios and test
all behaviors the code should exhibit.

Sometimes the reason for using a test double stems from the need to make your
tests run faster. Test doubles, with their straightforward implementation, often run a
magnitude or two faster than the implementation they’re substituting for. Sometimes,
the code you’re testing depends on random or otherwise nondeterministic behavior,
such as the time of day. In these cases, test doubles ease our test-infected lives by turn-
ing the unpredictable into predictable.

You also learned that test doubles may be the only feasible way to simulate certain
special situations and to verify the desired behavior of objects without altering the
design of your production code to expose details and information merely for the sake
of testability.

Having established the benefits test doubles can offer, we proceeded to study the
differences between four types of test doubles: test stubs, fake objects, test spies, and
mock objects. Test stubs in their extreme simplicity are perhaps best suited for cutting
off irrelevant collaborators. Fake objects offer a lightning-fast alternative for situations
where the real thing is difficult or cumbersome to use. Test spies can be used to access
information and data that’s otherwise hidden, and mock objects are like test spies on
steroids, adding the ability to dynamically configure their behavior and to verify that
the interactions you expect to happen do in fact take place.

We concluded the chapter with a tour of some basic guidelines for using test dou-
bles, starting from when and in what kind of situations a given type of test double
would likely be a good match. Especially when using mock objects, it’s important to
avoid nailing down the implementation too tightly. Your mocks should verify that the
desired behavior is there and try to be as forgiving as possible as to how exactly that
behavior was achieved.

As usual, tools can be of great help, and it pays to evaluate which libraries are best
suited for your particular use and style of using mock objects. Finally, it can make a
world of difference as far as testability goes to inject your dependencies from outside
rather than hard-wiring them inside the code you’re trying to test.

This chapter on test doubles concludes part 1. We’ve now explored the foundations
of writing good tests. From understanding the benefits of having tests, to knowing the
kind of properties you should seek from the tests you write, to handling one of the
most essential testing tools in a programmer’s toolbox—test doubles—you have now
mastered enough basics and you’re ready to start honing your skills further. Especially,
you’re ready to start training your sense for the many ways a test can fall, from being
good to being a real head-puzzler, a smelly sock on the floor, or even a downright main-
tenance burden. It’s time to turn to part 2 and focus our attention on smells.

Test smells, that is.

Part 2

Catalog

rI:le goal of part 2 is to help us better identify and fix problems with our test
code, and we’re taking a “catalog”-style approach to accomplishing that. This
catalog is one of test smells—traits and attributes we often encounter in test code
that create or aggravate problems in terms of maintainability, readability, and
trustworthiness.

We are wallowing in this puddle of anti-patterns instead of walking through a
list of good practices because I've found it more effective to teach programmers
to identify problems with their tests and to rectify them. After all, if we only know
what a good test looks like, we’re still blind to the many flaws our code may have.

My good friend Bas Vodde likes to say that if you remove all the test smells
you can identify, what’s left is likely to be a pretty good test. Besides, the design
principles and guidelines for good code are just as valid for test code as they are
for production code—which means we already have a body of knowledge to
refer to in determining what kind of properties our test code should exhibit.

Our catalog of test smells is divided into three chapters, each collecting a
group of test smells around a theme. Chapter 4 presents smells that suggest issues
with the readability of our tests. Chapter 5 continues with advice on keeping our
tests from becoming a maintenance issue. Chapter 6 concludes this part with a
set of test smells that often correlate with flaky or otherwise unreliable tests.

This division of test smells into the three chapters is based on what each
smell mostly or most strongly impacts—some could easily be featured in multiple
chapters! Many of the smells in this catalog are also very much interconnected
and often appear in code bases hand in hand. We’ll be sure to point out these

connections where appropriate. Some of these smells are the opposite extremes of an
axis—extremes are rarely optimal, after all. We’ll be sure to point out those connec-
tions, too.

All right. Time to roll up our sleeves and dig into the catalog.

Readability

In this chapter

= Test smells around assertions

= Test smells around information scatter within the
code base

= Test smells around excess or irrelevant detail

Tests are the programmer’s way of expressing and validating assumptions and
intended behavior of the code. Reading the tests for a given mass of code should
provide the programmer with an understanding of what the code should do. Run-
ning those tests should tell the programmer what the code actually does.

Assertions play a key role in deciphering the behavior of code. Though all of
the code that makes up a test tells a story about how the code under test is expected
to behave, it’s the assertion statements that contribute the punchlines. It is the
assertions that we study to be able to tell whether or not the code passes expecta-
tions. In a similar vein, the test framework uses those same assertions to check our
assumptions during test execution.

Consequently many of the issues we discuss in this chapter revolve around asser-
tions, but equally important for readability is all that other code in your tests—the
code that arranges the fixture and the code that invokes or triggers actions on the
code under test.

47

48

4.1

4.1.1

CHAPTER 4 Readability

To summarize, in this chapter we’re focusing on a wide range of smells and prob-
lems with test code exhibiting undesirable properties. Those problems add cognitive
load on the programmer, making it harder to read and understand the test’s intent
and what it’s testing.

After all, reading test code shouldn’t be hard work. You shouldn’t have to strain
your brain cells and stretch the limits of your short-term memory to grasp what’s
going on when you walk through a test. Yet every now and then we bump into that
nasty bugger we’ve seen oh-so-many times before. The nasty bugger that’s only 10
lines long but looks like a mixture of Swahili, Hebrew, and ancient scripture.

There are plenty of test smells like that, but a particularly common one is plagued
with what I call the primitive assertion. That’s a great place to start our catalog of test
smells, so let’s begin with that.

Primitive assertions

Assertions are supposed to express an assumption or intent. They’re supposed to be
statements about the behavior of the code. The problem with primitive assertions is
that they don’t seem to make sense because the rationale and intent of the assertion is
hidden somewhere behind seemingly meaningless words and numbers, making them
difficult to understand—and to validate the assertion’s correctness.

In other words, a primitive assertion is one that uses more primitive elements than
the behavior it’s checking. Let’s look at an example that exhibits this smell.

Example

Our example, shown in listing 4.1, presents a test for a grepping utility. Grepping essen-
tially means processing some kind of textual input line by line and including or
excluding lines that contain a certain substring or pattern. Tests are supposed to be
concrete examples of the functionality your objects provide, so let’s look at the test
and see if that clears up what our grep utility should do. If only this test didn’t suffer
from primitive assertions!

Listing 4.1 Primitive assertions are unnecessary additions to your cognitive load

@Test

public void outputHasLineNumbers() {
String content = "1st match on #1\nand\n2nd match on #3";
String out = grep.grep(“'match™, "test.txt", content);
assertTrue(out. indexOf("test.txt:1 1st match™) I= -1);
assertTrue(out. indexOf(""test.txt:3 2nd match™) I= -1);

}

So, what’s going on in the test? First, we define a literal string content to represent a
piece of input, then we invoke the grep utility, and then we assert something about the
grep’s output. That something is the issue here. It’s not clear what we’re asserting
because the assertion is too primitive—it doesn’t speak the same language as the rest
of the test.

4.1.2

Primitive assertions 49

In more concrete terms, what we’re doing in this assertion is calculating the index
of another literal string from the output and comparing it to -1; if the index is -1, the
test fails. The test’s name is outputHasLineNumbers and apparently, for the specific
invocation of grep() in listing 4.1, the output should include the filename being
grepped on every line in the output, concatenated with the line number.

Unfortunately we have to go through this whole thinking process in order to
understand why we’re calculating an index, why we’re looking for test.txt:1 and not
something else, why we’re comparing it to -1, and whether the test is failing when the
index is -1 or when it’s not -1? It’s not rocket science to figure this out, but it’s cogni-
tive work that our brains shouldn’t need to do.

What to do about it?

The essence of a primitive assertion is that the level of abstraction is too low when it
comes to asserting stuff. With this in mind, we can find at least a couple of potential
improvements to the preceding example.

The first improvement relates to getting rid of the complicated logic around the
magic number, -1. Instead of combining the work horse that is assertTrue with a 1=
comparison, let’s make the desired logic clear by reformulating it using the assert-
That syntax introduced in JUnit 4, as illustrated next.

Listing 4.2 JUnit 4’s assert That syntax helps in making assertions human-readable

@Test

public void outputHasLineNumbers() {
String content = "1st match on #l\nand\n2nd match on #3";
String out = grep.grep(match™, "test.txt', content);
assertThat(out. indexOf(""test.txt:1 1st match™), is(not(-1)));
assertThat(out. indexOf(*"test.txt:3 2nd match™), is(not(-1)));

}

We use the assertThat syntax and the accompanying Hamcrest matcher utilities, is
and not. This small change relieves our brains from the burden of figuring out
whether we expect the index to be -1. The intent is now clearly expressed in plain Eng-
lish.!

The second potential improvement relates to the abstraction level of the standard
Java API we’re using. More specifically, we should reconsider how we determine
whether a given substring is found within a string. In the case of identifying that a
given substring is found in the grep’s output, the concept of an “index” and the magic
number -1 are concepts from the wrong abstraction level. Following through with this
change, our test would probably evolve to something like the next listing.

I Hamcrest (https://github.com/hamcrest/JavaHamcrest) is an API and a collection of matcher implementa-
tions that other libraries such as JUnit can use to match objects against a variety of expectations.

https://github.com/hamcrest/JavaHamcrest

50

CHAPTER 4 Readability

Listing 4.3 Expressing expectations at the right level of abstraction

@Test

public void outputHasLineNumbers() {
String content = "1st match on #1\nand\n2nd match on #3";
String out = grep.grep("match", "test.txt", content);
assertTrue(out.contains(*'test.txt:1 1st match™));
assertTrue(out.contains(*'test.txt:3 2nd match™));

3
Here we’re using contains from java.lang.String instead of the more down-to-the-
metal way of indexOf. Again, there’s less cognitive load for the programmer reading
this code.

Finally, we could consider a combination of these improvements, using the more
literate approach of assertThat, as well as preferring String#contains over
String#indexOf. The following listing shows what that would look like.

Listing 4.4 Combining the use of assert That with the right level of abstraction

@Test

public void outputHasLineNumbers() {
String content = "1st match on #1\nand\n2nd match on #3";
String out = grep.grep("match", "test.txt", content);
assertThat(out.contains(*"test.txt:1 1st match™), equals(true));
assertThat(out.contains(*"test.txt:3 2nd match'), equals(true));

}

Comparing this version with listing 4.3, you can see that our last improvement is more
verbose than our second improvement alone, but it’s definitely more concise and
expressive than the first improvement (listing 4.2) alone. When weighing alternatives
to expressing intent in test code, you should keep in mind that the nature and pur
pose of tests puts a higher value on readability and clarity than, say, code duplication
or performance. Often you’ll find that a little extra verbosity can go a long way toward
expressiveness, readability, and maintainability.

Knowing your tools well helps in finding a good way to express your intent. In this
example, knowing that JUnit includes a small collection of convenient Hamcrest
matchers, including org.junit.JUnitMatchers#containsString(), might lead you
to evolve your test toward this listing.

Listing 4.5 One more slight improvement by making proper use of Hamcrest matchers

@Test

public void outputHasLineNumbers() {
String content = "1st match on #1\nand\n2nd match on #3";
String out = grep.grep("match", "test.txt", content);
assertThat(out, containsString(“'test.txt:1 1st match™));
assertThat(out, containsString(“'test.txt:3 2nd match™));

4.1.3

4.2

4.2.1

Hyperassertions 51

Which of these styles matches your sense of aesthetic best? That’s probably the
approach you’ll want to take. But regardless of whether you end up using assertThat,
assertTrue, or assertFalse (or even assertEquals), you’ll want to express your
assertion with the language and vocabulary of the functionality you're testing.

Summary

Whenever you see an assertion that involves comparisons such as != or ==, especially
to magic numbers like -1 or 0, ask yourself whether the level of abstraction is right. If
an assertion doesn’t make sense immediately, it’s likely a primitive assertion and calls
for refactoring.

This test smell is essentially the identical twin of the general primitive obsession code
smell, which refers to the use of primitive types to represent higher-level concepts.
Think of a phone number represented as a String, a mobile phone’s enabled fea-
tures encoded into a byte, or the mobile broadband subscription described as a pair
of Date objects. When writing tests, you should focus on expressing these concepts at
their level, not in terms of their implementation.

Sometimes your tests aren’t obsessed with using language primitives but instead
are obsessed with detail. I'm talking about the unit test equivalent of the office micro-
manager. Tests that suffer from that kind of obsession often sport overly detailed asser-
tions—so detailed that you might call them hyperassertions.

Hyperassertions

A hyperassertion is one that’s so scrupulous in nailing down every detail about the
behavior it’s checking that it becomes brittle and hides its intent under its overwhelm-
ing breadth and depth. When you encounter a hyperassertion, it’s hard to say what
exactly it’s supposed to check, and when you step back to observe, that test is probably
breaking far more frequently than the average. It’s so picky that any change whatso-
ever will cause a difference in the expected output.

Let’s make this discussion more concrete by looking at an example test that suffers
from this condition.

Example

The following example is my own doing. I wrote it some years back as part of a sales-
presentation tracking system for a medical corporation. The corporation wanted to
gather data on how presentations were carried out by the sales fleet that visited doc-
tors to push their products. Essentially, they wanted a log of which salesman showed
which slide of which presentation for how many seconds before moving on.

The solution involved a number of components. There was a plug-in in the actual
presentation file, triggering events when starting a new slide show, entering a slide,
and so forth—each with a timestamp to signify when that event happened. Those
events were pushed to a background application that appended them into a log file.
Before synchronizing that log file with the centralized server, we transformed the log

CHAPTER 4 Readability

file into another format, preprocessing it to make it easier for the centralized server to
chomp the log file and dump the numbers into a central database. Essentially, we cal-
culated the slide durations from timestamps.

The object responsible for this transformation was called a LogFileTransformer
and, being test-infected as I was, I’d written some tests for it. The following listing
presents one of those tests—the one that suffered from hyperassertion—along with
the relevant setup. Have a look and see if you can detect the culprit.

Listing 4.6 Hyperassertion makes a test brittle and opaque

public class LogFileTransformerTest {

private String expectedOutput;
private String logFile;

@Before

public void setUpBuildLogFile() {
StringBuilder lines = new StringBuilder();
appendTo(lines, "[2005-05-23 21:20:33] LAUNCHED™");
appendTo(lines, "[2005-05-23 21:20:33] session-id###SID™);
appendTo(lines, "[2005-05-23 21:20:33] user-id###UID");
appendTo(lines, "[2005-05-23 21:20:33] presentation-id###PI1D");
appendTo(lines, "[2005-05-23 21:20:35] screenl™);
appendTo(lines, "[2005-05-23 21:20:36] screen2");
appendTo(lines, "[2005-05-23 21:21:36] screen3™);
appendTo(lines, "[2005-05-23 21:21:36] screen4d™);
appendTo(lines, "[2005-05-23 21:22:00] screen5");
appendTo(lines, "[2005-05-23 21:22:48] STOPPED™);
logFile = lines.toString();

3

@Before

public void setUpBuildTransformedFile() {
StringBuilder file = new StringBuilder();
appendTo(File, ''session-id###SID");
appendTo(file, "presentation-id###PID");
appendTo(Ffile, "user-id###UID");
appendTo(File, ''started###2005-05-23 21:20:33");
appendTo(Ffile, ''screenl###1');
appendTo(File, ''screen2###60");
appendTo(File, ''screen3###0");
appendTo(file, ''screend###24');
appendTo(File, ''screen5###48");
appendTo(File, "finished###2005-05-23 21:22:48");
expectedOutput = file.toString();

¥

@Test
public void transformationGeneratesRightStuffintoTheRightFile()
throws Exception {
TempFile input = TempFile.withSuffix(".src.log").append(logFile);
TempFile output = TempFile.withSuffix(".dest.log™);
new LogFileTransformer().transform(input.file(), output.file());
assertTrue("'Destination file was not created", output.exists());

Hyperassertions 53

assertEquals(expectedOutput, output.content());
}

// rest omitted for clarity
}

Did you see the hyperassertion? You probably did—there are only two assertions in
there—but which is the culprit here and what makes it too hyper?

The first assertion checks that the destination file was created. The second asser-
tion checks that the destination file’s content is what’s expected. Now, the value of the
first assertion is questionable and it should probably be deleted. But the second asser-
tion is our main concern—the hyperassertion:

assertEquals(expectedOutput, output.content());

This is a relevant assertion in the sense that it verifies exactly what the name of the test
implies—that the right stuff ended up in the right file. The problem is that the test is
too broad, resulting in the assertion being a wholesale comparison of the whole log
file. It’s a thick safety net, that’s for sure, as even the tiniest of changes in the output
will fail the assertion. And therein lies the problem.

A test that has never failed is of little value—it’s probably not testing anything. On
the other end of the spectrum, a test that always fails is a nuisance. What we’re looking
for is a test that has failed in the past—proving that it’s able to catch a deviation from
the desired behavior of the code it’s testing—and that will break again if we make
such a change to the code it’s testing.

The test in this example fails to fulfill this criterion by failing too easily, making it
brittle and fragile. But that’s only a symptom of a more fundamental issue—the prob-
lem of being a hyperassertion. The small changes in the log file’s format or content
that would break this test are valid reasons to fail it. There’s nothing intrinsically
wrong about the assertion. The problem lies in the test violating a fundamental guid-
ing principle for what constitutes a good test.

A test should have only one reason to fail.

If that principle seems familiar, it’s a variation of a well-known object-oriented design
principle, the Single Responsibility Principle, which says, “A class should have one,
and only one, reason to change.” Now let’s clarify why this principle is of such impor-
tance.

Catching many kinds of changes in the generated output is good. But when the
test does fail, we want to know why. In this example it’s difficult to tell what happened
if this test, transformationGeneratesRightStuffintoTheRightFile, suddenly
breaks. In practice, we’ll always have to look at the details to figure out what had
changed and broken the test. If the assertion is too broad, many of those details that
break the test are irrelevant.

How should we go about improving this test?

2 Robert C. Martin. Agile Software Development: Principles, Patterns, and Practices, (Prentice Hall, 2002).

54

4.2.2

CHAPTER 4 Readability

What to do about it?

The first order of action when encountering an unduly detailed hyperassertion is to
identify irrelevant details and remove them from the test. In this example, you might
look at the log file being transformed and try to reduce the number of lines.

We want it to represent a valid log file and be elaborate enough for the purposes of
the test. For example, the log file has timings for five screens. Maybe two or three
would be enough? Could we get by with just one?

This question brings us to the next improvement to consider: splitting the test.
Asking yourself how few lines in the log file you could get by with quickly leads to con-
cerns about the test no longer testing X, y, or z. Here, X, y, and z are prime candidates
for separate tests in their own right. The following listing presents one possible solu-
tion where each aspect of the log file and its transformation are extracted into sepa-

rate tests.

Listing 4.7 Assertions focused on just one aspect are readable, less brittle

public class LogFileTransformerTest {

private static final String END = "2005-05-23 21:21:37";
private static final String START = '"2005-05-23 21:20:33";
private LogFile logFile;

@Before
public void prepareLogFile() {

logFile = new LogFile(START, END); Check that common
3 headers are placed
@Test correctly

public void overallFileStructurelsCorrect()
throws Exception {
StringBuilder expected = new StringBuilder();
appendTo(expected, ''session-id###SID™);
appendTo(expected, '‘presentation-id###PI1D");
appendTo(expected, "user-id###UID");
appendTo(expected, "started###2005-05-23 21:20:33");
appendTo(expected, "finished###2005-05-23 21:21:37");
assertEquals(expected.toString(), transform(logFile.toString()));

3

@Test Check screen

public void screenDurationsGoBetweenStartedAndFinished() durations’
throws Exception { place in the log

logFile._addContent("'[2005-05-23 21:20:35] screenl™);

String out = transform(logFile.toString());

assertTrue(out. indexOf("'started) < out.indexOf("'screenl™));
assertTrue(out. indexOf(*"'screenl™) < out.indexOFf("'finished™));

}
@Test
- _ _ heck
public void screenDurationsAreRenderedInSeconds() guizﬁ;:%en
throws Exception { calculations

logFile.addContent("'[2005-05-23 21:20:35] screenl™);
logFile.addContent(*'[2005-05-23 21:20:35] screen2");
logFile._addContent(*'[2005-05-23 21:21:36] screen3™);

4.2.3

Hyperassertions 55

String output = transform(logFile.toString());
assertTrue(output.contains(''screenl###0'"));
assertTrue(output.contains(''screen2###61'"));
assertTrue(output.contains(’'screen3###1'"));

}

// rest omitted for brevity

private String transform(String log) { --. }

private void appendTo(StringBuilder buffer, String string) { ... }
private class LogFile { ... }

}

This solution introduces a test helper class, LogFile, that establishes the standard
envelope—the header and footer—for the log file being transformed, based on the
given starting and ending timestamps. This allows the second and third test, screen-
DurationsGoBetweenStartedAndFinished and screenDurationsAreRenderedin-
Seconds, to append just the screen durations to the log, making the test more focused
and easier to grasp. In other words, we delegate some of the responsibility for con-
structing the complete log file to LogFile. In order to ensure that this responsibility
receives due diligence, the overall file structure is verified by the first test, overall-
FileStructurelsCorrect, in the context of the simplest possible scenario: an other-
wise empty log file.

This refactoring has given us more focus by hiding details from each test that are
irrelevant for that particular test. That’s also the downside of this approach—some of
the details are hidden. In applying this technique, you must ask yourself what you
value more: being able to see the whole thing in one place, or being able to see the
essence of a test quickly.

I suggest that, most of the time when speaking of unit tests, the latter is more desir-
able, as the fine-grained, focused tests point you quickly to the root of the problem in
case of a test failure. With all tests making assertions against the whole transformed
log file, for example, a small change in the file syntax could easily break all of your
tests, making it more difficult to figure out what exactly broke.

Summary

It’s good to be interested in the whole. But you can shoot yourself in the foot by mak-
ing assertions too hyper. A hyperassertion cuts out too large a chunk of output and side
effects for bit-to-bit comparison, which makes it harmful due to the resulting brittle-
ness. The assertion fails if any small detail changes, regardless of whether that change
is relevant to the interests of this particular test.

A hyperassertion also makes it difficult for the programmer to identify the intent
and essence of the test. When you see a test that seems to bite off a lot, ask yourself what
exactly you want to verify? Then, try to formulate your assertion in those terms.

The terms and words we use are crucial in conveying intent, but we’re talking
about automated tests and, therefore, the programming language structures we use
also deserve thought. As our next test smell points out, not all language structures are
created equal.

56

4.3

4.3.1

4.3.2

CHAPTER 4 Readability

Bitwise assertions

In the beginning of this chapter I described a primitive assertion as one that’s so cryp-
tic because of its low abstraction level that its intent and meaning remain a mystery to
the reader. A bitwise assertion is a special case of primitive assertion that I feel warrants
special mention because its elements are close to home for so many programmers and
far from home for equally many programmers.

Perhaps an example will help concretize this hazard.

Example

Let’s take a look at a concrete example that exhibits this particular smell. Consider
the test in this listing.

Listing 4.8 Bitwise assertion, also known as “what did this operator do again?”

public class PlatformTest {
@Test
public void platformBitLength() {
assertTrue(Platform_1S_32_BIT ~ Platform.1S_64_BIT);
}

}

What are we checking here? The assertion includes a description and it’s asserting
that the result of that ” bit operation between two boolean values is true. What does
that bit operation do? When would this assertion fail?

If you happen to work in a relatively low-level domain where bit operations are
business as usual, you were probably quick to deduce that we’re performing an XOR
operation, which means that the assertion will fail if both sides of the bit operator
have the same boolean value.

Now that we’re all clear on what this test is doing, what’s wrong with it?

The bit operator is what’s wrong with this test. Bit operators are a powerful lan-
guage feature for operating on bits and bytes. But in the context of this test, we’re not
in the domain of bits and bytes. We’re in the domain of “we should be running on
either a 32-bit or a 64-bit architecture” and that essence gets hidden behind the for-
eign bit operator.

That particular bit operator may be the perfect match for performing a concise
assertion efficiently, but we’re not in the business of optimizing test assertions. We’re
in the business of making sure that we’re building the right thing right—that our
code does what we expect it to do and that what we’re expecting makes sense. For that
purpose, there’s bound to be a better way to express our intent than a bit operator.

What to do about it?

This time, the solution is simple. Replace the bit operator with one or more Boolean
operators, expressing the expectations clearly one by one. The next listing presents
one way to do it for our example test:

4.3.3

4.4

44.1

Incidental details 57

Listing 4.9 Prefer Boolean operators over bit operators

public class PlatformTest {
@Test
public void platformBitLength() {
assertTrue('Not 32 or 64-bit platform?",
Platform.1S_32_BIT || Platform.1S_64_BIT);
assertFalse("Can’t be 32 and 64-bit at the same time.",
Platform.1S_32_BIT && Platform.1S_64_BIT);

}
3
Yes, it’s more verbose, but it’s also more explicit about what we’re stating with our
assertions. The plain English messages are enormously helpful in this situation, and
replacing the single bit operator with two simple explicit Boolean operators makes the
logic more accessible to programmers who don’t wear a binary watch.?

Summary

Bitwise assertions exhibit the same problems as other types of primitive assertions:
their meaning is hard to pick up and our poor brains have to work overtime to figure
out what’s going on. Bit operators are a powerful language construct, and an essential
one at that for many application domains. But when bit operators are used as a short-
hand for expressing logic that isn’t inherently about bits, we’ve stepped on a down-
ward spiral. Leave bit operators for bit operations and strive to express higher-level
concepts with language that belongs to that abstraction level.

Incidental details

What makes code readable is that it reveals its intent, purpose, and meaning promptly
and squarely to the reader. When programmers scan a block of code, they’re looking
for the beef, and any sauce that gets in the way is unwanted. Sometimes our test code
has too much sauce. We call that smell incidental details.

Let’s look at an example again. This is a longer one. Take your time to figure out
what this test is trying to verify.

Example

The following is another example from the JRuby project. JRuby has a module called
ObjectSpace. ObjectSpace gives your program access to all the living objects in the
runtime. For example, you can iterate through all objects of a given type. The code in
the next listing presents a test for ObjectSpace that ensures this lookup by type works
as it should. Let’s take a look.

¥ Wearing a binary watch does have a nerdy vibe to it, but I'm having a difficult enough time already dealing
with time zones and setting the alarm clock while on the move.

58

4.4.2

CHAPTER 4 Readability

Listing 4.10 This test tries to hide its beef. How quickly can you tell what it does?

public class TestObjectSpace {
private Ruby runtime;
private ObjectSpace objectSpace;

@Before

public void setUp() throws Exception {
runtime = Ruby.newlnstance();
objectSpace = new ObjectSpace();

¥

@Test

public void testObjectSpace() {
IRubyObject ol = runtime.newFixnum(10);
IRubyObject 02 = runtime.newFixnum(20);
IRubyObject 03 runtime.newFixnum(30);
IRubyObject o4 runtime.newString(“'hello™);

objectSpace.add(ol);
objectSpace.add(02);
objectSpace.add(03);
objectSpace.add(o4);

List storedFixnums = new ArrayList(3);
storedFixnums.add(ol);
storedFixnums.add(o2);
storedFixnums.add(o3);

Iterator strings = objectSpace.iterator(runtime.getString());
assertSame(04, strings.next());
assertNull(strings.next());

Iterator numerics = objectSpace.iterator(runtime.getNumeric());
for (int 1 = 0; 1 < 3; i++) {
Object item = numerics.next();
assertTrue(storedFixnums.contains(item));

assertNull(numerics.next());
¥
¥

So we’re testing the behavior of an ObjectSpace, and we do that by first “adding”
objects of certain types to it and then checking that we get those same objects back
from the ObjectSpace when we ask for an Iterator of that type.

Was it easy to figure this out? It’s not rocket science, but that’s a long-winded way to
express our intent. A human mind can juggle only so many concepts at once, and
keeping track of all those lists and iterators is too much. Besides, the assertions them-
selves reek of primitive assertion.

What to do about it?

When the beef is hidden, you need to uncover it. The essence of a test should be front
and center, and the way to accomplish this boils down to a few simple guidelines:

Incidental details 59

1 Extract the nonessential setup into private methods or the setup.
2 Give things appropriate, descriptive names.

3 Strive for a single level of abstraction in a method.

Let’s see how these guidelines could be applied to our example.

First, let’s move the creation of those four objects into the setup method, turning
the local variables into fields on the test class. After all, they’re just props for our test.
Second, since our test makes a distinction between the types of those objects—
whether they’re “Fixnums” or “Strings”—we should name them such that the type is
obvious. This listing illustrates one way to do that.

Listing 4.11 Naming objects used in a test makes the fixture easier to understand

public class TestObjectSpace {

private IRubyObject string;
private List<lRubyObject> fixnums;

@Before
public void setUp() throws Exception {

string = runtime.newString("'hello™);
fixnums = new ArrayList<IRubyObject>() {{
add(runtime.newFixnum(10));
add(runtime.newFixnum(20));
add(runtime.newFixnum(30));
b3
}

}

Now we can turn our attention to the test method itself and the third guideline: striv-
ing for a single level of abstraction in a method. In terms of abstraction, what we care
about in this test is that once we’ve added certain objects into the ObjectSpace, those
exact objects are found through their respective iterators. The following listing shows
the clear improvement in readability that going down to a single level of abstraction
can provide.

Listing 4.12 Our test method now has a single level of abstraction

public class TestObjectSpace {
private Ruby runtime;
private ObjectSpace space;
private IRubyObject string;
private List<IRubyObject> fixnums;

@Before

public void setUp() throws Exception {
runtime = Ruby.newlnstance();
space = new ObjectSpace();

string = runtime.newString(“hello™);
fixnums = new ArrayList<lRubyObject>() {{
add(runtime.newFixnum(10));

test setupCreate
fixture objects in setup

60 CHAPTER 4 Readability

add(runtime.newFixnum(20)); I
add(runtime.newFixnum(30)); test setupCreate
13 fixture objects in setup
¥
@Test
public void testObjectSpace() {
addTo(space, string); Populate
addTo(space, fixnums); ObjectSpace
Iterator strings = space.iterator(runtime.getString());
assertContainsExactly(strings, string); Check
contents of
Iterator numerics = space.iterator(runtime.getNumeric()); ObjectSpace
assertContainsExactly(numerics, fixnums);
3

private void addTo(ObjectSpace space, Object... values) { }
private void addTo(ObjectSpace space, List values) { }

private void assertContainsExactly(lterator i, Object... values) { }
private void assertContainsExactly(lterator i, List values) { }

¥
That’s already much better; the beef is visible now that all that setup and detail was
moved outside of the test method itself. Alternatively, you could’ve tried giving the fix-
ture objects descriptive names without moving them into a setup method, to see if that
would’ve been a sufficient fix for the smell of incidental details. After all, only one test
uses those fixture objects.

In any case, once you’ve recognized the incidental details, you still need to deal
with the remaining smells of split personality (see section 4.5) and having a crappy
test name. We’ll leave these as an exercise for the reader.

4.4.3 Summary

When you’re done writing a test, take a step back and ask yourself, “Is it perfectly clear
and obvious what this test is all about?” If you hesitate to say yes, you’re not done yet.

The beefis there, but it’s crushed under the sheer volume of code in the test. Nam-
ing classes, methods, fields, and variables with descriptive names helps highlight the
test’s meaning, but it’s hardly enough. To properly remedy such a situation, you
should seek to extract nonessential bits of code and information into private helpers
and setup methods. An especially useful idea is to try to keep a single level of abstrac-
tion in your test methods, as that tends to lead to more expressive names, a glaringly
obvious flow of the test, and just enough sauce on the beef.

4.5 Split personality

One of the easiest ways to improve your tests is to look for a condition I call split person-
ality. When a test exhibits split personality, it thinks it embodies multiple tests in itself.
That’s not right. A test should only check one thing and check it well.*

Time for an example again.

* Note that this is different from the “one assertion per test” guideline that you may have bumped into—you
might use multiple assertions to check that one thing!

4.5.1

4.5.2

Split personality 61

Example

The test class in the next listing is for a piece of command-line interface. Essentially,
it’s testing the behavior of a Configuration object with different command-line argu-
ments. Let’s take a look.

Listing 4.13 Test for parsing command-line arguments

public class TestConfiguration {

@Test

public void testParsingCommandLineArguments() {
String[] args = { "-f", "hello.txt", "-v', "--version" };
Configuration c = new Configuration();
c.processArguments(args);
assertEquals(“hello.txt", c.getFileName());
assertFalse(c. isDebuggingEnabled());
assertFalse(c.isWarningsEnabled());
assertTrue(c.isVerbose());
assertTrue(c.shouldShowVersion());

c = new Configuration();

try {
c.processArguments(new String[] {"-f"}):

fail(""Should®ve failed);
} catch (InvalidArgumentException expected) {
// this is okay and expected
}
}
}

The multiple personalities this test is supporting include something about a file name,
something about debugging, enabling warnings, verbosity, displaying a version num-
ber, and dealing with an empty list of command-line arguments. Note that this test
doesn’t follow the arrange-act-assert structure you learned about in section 3.3.11.

It’s obvious that we’re asserting many things here. Though they’re all related to
parsing command-line arguments, they’re also relevant in isolation from each other.

What to do about it?

The primary issue with this test is that it’s trying to do too much, so we’ll start by fixing
that. There’s also some duplication, but we’ll deal with that, too. Let’s begin by getting
rid of that distraction so we can more clearly see the main issue.

The test is currently instantiating a Configuration with the default constructor in
multiple places. We could make ¢ a private field and instantiate it in a @Before
method, like so:

public class TestConfiguration {
private Configuration c;

@Before

public void instantiateDefaultConfiguration() {
c = new Configuration();

}

62

CHAPTER 4 Readability

With the duplication out of our way were left with two different calls to processArgu-
ments() and six different assertions (including the try-catch-fail pattern). That would
suggest at least two different scenarios—two different tests. Let’s extract those two seg-
ments into their own test methods:

public class TestConfiguration {

@Test

public void validArgumentsProvided() {
String[] args = { "-f", "hello.txt", "-v", "--version" };
c.processArguments(args);
assertEquals(hello.txt", c.getFileName());
assertFalse(c.isDebuggingEnabled());
assertFalse(c.isWarningskEnabled());
assertTrue(c.isVerbose());
assertTrue(c.shouldShowVersion());

}

@Test(expected = InvalidArgumentException.class)

public void missingArgument() {
c.processArguments(new String[] {"-f"'}):

3

}
With these coarse scenarios separated, it’s also much easier to come up with a descrip-
tive name for the test methods. That’s always a good sign if you ask me.

We’'re still only halfway there. Looking at the assertions in the first test, you can see
that some of the conditions being checked are explicit results of the provided
command-line arguments, whereas some of them are implicit, default values. To make
things better in that aspect, let’s split the tests into multiple test classes, as described in
figure 4.1.

This refactoring would mean that we have one test class focused on verifying the
correct default values, one test class for verifying that explicitly setting those values
from the command-line works as it should, and a third test class for specifying how
erroneous configuration values should be handled. The change is reflected in the fol-
lowing listing.

AbstractConfigTestCase

VAN

TestDefaultConfigValues TestExplicitlySetConfigValues TestConfigurationErrors

Figure 4.1 Three concrete, focused test classes inherit common setup from an
abstract base class.

Split personality 63

Listing 4.14 Split personalities extracted into separate test classes

public abstract class AbstractConfigTestCase {
protected Configuration c;

@Before

public void instantiateDefaultConfiguration() {
c = new Configuration();
c.processArguments(args());

} QJ Default to empty

protected String[] argsQ { argument list
return new String[] { }:
}
}

public class TestDefaultConfigValues
extends AbstractConfigTestCase {

@Test

public void defaultOptionsAreSetCorrectly() {
assertFalse(c. isDebuggingEnabled());
assertFalse(c.isWarningskEnabled());
assertFalse(c.isVerbose());
assertFalse(c.shouldShowVersion());

3
}
public class TestExplicitlySetConfigvalues Override
extends AbstractConfigTestCase { defaults for
@Override SPEUﬁf
protected String[] argsQ { < scenario
return new String[] {"-f', "hello.txt", "-v",
ted", "-w'", "--version'};
3
@Test
public void explicitOptionsAreSetCorrectly() {
assertEquals(hello.txt", c.getFileName());
assertTrue(c. isDebuggingEnabled());
assertTrue(c.isWarningsEnabled());
assertTrue(c.isVerbose());
assertTrue(c.shouldShowVersion());
}
3
public class TestConfigurationErrors Override
extends AbstractConfigTestCase { defaults for
@override specific
protected String[] argsQ { <1 scenario
return new String[] {"-f"};
¥

@Test(expected = InvalidArgumentException.class)
public void missingArgumentRaisesAnError() { }

64

4.5.3

4.6

CHAPTER 4 Readability

The benefit of this refactoring is in each individual test class being focused on just one
thing. There’s more code now; the boilerplate from having four classes instead of one
does add volume. The relative increase in volume is much less when we split a test
class with multiple test methods.’

Whether the trade-off of introducing an inheritance hierarchy is worth the added
complexity is largely dependent on if the concrete test classes share any class-invariant
tests through the base class. If you’re only interested in splitting out the different test
methods and their respective fixtures (and they share pretty much nothing), you
could just as well create a distinct test class for each fixture and related tests, avoiding
the added complexity of a class hierarchy and the accompanying scent of split logic.

Summary

Readable code makes its purpose clear to the programmer. Split personality is a test
smell that fogs up your vision. Both details and the big picture of tests are hidden away
as the code confuses you by intertwining multiple aspects into one test.

Splitting a test’s multiple personalities—its multiple interests—into their own
classes can help highlight the test’s multiple meanings such that they’re understand-
able, and when you come back to modify the code you’ll be better off, as we can easily
see what the code does and which scenarios are missing. In other words, you’ll know
what you don’t know.

An additional benefit is that once you make a mistake (and you will), you have a
more precise pointer to what’s wrong, as the failing test covers a smaller corner of situ-
ations. It’s no longer “something’s wrong with parsing configuration parameters” but
more akin to “configuration parameters that take multiple values don’t work with a
single value.”

Chopping up test classes and methods is often a big improvement in terms of read-
ability and maintainability. The chopping up can go overboard, though. That’s when
you’ve gone all the way from split personality to split logic.

Split logic
Nobody likes to read tests that span several screenfuls of code. Part of the reason is
because such tests almost invariably exhibit more than a couple of test smells, and
you’re probably not certain what the test is doing and whether that’s what it’s sup-
posed to do. Another reason to not like long methods that span several screenfuls is
that it means you’re forced to switch context, going back and forth between different
parts of the source file to keep track of where you are and what’s going on.

In short, the code you’re looking for is scattered and requires extra effort, adding
to your already significant cognitive load.®

% Besides, at least I can read a long book in English much faster than a short book in Gaelic.
% Cognitive overload is an especially common problem for programmers, due to programming being intrinsi-
cally taxing on the working memory.

4.6.1

Split logic 65

The psychology of chunking

Speaking of long methods, the obvious approach to solving that problem is chunking
it into smaller pieces. It turns out that chunking is an essential concept in cognitive
psychology, too.

You may have heard someone point out how much easier it is to remember a phone
number such as 326- 3918 than it is to remember an equally long and arbitrary
sequence of digits, such as 32 6 3 9 1 8. The phone number is easier to remember
because we’ve chunked it into two short sequences and we’re much better at remem-
bering short sequences—including short sequences of short sequences.

This could be interpreted to mean that you should split that long method into tiny
chunks to improve the code’s readability. But that would be jumping to conclusions
too fast. For chunking to have a positive impact on our ability to manage information
doesn’t require the chunks to be meaningful, but being able to identify meaning for
chunks significantly enhances the effect.”

In terms of code, you shouldn’t blindly extract smaller methods, but rather do it mind-
fully, seeing that each individual chunk (method) consists of a meaningful sequence
of chunks (statements) that in themselves share these same properties.

This information scatter is harmful for our cognitive load and makes it slower and
more difficult to internalize the meaning and intent of a test. It’s not just long meth-
ods that exhibit this scatter. An even worse example of information scatter in test code
is prevalent in domains where tests involve manipulating larger chunks of data than
the occasional float, int, or a String named firstName. Let’s take a look at a real-life
example of just such scatteritis-infected test code.

Example

The next listing also comes from the excellent JRuby project. This test checks that
basic operations, such as variable assignments and method invocations, work as they
should when evaling snippets of Ruby code using the Ruby class.

Listing 4.15 Tests that have their logic split into multiple places are difficult to grasp

public class TestRuby {
private Ruby runtime;

@Before
public void setUp() throws Exception {
runtime = Ruby.newlnstance();

}

@Test
public void testVarAndMet() throws Exception {

7 Dale Shaffer, Wendy Doube, Juhani Tuovinen. “Applying Cognitive Load Theory to Computer Science Edu-
cation.” Proceedings of First Joint Conference of EASE & PPIG, 2003. Psychology of Programming Interest
Group, http://www.ppig.org/papers/15th-shaffer.pdf.

http://www.ppig.org/papers/15th-shaffer.pdf

66

4.6.2

CHAPTER 4 Readability

runtime.getLoadService().init(new ArrayList());
eval(""load "test/testVariableAndMethod.rb®™);
assertEquals("Hello World", eval(puts($a)"));
assertEquals('dlroW olleH", eval("puts $b'));
assertEquals(*'Hello World",

eval("'puts $d.reverse, $c, $e.reverse™));
assertEquals(*'135 20 3",

eval (""puts $f, \" \", $g, \" \", $h'"));

3
3

Now, this isn’t a long method but it does exhibit severe scatter.® Looking at this test
method, it’s impossible to tell why should puts $b return “Hello World” reversed?
We’re missing some crucial information from this source file because it’s scattered to
another place in the filesystem: a file named testVariableAndMethod.rb. Switching to
that source file, we find a whole sequence of operations, shown in this listing.

Listing 4.16 testVariableAndMethod.rb contains a block of Ruby code

a = String.new("'Hello World™)
b = a.reverse
c=""

d = "Hello".reverse
e = a[6, 5]-reverse
f = 100 + 35

g= 2*10
h=13%5

$a =

$b =

$c

©*
®
SQ =D Q0O TW

$h =

This explains why the test expects the magic variables from $a to $h to contain equally
magical values. After checking both of these files and going back and forth once or
twice, you can see how a total of 16 variables are assigned to inside testVariableAnd-
Method.rb. What makes the degree of scatter even worse than we thought is that the
JUnit test only suggests the test involves variables and methods, but it turns out it’s also
testing mathematical operators—albeit not all of them.

Now, what could you do to reduce this severe information scatter?

What to do about it?

The simplest solution to split logic is often to inline the external information, mov-
ing all code and data into the test that uses it. Sometimes this is super convenient;
sometimes it’s less convenient. Let’s see how this approach might look for the situa-

8 It also exhibits an acute split personality, but let’s not dwell on that right now.

Split logic 67

tion described in listings 4.15 and 4.16. My experiment with inlining testVariable-
AndMethod.rb is shown in this listing.

Listing 4.17 Inlining the split logic inside the test method

@Test
public void testVarAndMet() throws Exception {
runtime.getLoadService().init(new ArrayList());

AppendableFile script = withTempFile(); Generate
script.line("a = String.new(“Hello World*)™); data file from
script.line("b = a.reverse'); test code

script.line(c
script.line('d
script.line(e

L

"Hello" .reverse');
a[6, 5].reverse');

script.line(™f = 100 + 35");
script_line("g 2 * 10");
script.line("h 13 % 5");
script.line("$a = a");
script.line("$b = b™);
script.line("$c = c");
script.line("$d = d");
script.line("$e = e");
script.line("$f =);
script.line("$g = g');
script.line("$h = h");

eval("load "" + script.getAbsolutePath() + """);

assertEquals('Hello World"”, eval(“puts($a)'));

asserteEquals('dlroW olleH", eval("puts $b™));

asserteEquals(*'Hello World",

eval (""puts $d.reverse, $c, $e.reverse™));

assertEquals(''135 20 3",

eval("puts $F, \" \", $g, \" \", $h™));
3
This is interesting. Inlining the scattered information into the test method that uses it
gets rid of the split logic problem, but now we’re starting to have symptoms of other
smells, like split personality and setup sermon. And that’s all right. These smells are
telling us what to do next!

Let’s see how our test would look if we deal with the split personality and slice that
monster into two tests: one for testing variable assignment and one for testing method
invocation. While we’re at it, let’s trim those complicated sequences of variable assign-
ments and one reverse after another. We don’t need such a variety to verify that vari-
able assignments and method calls work. All that extra noise only makes the test more
difficult to follow. Listing 4.18 presents the outcome.

Listing 4.18 Slicing a big test into more specific ones

@Before

public void setUp() throws Exception {
runtime.getLoadService().init(new ArrayList());
script = withTempFile();

¥

CHAPTER 4 Readability

@Test

public void variableAssignment() throws Exception {
script.line(a = String.new("Hello")");
script.line(""b = “World™");
script.line("$c = 1 + 2");
afterEvaluating(script);
assertEquals(Hello"”, eval(“'puts(a)™));
asserteEquals(""World"”, eval(“'puts b'™));
assertEquals('3", eval(“puts $c'));

}

@Test

public void methodlnvocation() throws Exception {
script.line(a = "Hello".reverse');
script.line("b “"Hello".length(Q)");
script.line(c " abc ".trimC* ", "_")");
afterkEvaluating(script);
assertEquals(olleH", eval(“'puts a));
assertEquals(3", eval('puts b™));
assertEquals('_abc_", eval(“puts c"));

}

private void afterEvaluating(AppendableFile sourceFile)
throws Exception {
eval("load "" + sourceFile.getAbsolutePath() + ""');
}

With this change our code doesn’t look too bad. We could probably still find ways to
trim those two tests in listing 4.18 even smaller, making them even more focused. For
example, our checks for the expected results reek of primitive assertion. We’ll leave
that for the future.

When to inline data or logic?

Some data and some logic are good to inline, some others are best kept separate.
Here’s a simple heuristic for quickly determining what you should pull into the test
and what to push out to the sidelines:

1 If it’s short, inline it.

2 |If it’s too long to keep inlined, stash it behind a factory method or a test data
builder.

3 If that feels inconvenient, pull it out into a separate file.

It’s that simple. The best thing to do would be to colocate all knowledge used in a
test inside the test. That often leads to too big a test, in which case we typically trade
the close proximity of everything being inside the test method in exchange for the test
method invoking helper methods on the test class itself. In some cases the nature
of the data or logic involved is so complex that it’s inconvenient to keep it inside the
test class. In those cases it may make more sense to extract that logic or data into
a separate data or source file—especially if the same data or logic is duplicated
across multiple test classes.

Split logic 69

| don’t go for an external data file too lightly. The effort of seeing the content of two
files simultaneously ranges from slightly inconvenient to next to impossible, depend-
ing on which editors and IDEs are hanging from your tool belt. IDEs don’t handle non-
programming language files too well, which means that you don’t get much support
for navigating between your test code and such data files. With that said, when | do
end up with a separate data file, there are a few guidelines | try to follow:

= Trim your data to bare essentials—just enough to represent the scenario in
question. Even though you may decide to accept information scatter as the
lesser of two evils, there’s no excuse for doing anything but your best to keep
that accidental complexity at a minimum.
= Place such data files in the same folder as the tests that use them. That way
the data files are easier to find and move around, along with the test code.
(Plus, you can load them through Java’s class path rather than by reading a
file at a specified file path.) More on this approach in section 5.4.11.
= Whatever structure you end up with, make it a convention with your team and
stick to it. You'll make everyone’s life that much easier.
Consider looking up such external resources from the class path rather than with a
file path; you won’t have to edit your tests when moving the test code and the data
file from one package to another. If you decide to go this way, it might be a good
idea to make sure that your test data files have unique names, just to avoid a nasty
surprise.

4.6.3 Summary

Not too long ago, programmers were taught that source code should be wrapped so
that the line length never exceeds 80 characters. Similarly, we were taught that meth-
ods shouldn’t be longer than 25 lines. Though the exact numbers may have been
slightly different, the idea behind these rules has been the simple fact that screen
estate is limited, and for a long time people’s monitors would only fit around 80 char-
acters on a line and some 25 lines per screen. Anything more than that and you’d
have to scroll to see the rest.

Though today’s monitors can accommodate many more pixels and our preference
for the maximum size of a method may have changed,’ the importance of not having
to navigate between multiple parts of the code base still applies. The split logic smell
warns us from unnecessarily separating the logic or data of a test into multiple places,
especially multiple source files.

Though it makes sense in some cases to divide logic or data into separate files, the
rule of thumb would be to first seek a way to inline that logic or data inside the test
that uses it, and if that doesn’t work, look for a way to keep it inside the test class.
Accepting split logic should be a last resort rather than a default practice.

¢ Personally, I prefer methods to be shorter than 10 lines of code, and the ones I really like are almost without
exception less than five lines of code.

70 CHAPTER 4 Readability

Whereas split logic may not be among the most common test smells, the next smell
is definitely one of the most widespread, even though it’s something most program-
mers are taught to avoid early in their careers.

4.7 Magic numbers

There are a few things that unite programmers all over the world. Programming lan-
guages and design patterns are good examples of such things. We’re also almost uni-
versally of the opinion that magic numbers are bad and should be avoided. Magic
numbers are numeric values embedded into assignments, method calls, and other
program statements.

Literals 123.45 and 42 would be prime examples of such magic numbers. The
argument goes that magic numbers are bad because they don’t reveal their mean-
ing—reading the code, you're left wondering what’s the purpose of that 42? Why is it
42 instead of, say, 43? With this in mind, the fundamental problem of magic numbers
can be found in magic strings just as well—why is that literal string empty? Does it mat-
ter or did someone just need a String—any String?

The conventional advice for treating magic numbers is to replace them with con-
stants or variables that give the number that much-desired meaning, making code eas-
ier to read. But that isn’t the only option we have. Let’s take a look at an example
ridden with magic numbers and what might be a surprising alternative for fixing the
problem.

4.7.1 Example

Philip Schwarz, in his comment to Jeff Langr’s blog post,'” introduced the following
test he’d written for an object representing a game of bowling, shown in the following
listing:

Listing 4.19 Why does arol | (10, 12) result in a score of 300?

public class BowlingGameTest {

@Test
public void perfectGame() throws Exception {
rol1 (10, 12); // magic

assertThat(game.score(), is(equalTo(300))); // numbers
3

}

What makes this test worth examining is the way it passes magic numbers to the code
under test without explaining what they are. It might be obvious to you while you’re
writing that test, but it may not be at all obvious what the meaning of 10 and 12 is, and
why that input should result in 300. It might not be obvious to you either when you
come back to this code after a couple of weeks.

19 See Jeff Langr’s blog “Goofy TDD Construct,” March 25, 2010, http://langrsoft.com/jeff/2010/03/
goofy-tdd-construct/.

http://langrsoft.com/jeff/2010/03/goofy-tdd-construct/
http://langrsoft.com/jeff/2010/03/goofy-tdd-construct/

4.7.2

4.7.3

Magic numbers 71

What to do about it?

To improve this test, Philip proceeded to call out those magic numbers, making their
meaning and relationship explicit by giving each number a name. As I said, the way
Philip did this might be a surprise. This shows how he did it:

Listing 4.20 A-ha! Knocking all 10 pins 12 times in a row yields a score of 300

public class BowlingGameTest {
@Test
public void perfectGame() throws Exception {
roll(pins(10), times(12));
assertThat(game.score(), is(equalTo(300)));
3

private int pins(int n) { return n; }

private int times(int n) { return n; }
}
Though it’s more common to see programmers call out their magic numbers using
static constants or local variables, the approach Philip’s test demonstrates in listing
4.20 has a certain advantage, one that may or may not be relevant for a given situation
with a magic number you’d like to call out. For example, if we would’ve used a con-
stant for giving a name to our magic numbers in listing 4.19, we’d be looking at some-
thing like this:

rol I(TEN_PINS, TWELWE_TIMES);

This would be explicit and readable—even easier for a human to read than the
pins(10) and times(12) in listing 4.20. The advantage of the method-based
approach comes into play when you have several tests—as is most often the case—
where the number of pins and rolls is different. Surely you don’t want to have a sepa-
rate constant for every one of those tests."!

Summary

Magic numbers are numeric values among code that don’t communicate their mean-
ing. Without an explicit name or explanation for such a magic number, you’re left
helpless in trying to figure out why that number is there and why its value is exactly
what it is? In short, you should avoid magic numbers because they’re about as easy to
grok as David Copperfield’s magic.

The most common way of calling out magic numbers and making them explicit is
to replace the magic number with a local variable or a constant with an expressive
name. Listing 4.20 demonstrated a somewhat different but extremely useful tech-
nique for documenting the meaning of the magic number.

I Other programming languages (such as Ruby) support parameter assignment by name, which can be used to
achieve similar advantages.

72

4.8

481

CHAPTER 4 Readability

As programmers we’ve often been taught to think that code should be fast and that
compact is better than verbose, and often that would be a fair statement. But there are
occasions when the need for readability trumps our desire for conciseness. More often
than not, it’s worth the extra line or two to make our intent explicit. That’s exactly
what Philip’s pins() and times() in listing 4.20 are about.

Sometimes, we seem to forget about the virtues of conciseness altogether and end
up writing real novels in our tests. Sometimes, we bump into such literary works
already in the tests’ setup!

Setup sermon

In section 4.4 you learned about incidental details and how tests should reveal their
intent, purpose, and meaning promptly and squarely. Most often we tackle such a prob-
lem by extracting the irrelevant details behind helper methods, leaving only the essen-
tial bits—the beef—in the test method to make it concise and to the point. Sometimes
we move a bunch of code that prepares the scenario for a test into a setup method.

Just as we’d be foolish to pretend that test code doesn’t need the same degree of
professional treatment as production code, we’d be mistaken to think that messy code
would be any less dire a problem when it’s found in a setup method.

Let’s look at an example that illustrates this problem in concrete terms.

Example

The following example is code I wrote some years ago. It’s a test for an object respon-
sible for downloading “presentations,” which are listed in an XML-based manifest and
missing from the local storage. Look at the following listing and see if it connects with
the name of this test smell.

Listing 4.21 Setup sermon is a long setup for a simple test

public class PackageFetcherTest {
private PackageFetcher fetcher;
private Map downloads;
private File tempDir;

@Before

public void setUp() throws Exception {
String systemTempDir = System.getProperty(*java.io.tmpdir');
tempDir = new File(systemTempDir, "downloads™);
tempDir.mkdirs(Q);
String filename = "/manifest.xml";
InputStream xml = getClass().getResourceAsStream(filename);
Document manifest = XOM.parse(10.streamAsString(xml));
PresentationList presentations = new PresentationList();
presentations.parse(manifest.getRootElement());
PresentationStorage db = new PresentationStorage();
List list = presentations.getResourcesMissingFrom(null, db);
fetcher = new PackageFetcher();
downloads = fetcher.extractDownloads(list);

4.8.2

Setup sermon 73

@After

public void tearDown() throws Exception {
10.delete(tempDir);

3

@Test

public void downloadsAllResources() {

fetcher.download(downloads, tempDir, new MockConnector());
assertEquals(4, tempDir.list().length);

}

}

Wow. A lot is going on there, including a case of split logic and a design far from
ideal.'? Leaving that aside and focusing on the symptoms of having such a lengthy and
complicated setup, the problem is that the complicated setup is an integral part of the
test—which is fairly simple in itself—and effectively makes the test equally compli-
cated.

We sometimes talk about the concept of a fixture, which is the context in which a
given test will execute, including the system properties, the constants defined in the
test class, and the private members initialized by the @BeforeClass and @Before setup
methods in the test class’s hierarchy. In order to understand a test, you need to under-
stand its fixture; and the setup is often the most essential part of that fixture, creating
the specific objects and the state the test runs against.

What to do about it?

Though I've brought up the setup sermon as a first-class test smell among the rest, it’s
really a special case of incidental details. Not surprisingly, we lean on some of the
same techniques when encountering a setup sermon. More specifically, we:

1 Extract the nonessential details from the setup into private methods
2 Give things appropriate, descriptive names
3 Strive for a single level of abstraction in the setup

This listing illustrates how these steps might turn out.

Listing 4.22 Extracting details makes the setup easier to grasp

public class PackageFetcherTest {
private PackageFetcher fetcher;
private Map downloads;
private File tempDir;

@Before
public void setUp() throws Exception {
fetcher = new PackageFetcher();
tempDir = createTempDir(*'downloads™);
downloads = extractMissingDownloadsFrom(**/manifest.xml"");

12 The PackageFetcher violates the SRP by assuming responsibility for two things: extracting a list of required
downloads and downloading them.

74

4.8.3

CHAPTER 4 Readability

@After

public void tearDown() throws Exception {
10.delete(tempDir);

3

@Test

public void downloadsAllIResources() {
fetcher.download(downloads, tempDir, new MockConnector());
assertEquals(4, tempDir.list().length);

3

private File createTempDir(String name) {
String systemTempDir = System.getProperty(java.io.tmpdir');
File dir = new File(systemTempDir, name);
dir.mkdirsQ;
return dir;

}

private Map extractMissingDownloadsFrom(String path) {
PresentationStorage db = new PresentationStorage();
PresentationList list = createPresentationListFrom(path);
List downloads = list.getResourcesMissingFrom(null, db);
return fetcher.extractDownloads(downloads);

}

private PresentationList createPresentationListFrom(String path)
throws Exception {
PresentationList list = new PresentationList();
list_parse(readManifestFrom(path).getRootElement());
return list;

}

private Document readManifestFrom(String path) throws Exception {
InputStream xml = getClass().getResourceAsStream(path);
return XOM.parse(10.streamAsString(xml));

3

3

As you can see, the setup only does three things: instantiates the PackageFetcher, cre-
ates a temporary directory, and extracts a Map of missing downloads from a file named
manifest.xml. Overall, we now have more code in terms of absolute line count, but the
clarity we’ve gained by factoring out logical steps and giving them expressive names is
worth it. After this refactoring, our setup method is at a single level of abstraction and
easily understood. If we want to sift through the details, we can do so by navigating
down to the private helper methods that carry out the grunt work.!3

Summary

Setup methods, whether they’re annotated with @Before or @BeforeClass, should be
loved and nurtured just as much as the rest of our test code. The setup forms a major
part of a test’s fixture and creates the context in which a test runs. Without understand-

13 Sometimes these helper methods prove to be useful outside of test code, too, and find their way into becom-
ing part of the production code. It happens.

4.9

4.9.1

Overprotective tests 75

ing the fixture, you don’t really understand what the test is about. Therefore, you
should attack a setup sermon just like you charge at a case of incidental details in a test
method: by extracting out details, giving those steps expressive names, and striving to
keep the setup at a single level of abstraction so that it’s quick to read and easy to grasp.

It should be noted that sometimes a setup points to a much bigger problem. Some-
times when we find a complicated setup, the problem we should be solving isn’t the
readability of the test’s setup, but rather the design problem that forces the test to do
so much work as a way of putting an object under test. Far too often the reason we
write so much code is because we’ve made a less than stellar design decision earlier.

And, sometimes, we simply write too much code, like in the case of our last test
smell in this chapter.

Overprotective tests

One of the most common symptoms of a bug while running Java code is the sudden
NulIPointerException or IndexOutOfBoundsException, caused by an argument
being a null pointer or an empty string when the method in question expected some-
thing else. Software programmers have become so accustomed to bumping into such
error messages that they’ve started to protect themselves against them by adding
guard clauses and other kinds of null-checks at the beginning of their methods.'*

Every now and then programmers apply this defensive programming strategy in
their test code, too, protecting the test from failing with an ugly NullPointer-
Exception and, instead, letting the test fail gracefully with a nicely worded assertion
error. Let’s hurry up to an example that illustrates this failure mode.

Example

The next listing shows a simple test that verifies a correct calculation with two asser-
tions: one for verifying that the Data object returned from the getData() method
isn’t null, and another for verifying that the actual count is correct.

Listing 4.23 An overprotective test obsesses over failing even when it would anyway

@Test

public void count() {
Data data = project.getData();
assertNotNull (data);
assertEquals(4, data.count());

3

This is an overprotective test because the assertNotNull is superfluous. The test is being
overprotective by checking that data isn’t null (failing the test if it is) before invoking
a method on it. That’s being overprotective because the test would fail anyway when
data is null; the test would fail miserably with a Nul IPointerException when the sec-
ond assertion attempts to invoke count() on data.

4 The smarter approach would be to first decide whether the argument not being null should be part of the
method’s contract—and fixing the bug at its root rather than trying to patch up the symptoms.

76

4.9.2

4.9.3

4.10

CHAPTER 4 Readability

What to do about it?

Delete the redundant assertion. It’s basically useless clutter that provides no added
value.

When asking the programmer who wrote those two assertions about why they felt it
necessary to have the null-check there, almost invariably they quote ease of debugging
as the primary motivator for having written it. The thinking goes that when one day
the Data object returned is indeed null, it’ll be easier to discover by examining the
failed JUnit test’s stack trace from within the IDE. You’ll simply double-click on the
assertion and the IDE will take you directly inside the test method and highlight the
line where assertNotNull failed.

This thinking is flawed, because even without the assertNotNull, you can click on
the stack trace of the resulting Nul IPointerException, which will take you to the line
where assertEquals trips on that null reference. The only real advantage of having
checked for null separately would be a situation where the Nul lPointerException is
thrown from a line that has a method chain like this:

assertEquals(4, data.getSummary().getTotal());

In this line of code, you can’t immediately tell whether the NullPointerException
was about data being null or the summary object being null. Without that explicit
check in your test, you’d have to either launch a debugger and step through the code
to see which of the objects was null, or you’d have to temporarily add that missing
assertNotNull and rerun the test.

Personally, I’d rather bear this minor inconvenience once when encountering
such a test failure than endure the clutter every time I read my test code.

Summary

Overprotective tests are flush with redundant assertions that check intermediate con-
ditions that are required for the test’s real assertion to pass. Such redundant assertions
provide no added value and should be avoided. The test will fail anyway; the differ-
ence is in the kind of error message you get from that failing test. Though being
explicit is generally a good thing for a programmer, being explicit about irrelevant
details only confuses the fellow programmer working with your code—that’s why
they’re called incidental details.

Summary

In this chapter we’ve studied a number of test smells that hinder test code’s readability.

We started by looking at smells that stem from badly written and confusing asser-
tions. Primitive assertions check for desired functionality through overly low-level
means, comparing primitive objects miles away from the level of abstraction of the
code under test. Hyperassertions demand too much—so much that the test will break
if even the smallest detail changes. Hyperassertions extend themselves so widely that
the specific logic the test seeks to verify is lost in the sheer volume of the details.

Summary 77

Bitwise assertions are almost the opposite of hyperassertions in that they’re often
extremely concise. The problem with assertions that lean on bit operators to express a
desired condition is that not all programmers live and breathe bit operations. They’re
too difficult. We’re not talking about matters that require a Ph.D, but the added cog-
nitive load is enough to stop a programmer’s flow.

We scrutinized a number of smells that stand in the way of the programmer under-
standing the test he’s looking at. Incidental details are where the essence of a test is
hidden behind confusing and irrelevant details. Split personality confuses us by inter-
twining multiple tests into one, checking all sorts of aspects rather than having a clear
focus. Split logic derails our attempts at grasping a test by scattering its logic around in
multiple files.

Magic numbers are seemingly arbitrary numeric values littered around our test
code. These numbers may have significant meaning, but that meaning is lost without
the test making it explicit, calling it out by a name. Sometimes, we’re too explicit.
Setup sermon is a particularly long-worded setup method that spells out too much in
too much detail. Overprotective tests go overboard by explicitly asserting technical
preconditions required for the ultimate assertion to pass—instead of stating what
needs to be true.

All of these smells are common failure modes in writing good tests. The conse-
quences of these failures are different kinds of obstacles for the tests’ readability, mak-
ing it harder for the programmer to understand what’s going on and the point of a
given test. Code is read much more frequently than it’s written and understanding
code is essential in maintaining it.

In the next chapter we’ll dig into even more test smells that specifically concern
the issue of maintainability.

Maintainability

In this chapter

Test smells that add to your cognitive load

Test smells that make for a maintenance
nightmare

Test smells that cause erratic failures

In this second chapter of part 2 we turn our attention from the readability of test
code toward its maintainability.

Many of us have heard the quip that code is read much more often than it’s writ-
ten. That was the case with punch cards and it’s still the case today. That is why
readability is so crucially important. When we go beyond merely looking at code,
we step into the world of writing code—and most often “writing” really means mod-
ifying or extending an existing code base. Sometimes we call that maintenance and
sometimes we call it development. In any case, something probably needs to be
changed about the code.

What makes code such a fascinating medium to work with and programming
such a difficult skill to master is that the nature of code is to be both extremely
flexible and extremely fragile. Code is flexible because there are few things that
can’t be done with software—it’s without physical constraints. It’s fragile because
even the smallest of changes can break it down completely. Code doesn’t degrade
slowly. It crashes.

78

511

Duplication 79

Tests are like that. Because they’re made up of code just like production code is,
tests have the same kind of fundamental brittleness. That’s why it’s of utmost impor-
tance that programmers pay attention to managing this brittleness as they write auto-
mated unit tests. We all know what a maintenance nightmare is. You don’t want your test
code to become one.

Just like chapter 4, this chapter is constructed as a sequence of test smells illus-
trated with examples and followed by a discussion of potential solutions or improve-
ments. We’ll begin with some of the most common test smells that increase the cost of
keeping your test code up to date, and proceed toward more specific but equally dan-
gerous hazards to your test code’s maintainability. First up, let’s talk about duplication.

Duplication

Go to a large industry conference, grab 10 programmers at random, and ask what’s
the root of all evil? I will bet most of them will respond with a reference to Donald
Knuth'’s classic remark about premature optimization being the root of all evil.' The
second most popular answer will likely be that duplication is the root of all evil—assum-
ing you're attending a conference frequented by agile software developers, test-
infected programmers, and software craftsmen who deeply care about clean code.

So what’s duplication? What do we mean by duplication? In short, duplication is the
existence of multiple copies or representations of a single concept—needless repetition.

The most obvious duplication is perhaps the kind where a certain numeric value
or a literal string is repeated throughout the code base. Sometimes duplication exists
not in the hardcoded data and values sprinkled around the code base but in the logic
of short code snippets or in overlapping responsibilities between two classes, objects,
or methods.

Duplication is bad because it makes the code base more opaque and difficult to
understand as concepts and logic are scattered among multiple places. Furthermore,
every bit of duplication is an additional place where a programmer needs to touch the
code base to make a change. Each of those bits of duplication also increases the
chance of a bug slipping in as you forget to make a change in all necessary places.

Example

Enough talk, I say! Let’s look at a concrete example in the next listing that illustrates
some of these forms of duplication.

Listing 5.1 A short test class with multiple kinds of duplication.

public class TemplateTest {
@Test
public void emptyTemplate() throws Exception {
assertEquals(*, new Template(*''").evaluate());

}

1

Donald Knuth. “Structured Programming with go to Statements.” Computing Surveys, Vol. 6, No. 4, 1974.

Stanford University.

80

5.1.2

CHAPTER 5 Maintainability

@Test
public void plainTextTemplate() throws Exception {
assertEquals(plaintext”, new Template("plaintext') _evaluate());

}
}
What kind of duplication do you see in that listing? Perhaps the most trivial examples
of duplication in this example are the literal strings in both assertions—the empty
string and plaintext are both spelled out twice, which I call literal duplication. You
could remove that literal duplication by defining a local variable. There’s another
kind of duplication in this test class which is perhaps more interesting than the obvi-
ous case of literal strings. It becomes clear once we extract those local variables, so
let’s start cleaning this mess up.

What to do about it?

We already identified the duplication between literal strings, so let’s start by getting
rid of it. Our strings may not be the worst case of duplication in the history of com-
puter programming, but cleaning up those small code smells often makes it easier to
see the big ones. The next listing shows what we have now.

Listing 5.2 Extracting a local variable highlights the remaining duplication

public class TemplateTest {
@Test
public void emptyTemplate() throws Exception {
String template = ""';
assertEquals(template, new Template(template).evaluate());

}

@Test
public void plainTextTemplate() throws Exception {
String template = "plaintext";
assertEquals(template, new Template(template).evaluate());
}
¥
When you look at the two tests and what they actually do, you’ll realize that the literal
strings were the only difference between the two test methods. After extracting those
differing parts into local variables, the remaining assertions aren’t just similar—
they’re identical. They're both instantiating a Template object, evaluating the tem-
plate, and asserting that the template was rendered as is. This situation where the
logic is duplicated but operates on different data is called structural duplication. The
two blocks of code operate on different values but have identical structure.
Let’s get rid of this duplication and see how the code looks like afterward. The
next listing shows the test class after we’ve extracted the duplication we now see into a
custom assertion method.

Duplication 81

Listing 5.3 The duplication in assertions has been extracted into a custom assertion

public class TemplateTest {
@Test
public void emptyTemplate() throws Exception {

}

@Test
public void plainTextTemplate() throws Exception {
assertTemplateRendersAsltself('plaintext™);

}

private void assertTemplateRendersAsltself(String template) {
assertEquals(template, new Template(template).evaluate());
3
3

Semantic duplication

Sometimes duplication hides from us in plain sight. Though literal and structural
duplication are things we can clearly see by identifying similar-looking structures,
semantic duplication represents the same functionality or concept with different
implementations.

Here’s an example of such semantic duplication:

@Test
public void groupShouldContainTwoSupervisors() {
List<Employee> all = group.list();
List<Employee> employees = new ArrayList<Employee>(all);
Iterator<Employee> i = employees.iterator();
while (i.-hasNext()) {
Employee employee = i.next();
iT (Yemployee.isSupervisor()) {
i.remove();

}
}
assertEquals(2, employees.size());
}
@Test

public void groupShouldContainFiveNewcomers() {
List<Employee> newcomers = new ArrayList<Employee>();
for (Employee employee : group.list()) {
DateTime oneYearAgo = DateTime.now().minusYears(l);
iT (employee.startingDate() . isAfter(oneYearAgo)) {
newcomers.add(employee);
by
3
assertEquals(5, newcomers.size());
3
These two methods don’t have much literal duplication, apart from both querying
group. list() for the full list of employees. Yet they’re very similar in that they both
take the full list of employees and filter that list with some criteria.

82

5.1.3

5.2

CHAPTER 5 Maintainability

(continued)

We tend to approach removing this kind of semantic duplication by first making it
structural duplication—changing the way the filtering is done—and then extracting
variables and methods to remove the structural duplication. We'll leave doing that as
an exercise for the reader.

Looking at listing 5.3, you can see that all of the duplication is now gone. Even the
local variables are no longer needed. It’s much easier to understand at a glance and,
for example, if you wanted to change the template rendering API, you’d only need to
make that change in one place.

Summary

Duplication is one of the most common code smells. It’s also common in test code,
which shouldn’t be a surprise considering that the nature of test classes is to specify a
variety of aspects of behavior for a small unit of code. Scattering test code with dupli-
cation means spending a lot more hours maintaining tests—not to mention hunting
down the odd bug resulting from not remembering to update all instances of a dupli-
cated piece of information.

Fortunately, the test-infected programmer has a couple of simple remedies for this
kind of duplication. Extracting variable data into local variables, for example, isn’t just
a way to remove obvious data duplication between literal values it’s also an excellent
technique for highlighting structural duplication.

Removing duplication can be taken too far, too. After all, your primary interest is to
keep the code readable and its intent and function obvious to the reader. With that in
mind, there might be a situation every now and then—especially in test code—where
you might choose to leave some duplication in place in favor of improved readability.

Our next test smell isn’t as common as duplication. The good news is that it’s easy
to spot and avoid once you’ve gotten to know it.

Conditional logic

We write automated tests for multiple reasons. We look for safety from regression,
expecting our tests to raise the flag when we stumble. We lean on tests to help us for-
mulate the behavior that we want from our code. We also lean on tests to understand
what the code does or what it should do. Particularly related to this last point, the
presence of conditional logic in our tests is generally a bad thing. It’s a smell.

Let’s say we’re in the middle of a refactoring and running the tests to make sure
everything still works, when we find that one of the tests is now failing. This comes as a
surprise, we didn’t expect our change to affect that test, but that’s what happened. We
check the stack trace from the test failure and open the test in our trusted editor and
try to figure out what’s going on, only to realize we can’t even figure out what the test
is actually doing when it fails.

5.2.1

Loop
through
entries

5.2.2

Conditional logic 83

The struggle we face in this kind of a scenario is the reason we should avoid condi-
tional logic in our test code. Let’s illustrate the problem with a more concrete example.

Example

The test shown in the following listing creates a Dictionary object, populates it with
data, and verifies that the right stuff comes out when asked for an Iterator into its
content, which is a sequence of Map.Entry objects.

Listing 5.4 Conditional logic in test code is a burden to maintain

public class DictionaryTest {

@Test

public void returnsAnlteratorForContents() throws Exception {
Dictionary dict = new Dictionary(); ”‘) Populate
dict.add('A", new Long(3)); Dictionary

dict.add("B", ""21");
> for (lterator e = dict.iterator(); e.hasNext();) {
Map.Entry entry = (Map.Entry) e.next();
if ("A"_equals(entry.getkey())) {

asserteEquals(3L, entry.getvValue()); fA::t;:tm‘;ﬁlz:re
3

if ('B".equals(entry.getkey())) { < keys
asserteEquals(*'21", entry.getValue());
}
}
}

}
As you can see, this test is surprisingly difficult to parse and understand, even though
it’s testing a fairly trivial behavior of the Dictionary @ object. Furthermore, when we
do get through the for loop and if blocks, it turns out that the test populates two
entries into the Dictionary, loops (2] through the returned Iterator, and checks the
entry’s value € depending on its key.

What this means in practice is that the test expects both of the two populated
entries being found through the Iterator. Our goal is to make that intent obvious
and reduce the chances of a mistake when editing the test, say, during a refactoring
that changes the Dictionary class’s API. With all of the conditional execution going
on in this test code, it’s easy to end up thinking that a given assertion is passing while
it’s actually not even run. That’s something we want to avoid.

What to do about it?

As is so often the case when dealing with overly complex code, the first step is to sim-
plify it, usually by extracting a block of code into a separate, well-named method. In
listing 5.4 the complexity lies completely within that for loop, so let’s see how we
could extract that.

84

5.23

CHAPTER 5 Maintainability

Listing 5.5 Extracting a custom assertion cleans up the test

@Test
public void returnsAnlteratorForContents() throws Exception {
Dictionary dict = new Dictionary();
dict.add("'A", new Long(3));
dict.add("'B", "21™);
assertContains(dict.iterator(), "A", 3L); | @ Simple custom
assertContains(dict.iterator(), "B", "21"); assertion

}

private void assertContains(lterator i, Object key, Object value) {
while (i.hasNext(Q)) {
Map.Entry entry = (Map.Entry) i.next();

it (key.equals(entry.getkey())) { Q Found what
assertEquals(value, entry.getvalue()); we we’re
return; <+ looking for
b

3
fail("lterator didn"t contain " + key + " => " + value); 4—6 Fail the test

3
The listing has replaced the original for loop with a custom assertion @, making the
test itself fairly simple. The loop still exists inside the extracted method but the intent
of the test is now clear, which makes a world of difference as far as maintainability goes.
There was another issue with the original test that we’ve corrected in listing 5.5.
More specifically, the original test in listing 5.4 wouldn’t have failed even if the
Iterator had been empty because of the way the for loop was used. We’ve corrected
that in listing 5.5 by returning from the assertion when we find the expected entry @
and failing the test Oifa matching entry wasn’t found.
This is a common pattern that’s good to keep in mind. Incidentally, that final call
to fail() is often forgotten, which can cause some head-scratching when tests are
passing and yet the code doesn’t work. Pay attention!

Summary

We lean on our tests to understand what the code does and what it should do. When
changing our code, we rely on our tests to warn us if we’re accidentally breaking stuff.
Conditional logic makes all of this more difficult and more error-prone.

Conditional execution makes code harder to understand, and you need to under-
stand code before you can change it. If you find yourself debugging tests filled with
conditional statements it’s hard to figure out what exactly is being executed and how
it fails. Furthermore, sometimes you’ll find that the conditional execution cuts off
your assertions, skipping them altogether, creating a false illusion of correctness.

In short, you should avoid conditional execution structures such as if, else, for,
while, and switch in your test methods. This is especially important when the behav-
ior the tests are checking is more complex. There are places for these language

5.3

53.1

Flaky test 85

constructs, but when it comes to test code, you should tread that path carefully.? To
keep your tests maintainable, you need to keep their complexity well below that of the
solution being described.

Conditional logic in test code can be tricky to sort out but fairly easy to spot. Next
up we have a test smell that’s a tougher nut to crack.

Flaky test

In many ways automated tests are a programmer’s best friend. Like our friends in real
life, we should be able to trust our friends in the codebase—the tests that immediately
alert us to the occasional mistakes we make. Sometimes, a friend might turn out to be
not so trustworthy after all.> One of the worst test smells I can think of is the simple
case of a test that’s constantly failing—and is considered normal.

There’s a difference between a test failing when you change something—that’s a
good thing, as the test obviously noticed a change in something you’ve considered
important enough to check—and a test that fails all the time. We’re talking about a
test that’s been in the red for two weeks now and nobody’s fixed it. That test is proba-
bly going to stay broken for another two weeks or two months until somebody either
fixes it or, more likely, deletes it. And that generally makes sense, because a constantly
failing test is next to useless. It doesn’t tell you anything that you wouldn’t know
already or that you could trust.

There’s another way in which failing tests make our lives unnecessarily compli-
cated: flaky lests that fail intermittently. By that I mean flaky in the sense of the boy who
cried wolf, tests that fail the build but, once you take a look, they’re running again, pass-
ing with flying colors, but by accident.

Let’s look at an example to clarify what the heck I'm trying to convey with all this
Aesopian fable reference.

Example

Most of the time when I encounter a flaky, failing test it turns out to involve threads
and race conditions, behavior that’s dependent on the current date or time, or tests
that depend on the computer’s performance and, therefore, are influenced by things
such as I/0O speed or the CPU load during the test run. Tests that access a network
resource have acted flaky on occasion, too, when the network or the resource has
been temporarily unavailable.

Our example in the following listing showcases a problem I've stumbled on myself
more than once: a flawed assumption about filesystem timestamps.

2 Loops and other conditional statements can be essential tools for building test helpers. In test methods,
though, these structures tend to be a major distraction.

® TFor the record, obviously none of my friends are like that. (Just in case you’re reading this.)

86

5.3.2

CHAPTER 5 Maintainability

Listing 5.6 Test for aggregated logs being sorted by timestamp

@Test

public void logsAreOrderedByTimestamp() throws Exception {
generateLogFile(logDir, "app-2.log"™, "one');
generateLogFile(logDir, "app-1.log"™, "two™); Generate

generateLogFile(logDir, "app-0.log"™, "three™); some log

generatelLogFile(logDir, "app.log™, "four™); files

Log aggregate = AggregatelLogs.collectAll(logDir);

asserteEquals(asList('one™, *"two", *three', "four™), Expect
aggregate.asList()); certain order

}

The problem with the test is that the logic we’re testing relies on files’ timestamps. We
expect the log files to be aggregated in timestamp-based order, treating the file with
the oldest last-modified date as the oldest log file and so forth, not sorting the log files
by name in alphabetical order. It turns out that this expectation isn’t always fulfilled.
This test fails every now and then on Linux, and fails practically all the time on Mac OS
X. Let’s look at the generateLogFile() method our test uses for writing those log files:
private void generatelLogFile(final File dir, final String name,
final String... messages) {
File file = new File(dir, name);
for (String message : messages) {
10.appendToFile(file, message);
3
3
Our downfall with this test and this method of creating the log files for our test is that
we’ve forgotten the passing of time. More specifically, we’ve forgotten that time passes
differently on different computers and on different platforms. On some platforms like
Mac OS X, for example, the filesystem timestamps move in one-second increments,
which means that it’s extremely likely that consequent calls to the generateLogFile()
will result in identical timestamps on the generated log files, unless it happens to take
justlong enough to generate them or they’re generated at just the right time.
That’s a lot of conditionals, so let’s talk about what you could do about this problem.

What to do about it?

When it comes to time-related issues, and especially when we want time to pass in our
tests, it’s surprisingly common for programmers to add a call to Thread#sleep. Don’t
do that. The problem with Thread#sleep as a solution is that it’s almost as nondeter-
ministic as the problem was—there’s still no guarantee that enough time has passed.
You can play safe and exaggerate by sleeping for a whole second instead of the 100
milliseconds that’s usually enough. That bandage comes with a high cost, as your test
suite gets increasingly slow with every new Thread#sleep.

Instead, when you face a time-related issue in your tests, you should first look at
simulating the appropriate conditions through proper APIs. In this case of generating
the log files with correct timestamps, you can lean on Java’s File API and explicitly

5.3.3

Flaky test 87

increment each log file’s timestamp with setLastModified. The following listing
shows this modification to our utility method.

Listing 5.7 Setting file timestamps clearly apart

private AtomicLong timestamp = <

new AtomicLong(currentTimeMillis()); Ezﬂ;g:::;ﬁ
private void generateLogFile(final File dir, final String name,
final String... messages) {

File file = new File(dir, name);
for (String message : messages) {

10.appendToFile(file, message);
} Set timestamps
file.setlLastModified(timestamp.addAndGet(TEN_SECONDS)); clearly apart

}

With the simple addition of an AtomicLong object @ and incrementing it explicitly
with a call to File#setLastModified @ for each log file, we're effectively ensuring
that each of those log files receives a different timestamp. Doing this instead of relying
on implicit and nondeterministic behavior makes our test in listing 5.6 work reliably
on all platforms and all computers without slowing down our test runs.

Timestamps aren’t the only source of trouble that exhibits itself as intermittently
failing tests. Most prominently, multithreading tends to complicate things. The same
goes for pretty much anything that involves random number generators. Some of these
cases are more obvious, and some aren’t that obvious and are thus not easy to protect
ourselves from. Regardless of how early we realize the need for protecting ourselves
from the random test failure, the way we tend to solve these situations is the same:

1 Avoid it.
2 Control it.
3 Isolate it.

The simplest solution would naturally be to avoid the problem altogether, cutting off
any sources of nondeterministic behavior. For example, we might’ve sorted the log
files according to their numeric suffix instead of relying on the timestamp.

If we can’t easily go around the tricky bits, we try to control it. For example, we
might replace a random number generator with a fake that returns exactly what we
want.

Ultimately, if we don’t find a way to avoid or control the source of the problem suf-
ficiently, our last resort is to isolate the hard stuff to as small a place in our code base
as possible. This is to relieve most of our code from the nondeterministic behavior
and to let us tackle the tricky stuff in one place and only in one place.

Summary

Flaky tests that fail at random are about as trustworthy as most casinos, and they’re
generally more trouble than they’re worth. You don’t want such a test failing a build
and forcing somebody to stop what they’re doing only to find out that “it’s that test

88

5.4

54.1

CHAPTER 5 Maintainability

again.” You shouldn’t fall into despair either, or give up too easily, as these tests are
often not that difficult to fix and make trustworthy.

Whether the intermittent failures are due to overreliance on the system clock, tim-
ing of execution, concurrent access to shared data, or an object responsible for gener-
ating random results, you have a number of options. You can try to work around the
problem, control the source of nondeterministic behavior, or isolate and deal with it
in all of its ugliness. In particular, testing multithreaded logic can be verbose business,
as you need to reach out to all sorts of synchronization objects for help in wrangling
the fundamentally unpredictable scheduling of threads during test execution.*

Now let’s look at a code odor that’s generally easier to remove.

Crippling file path
A crippling file path is one that immobilizes your code, preventing it from running on
anybody else’s computer but yours. We all know this problem. I'd be surprised if
you’ve never looked at a piece of code and said, “We shouldn’t hardcode that path
here,” knowing that the explicit reference to a certain location in the filesystem is
going to come back to haunt you later.

Regardless of how well-known this code smell is, it’s surprisingly common. Further-
more, there’s more than one way to cripple your mobility with file paths, so let’s take a
look at an example that lets us explore some of them.

Example

The following example shows a simple test case that reads a document from the file-
system using an absolute file path. We know from chapter 2 that we should avoid file
access in our unit tests. With that said, let’s assume that we’ve inherited some test code
that accesses the filesystem. The following listing shows what the culprit looks like.

Listing 5.8 Absolute file paths can trip over your tests real quick

public class XmIProductCatalogTest {
private ProductCatalog catalog;

@Before

public void createProductCatalog() throws Exception {
File catalogFile = new File(""C:\\workspace\\catalog.xml'");
catalog = new XmlIProductCatalog(parseXxmlFrom(catalogFile));

}

@Test

public void countsNumberOfProducts() throws Exception {
assertEquals(2, catalog.numberOfProducts());

3

// remaining tests omitted for brevity

* For a more thorough discussion, check out chapter 7 of Test Driven from Manning Publications (2007).

542

Crippling file path 89

So what’s wrong about that file path? First of all, the absolute file path is clearly tied to
the Microsoft Windows operating system. Any developer trying to run this test on a
Mac or Linux system would quickly stumble on “file not found” style I/O errors. This
test code isn’t self-contained. You want to be able to simply check out the sources from
version control and see all tests passing. That won’t be possible with the kind of plat-
form-specific absolute file paths like the one in listing 5.8.

What to do about it?

So we have a Windows-only, absolute file path. That won’t work on any Mac or Linux
system. Unless we’re all strictly Windows users, at the least we should change the path
to the platform-agnostic style supported by Java’s File API:

new File(""/workspace/catalog.xml');

This could work on both families of platforms, Windows and UNIX, provided that on
Windows you’re on the C: drive and there’s a directory called C\workspace, and that
on a UNIX system there’s a /workspace directory.

We’re still tied to a specific location of the workspace. This isn’t quite as bad as
being tied to a specific user name (think: /Users/lasse),” but it essentially forces all
developers to place their workspace in the same physical location.

In short, you should avoid absolute paths whenever you're dealing with files in
your test code. There may be acceptable situations where that’s OK, but as a rule of
thumb, steer clear of them. Instead, reach for abstract references such as system prop-
erties, environment variables, or whenever you can, relative paths.

The reason I recommend opting for a relative path instead of something like
System._getProperties(*'user.home™), which returns a valid path on all platforms, is
those references are still absolute paths and they still force all developers to place

Replace files with streams

By now you’ve probably noticed that the java.io.File API seems to inflict all kinds
of testability issues on you. With that in mind, it might be a good idea to use
Java.io. InputStream and java.io.OutputStream in your internal APIs instead of
Java.io.File.

One immediate benefit is that you can always substitute a test double because
they’re interfaces rather than final classes like java.io.File is. That means you
don’t need to worry about file paths and ghost files except where you truly care about
those files’ physical location on the hard drive.

In your tests you can pass around pure in-memory objects such as java.io.Byte-
ArraylnputStream and java.io.ByteArrayOutputStream instead of java.io
.FilelnputStream and java.io.FileOutputStream.

® Imagine a project where everybody has created a second user in their systems because the lead developer had
hardcoded his own home directory throughout the code base. Even the production web servers are running
under his user name. Doesn’t sound like a professional approach, does it?

90

543

CHAPTER 5 Maintainability

their workspace in a specific location. This is particularly difficult in a situation when
you’re developing a new version of a product and maintaining older versions installed
on the field. Whenever you switch from new development to fixing a bug in one of the
old branches, you’ll have to check out the old branch on top of your ongoing work,
because the absolute file path always points to that same location.

Always go for a relative path if at all possible and consider an absolute path refer-
ence as the very last option. Relative paths work wonders as long as the files you're
dealing with reside within the project’s root directory. In our example we might state
that the catalog document would reside at PROJECT ROOT/src/test/data/catalog
-xml. Then we could refer to it with a relative path like this:

new File("./src/test/data/catalog.xml™);

Running our tests through the IDE or with a build script, that relative path would be
evaluated against the project’s root directory, allowing me as a Mac user to have my
workspace under /Users/lasse/work and my Linux-running buddy Sam to stash his
working copy under /projects/supersecret. Furthermore, Sam could move his
entire working copy to another location and everything would still work without
changing any file paths in code.

Speaking of moving things around, one more approach is worth mentioning. If the
file you’re dealing with is tied to a particular test class or a set of test classes in the same
package, it might make sense to forget about the filesystem altogether and locate the
file through Java’s class path instead. Let’s say you have a test class called XmIProduct-
CatalogTest residing in the com.manning.catalog package. The source code is at
src/test/java/com/manning/catalog/XmIProductCatalogTest. java. Now, if you
also placed your catalog XML document in the same place—in src/test/java/com/
manning/catalog/catalog.xml—then you could look it up in your test code like so:
String filePath = getClass().getResource(*'catalog.xml') .getFile();

File resource = new File(FfilePath);

The class path API showcased here gives you access to the file that sits on your class path
and, because it’s being looked up from a class residing in the same package, you don’t
even have to hardcode the exact package.G In other words, if you decide to move the
test class to another package as part of a refactoring, you don’t have to change any file
path references, as long as you remember to move the data file over as well.

Summary

You know that absolute file paths which only work for one operating system are gener-
ally a bad idea. Even if we all used the same platform today doesn’t mean that we
wouldn’t stumble tomorrow when somebody upgrades to the latest Windows version,
switches from Windows to Linux, or becomes the envy of the whole floor with a shiny
new Mac.

5 Although you can if you want to.

5.5

5.5.1

Persistent temp files 91

It’s not just about operating systems either. A more fundamental problem with
absolute paths is that even if you represent them in a cross-platform manner, they still
set a hard requirement for all developers to have that resource at that specific location.
This can be extremely annoying if you’re, for example, switching between multiple
branches. Yes, you can check out multiple working copies of the project’s code base,
but they all point to the same place with that absolute file path.

As a rule of thumb, try to place all project resources under the project’s root direc-
tory. That gives you the ability to use relative file paths throughout your code base and
build files. For resources used by test code, you might even consider putting those
data files next to the test code and looking them up through the classpath.

Having said that, there are exceptions to this rule, and not all files should reside
under the project root. Persistent temp file is one such example.

Persistent temp files

The whole idea of a temporary file is to be temporary and be thrown away, deleted,
after you're done with it. What the persistent temp file test smell represents is the case
when the temporary file isn’t that temporary but rather persistent, to the extent that it
won’t be deleted before the next test runs.

As they say, assumption is the mother of all screw-ups, and we programmers tend to
assume that temporary files are, well, temporary. This can lead to surprising behavior
we’d rather avoid debugging. Indeed, you should try to avoid using files altogether
where they are not essential to the objects you’re testing.

With that said, let’s dive into an example that explains the issue with persistent
temporary files in more concrete terms.

Example

Imagine a sequence of tests exercising a file-based product catalog object. The first
test creates an empty temp file containing no items, then initializes the catalog with
that empty file, and checks that the catalog claims to be empty as expected. The sec-
ond test doesn’t create a file but instead initializes the catalog on top of a missing file,
checking that the catalog behaves as if the file exists but is empty. The third test again
creates a temp file—this time with two products—initializes the catalog with that file,
and checks that the catalog indeed contains those two products.
This listing shows the interesting bits of such a test class.

Listing 5.9 Tests working on a temp file

public class XmlProductCatalogTest {
private File tempfile;

@Before Tests share
public void prepareTemporaryFile() { temp file

String tmpDir = System.getProperty("java.io.tmpdir'™);
tempfile = new File(tmpdir, "catalog.xml');

}

92 CHAPTER 5 Maintainability

@Test

public void initializedWithEmptyCatalog() throws Exception {
populateCatalogWithProducts(0);
ProductCatalog catalog = new XmlProductCatalog(tempfile);
assertEquals(0, catalog.numberOfProducts());

}

@Test

public void initializedWithMissingCatalog() throws Exception {
ProductCatalog catalog = new XmlProductCatalog(tempfile); <— Should be no
assertkEquals(0, catalog.numberOfProducts()); catalog.xml

}

@Test

public void initializedWithPopulatedCatalog() throws Exception {
populateCatalogWithProducts(2);
ProductCatalog catalog = new XmlProductCatalog(tempfile);
assertEquals(2, catalog.numberOfProducts());

}
}
What happens when JUnit picks up this test class and starts executing is that the pri-
vate field, tempfile, is @ initialized with a new File object before each test. That’s
fine. The problem is that when the second test, initializedWithMissingCatalog,
starts executing, the filesystem has an empty catalog.xml @ in the system’s temporary
directory, unlike what the test assumes.

This means that the test is going to pass regardless of whether XmIProductCatalog
properly deals with the case of a missing file. Not good.

5.5.2 What to do about it?

In general, you should try to keep the use of physical files to a minimum; file I/O
makes tests slower than manipulating, say, strings and other types of in-memory blobs.
With that said, when you’re dealing with temporary files in your tests, you need to
remember that temporary files aren’t that temporary out of the box.

For example, if you obtain a temporary file using the File#createTempFile API,
the file is no more temporary than any other file reference you have. Unless you
explicitly delete it, that file is going nowhere once the test is finished. Instead, it’s
going to stay around as a ghost file, potentially causing seemingly erratic test failures.

From this we can deduce simple guidelines for dealing with temporary files:

= Delete the file in @Before.
= Use unique names for temporary files if possible.

= Be explicit about whether or not a file should exist.

Regarding the first guideline, programmers sometimes mark their temporary files to
be deleted with File#deleteOnExit and happily move on. That’s not enough, as the
files aren’t actually deleted until the JVM process exits. Instead, you need to delete
those files before each test method that uses them, so let’s add a line to the setup:

5.5.3

Persistent temp files 93

@Before

public void prepareTemporaryFile() {
String tmpDir = System._getProperty("java.io.tmpdir'); .
tempfile = new File(tmpdir, "catalog.xml'™); <FJAVNd
tempfile.delete(); ghost file

¥

Explicitly deleting the file in @Before makes certain that there’s no file at the specific
path when the test begins execution.

Second, using File#createTempFile is recommended when the exact location
and name of the file aren’t that important. What you get is a guaranteed unique file
name for every test, which means that you don’t need to be afraid of inheriting a
ghost file from another test. In this example the setup method would be changed to
the following:

@Before

public void prepareTemporaryFile() {
tempfile = File.createTempFile(“catalog", ".xml'");

}
Third, it’s okay to be silent when you don’t care about whether there is or isn’t a phys-
ical file in the filesystem. But when you do care, you should be explicit about it. One
way to do that in our example from listing 5.9 would be this:
@Test
public void initializedWithMissingCatalog() throws Exception {
withMissingFile(tempfile);
ProductCatalog catalog = new XmlProductCatalog(tempfile);
asserteEquals(0, catalog.numberOfProducts());

¥
private void withMissingFile(File file) {
file.delete();
¥
Aside from ensuring that the missing file is actually missing, being explicit about what
you expect from the execution environment helps express the test’s intent.

Summary

One of the problems for tests dealing with files in the filesystem stems from the fact
that the filesystem is a shared resource between all tests. This means that tests may trip
over each other if one test leaves residue and the next test assumes that it’s working
against an empty directory or a missing file. Whether this results in tests passing by
accident or to a seemingly random test failure when running a set of tests in a particu-
lar order, none of the consequences are desirable.”

To avoid or alleviate these problems, you should remember to delete any files gen-
erated by your tests as part of their teardown method. You should avoid using the

7 Though JUnit and its users tend to shun the idea of order-dependent tests, advocating isolation and indepen-
dence, TestNG (http://testng.org), another popular test framework for Java, embraces test-ordering and
allows the programmer to explicitly declare that certain tests are to be executed in a certain order.

http://testng.org

94

5.6

5.6.1

CHAPTER 5 Maintainability

same file path between multiple tests, significantly reducing the chances of test resi-
due causing problems. Furthermore, you can significantly improve your tests’ read-
ability and maintainability by being explicit about which files you expect to exist or
not to exist.

Perhaps most importantly—and this warrants repeating—you should try to avoid
using physical files altogether where they are not essential to the objects you're testing.

Sleeping snail

Working with file I/0O is dreadfully slow compared to working with in-memory data.
Again, slow tests are a major drag to maintainability because programmers need to
run the test suite again and again as they work on changes, whether adding new func-
tionality or fixing something that’s broken.

File I/0 isn’t the only source of slow tests. Often a much bigger impact to a test
suite’s execution time stems from the army of Thread#sleep calls put in place to allow
other threads to finish their work before asserting on the expected outcomes and side
effects. This sleeping snail is remarkably easy to spot: just look out for calls to
Thread#sleep and keep an eye out for exceptionally slow tests. Unfortunately, getting
rid of the stench may not be that straightforward. Having said that, it’s doable and def-
initely worth the trouble.

Let’s dig into this code smell and the appropriate deodorant with an example.

Example

Since threads often bump up the complexity of our code, let’s pick an example that’s
fairly simple but that involves testing behavior in a concurrent access scenario. The
next listing presents a test for a Counter object responsible for generating unique
numbers. Obviously we want these numbers to be unique, even if multiple threads
invoke our Counter simultaneously.

Listing 5.10 Testing multithreaded access to a counter

@Test
public void concurrentAccessFromMultipleThreads() throws Exception {
final Counter counter = new Counter();

final int callsPerThread = 100;
final Set<Long> values = new HashSet<Long>();
Runnable runnable = new Runnable() {

@0verride
public void runQ { @) Threads
for (int i = 0; i < callsPerThread; i++) { increment
values.add(counter.getAndIncrement()); counter in
} aloop
¥
}:
int threads = 10;
for (int i = 0; i < threads; i++) { | @) Start
new Thread(runnable).start(); threads

}

5.6.2

Sleeping snail 95

Thread.sleep(500); <1—9 Wait for threads to finish
int expectedNoOfValues = threads * callsPerThread; Check values’
assertEquals(expectedNoOfValues, values.size()); uniqueness

}

What the test does is @ set up several threads to repeatedly access the counter and (2]
start all the threads. Since the test has no way of knowing how the threads are sched-
uled and when they finish, we’ve added a call to Thread#sleep, (3] making the test wait
for half a second before @ continuing with the assertion. Though 500 milliseconds
might sound exaggerated, it’s not really. Even with a sleep of 300 milliseconds, the test
would fail roughly 10% of the time on my computer—and that’s flaky with a capital F!

Now, that 500-millisecond sleep is still not totally reliable; sometimes it might take
longer for all threads to complete their job. As soon as the test fails due to that 500-
millisecond sleep not being long enough, the programmer is likely to increase the
sleep. After all, we don’t like flaky tests.

Flakiness is definitely a big issue. But there’s another problem with a test sleeping
as in listing 5.10: it’s pretty darn slow.® Though 500 milliseconds doesn’t sound like a
lot, it adds up, especially if your code base has multiple tests with Thread#sleeps sprin-
kled all over.

So let’s see what we can do about those sleepy tests.

What to do about it?

Thread#sleep is slow because there’s a delay between the time the worker threads fin-
ish and when the test thread knows that they’ve finished. Even though some of the
time the threads would all be finished in 10 milliseconds, sometimes it takes several
hundred milliseconds—or more—and therefore we have to wait for hundreds of milli-
seconds every time, regardless of how much of that waiting is unnecessary.

The next listing presents a better approach, one that replaces the wasteful and
unreliable Thread#sleep. The fundamental difference is that we use Java’s synchroni-
zation objects from the java.util.concurrent package to make the test thread
immediately aware of when the worker threads have completed their work.

Listing 5.11 Testing multithreaded access without sleeping

@Test
public void concurrentAccessFromMultipleThreads() throws Exception {
final Counter counter = new Counter();

final int numberOfThreads = 10; Lo
final CountDownLatch allThreadsComplete = Synchronization
new CountDownLatch(numberOfThreads); latch

final int callsPerThread = 100;
final Set<Long> values = new HashSet<Long>();
Runnable runnable = new Runnable() {

8 If on average the code would take, say, 100 milliseconds to finish, we’ve just made our test 400% slower than
it needs to be.

96

5.6.3

CHAPTER 5 Maintainability

@Override
public void run() {
for (int 1 = 0; i1 < callsPerThread; i++) {
values.add(counter.getAndlIncrement());
3} @ Mark thread

allThreadsComplete.countDown(); 1 completed
b
}:

for (int i = 0; i < numberOfThreads; i++) {
new Thread(runnable).start();

3 Wit for threads
allThreadsComplete.await(10, TimeUnit.SECONDS); to complete

int expectedNoOfValues = numberOfThreads * callsPerThread;

assertEquals(expectedNoOfvValues, values.size());
}
We’ve highlighted the key differences in listing 5.11. The central piece in this solution
is the synchronization @ object we use for coordinating between the worker threads
and the test thread. A CountDownLatch is initialized to count down from the number of
worker threads, and each worker thread ticks the latch @ once when it finishes its
work. After starting up all worker threads, our test proceeds to wait on the latch @.
The call to CountDownLatch#await blocks until either all threads have notified about
their completion or the given timeout is reached.

With this mechanism, our test thread wakes up to perform the assertion immedi-
ately when all worker threads have completed. No unnecessary sleeping and no uncer-
tainty about whether 500 milliseconds is long enough for all threads to finish.

Summary

A sleeping snail is a test that’s sluggish and takes (relatively speaking) forever to run
because it relies on Thread#sleep and arbitrarily long waits to allow threads to exe-
cute before performing assertions or continuing with the workflow under test. This
smells because thread scheduling and variance in execution speed imply that those
sleeps must be much longer than what the threads would typically need to finish their
work. All of those seconds add up, making our test suite slower with every single sleep.

The solution to getting rid of this smell is based on the simple idea that the test
thread should be notified when each worker thread actually completes. As long as the
test thread has this knowledge, the test can resume itself as soon as it makes sense,
essentially avoiding the unnecessary wait associated with the Thread#sleep hack.

The solution in listing 5.11 builds on one of the standard synchronization objects
in the Java API, CountDownLatch. The CountDownLatch is useful for ensuing test execu-
tion only when the required number of other threads has passed the latch. If you work
with a system dealing with threads, do yourself a favor and dive into the utilities pro-
vided by the java.util.concurrent package.

Now, let’s move on from multithreading to something completely different—the
unit test equivalent of an obsessive-compulsive disorder. I suppose that requires some
explanation, so let’s get to it.

Pixel perfection 97

5.7 Pixel perfection

Pixel perfection is a special case of primitive assertion and magic numbers. The reason
why I felt it should be included in this catalog of test smells is because it’s so frequent
in domains dealing with computer graphics, an area where people tend to report diffi-
culties in testing their code.

In essence, the smell of pixel perfection floats around places where a test calls for a
perfect match between expected and actual generated images, or when a test antici-
pates a given coordinate in a generated image to hold a pixel of a certain color. Such
tests are notoriously brittle and generally break down with even the smallest changes
in the input.

Let’s examine this anti-pattern with an example from a project I worked on some
10 years ago.

5.7.1 Example

Once upon a time I was working on a Java applica-
tion that allowed users to manipulate diagrams
onscreen, dragging and dropping boxes on the can-
vas and connecting them with all sorts of connec- -

tors. If you’ve used any kind of visual diagramming
tool, you probably have an idea of what I was doing.’
Figure 5.1 is a simplified illustration of the kind of
boxes-and-lines diagram that my code would gener- Figure 5.1 Two boxes that should
ate from an obj ect graph. be connected with a straight line

Among the tests I wrote for this code were elaborate definitions for how the bor-

ders of a box should look, how many pixels wide a box containing the word foo was
expected to be, and so forth. Many of those tests suffered from severe pixel perfec-
tion. One test that was particularly interesting had to do with the connecting line
between two boxes, a bit like figure 5.1. I've reproduced the test I’d initially written in
this listing.

Listing 5.12 An extremely brittle test asserting exact pixel location and color

public class RenderTest {
@Test
public void boxesAreConnectedWithALine() throws Exception {
Box box1l = new Box(20, 20);
Box box2 = new Box(20, 20);
box1.connectTo(box2);

Diagram diagram = new Diagram();
diagram.add(box1l, new Point(10, 10));
diagram.add(box2, new Point(40, 20));

Bufferedlmage image = render(diagram);

¢ Except that mine looked downright ugly, to be honest.

98

5.7.2

CHAPTER 5 Maintainability

assertThat(colorAt(image, 19, 12), is(WHITE));
assertThat(colorAt(image, 19, 13), is(WHITE));
assertThat(colorAt(image, 20, 13), is(BLACK));
assertThat(colorAt(image, 21, 13), is(BLACK));
assertThat(colorAt(image, 22, 14), is(BLACK));
assertThat(colorAt(image, 23, 14), is(BLACK));
assertThat(colorAt(image, 24, 15), is(BLACK));
assertThat(colorAt(image, 25, 15), is(BLACK));
assertThat(colorAt(image, 26, 15), is(BLACK));
assertThat(colorAt(image, 27, 16), is(BLACK));
assertThat(colorAt(image, 28, 16), is(BLACK));
assertThat(colorAt(image, 29, 17), is(BLACK));
assertThat(colorAt(image, 30, 17), is(BLACK));
assertThat(colorAt(image, 31, 17), is(WHITE));
assertThat(colorAt(image, 31, 18), is(WHITE));

}

}

First of all, the test in listing 5.12 is hard to validate. I mean, how am I supposed to
know whether there should be a black pixel at (23, 14)? Moreover, it’s not hard to see
how easily this test will break. Any change in how wide a diagram’s borders are, for
example, would likely offset the exact location of the connecting line somewhat and
the test would break. This is bad because a change in what a box looks like shouldn’t
affect a test that checks whether two connected boxes in the diagram are also con-
nected visually.

If we were testing the total rendered width of a box, we could tackle the issue of
magic numbers by composing our assertion from variables like boxContentWidth + (2 *
boxBorderWidth), accommodating for changes in the exact border width. But in the
case of the connecting line between boxes, it’s not as obvious what we could do.

So, what could we do?

What to do about it?

One of the goals in writing tests is to express them at the appropriate level of abstrac-
tion. If you’re interested in two boxes being connected with a line, you shouldn’t be
talking about pixels or coordinates. Instead you should be talking about boxes and
whether they’re connected. Simple, right?

What this means is that, instead of primitive assertions, you should hide the nitty-
gritty details behind a custom assertion that speaks at the appropriate level of abstrac-
tion. It might also mean that, instead of exact value-to-value comparisons, your asser-
tion needs to be a fuzzy match—an actual algorithm.

With this in mind, we could rewrite our test from listing 5.12 to delegate the details
of checking whether there’s a connection between the two boxes to a custom asser-
tion. The custom assertion would then take care of figuring out how to check that
(and preferably in a flexible, nonbrittle manner). The following listing shows what
that test might look like.

Pixel perfection 99

Listing 5.13 A flexible test talks about stuff at the appropriate level of abstraction

public class RenderTest {
private Diagram diagram;

@Test

public void boxesAreConnectedWithALine() throws Exception {
Box box1l = new Box(20, 20);
Box box2 = new Box(20, 20);
box1.connectTo(box2);

diagram = new Diagram();
diagram.add(boxl, new Point(10, 10));
diagram.add(box2, new Point(40, 20));

assertThat(render(diagram),
hasConnectingLineBetween(boxl, box2));

}

private Matcher<BufferedImage> hasConnectingLineBetween(
final Box boxl, final Box box2) {
return new BoxConnectorMatcher(diagram, boxl, box2);

}

// rest of details omitted for now

}
The main difference between listings 5.12 and 5.13 is that the long list of pixel-specific
color tests at seemingly arbitrary coordinates has been replaced with a custom asser-
tion that reads like plain English—there should be a connecting line between these
two boxes. This is much better from the readability perspective and makes this partic-
ular test much less work to maintain.

The complexity hasn’t evaporated altogether, though. We still need to tell the com-
puter how it can discern whether two boxes are connected, and that’s the responsibil-
ity of the mysterious BoxConnectorMatcher.

The implementation details of the BoxConnectorMatcher could be seen as some-
what of a tangent and unessential for the purpose of this test-smell catalog. After all,
it’s a solution for one specific case. But I find it useful to take a closer look at the imple-
mentation because so many programmers seem to have lost their faith in graphics-
related code being at all testable.

With that disclaimer out of the way, the following listing spills the details on Box-
ConnectorMatcher and shows one way of implementing the kind of smart assertion that
doesn’t break as soon as the boxes’ respective locations move a pixel to some direction.

Listing 5.14 Checking the connection between two boxes with a custom matcher

public class BoxConnectorMatcher extends BaseMatcher<BufferedlImage> {
private final Diagram diagram;
private final Box box1;
private final Box box2;

BoxConnectorMatcher(Diagram diagram, Box box1l, Box box2) {
this.diagram = diagram;
this.box1l = box1;

100 CHAPTER 5 Maintainability

this.box2 = box2;
3

@0verride
public boolean matches(Object 0) {
Bufferedlmage image = (Bufferedlmage) o;

Point start = findEdgePointFor(boxl); @ Locate edge pixels
Point end = findEdgePointFor(box2);
return new PathAlgorithm(image) /i) Delegate!

.areConnected(start, end);

}

private Point findEdgePointFor(final Box box1l) {
Point a = diagram.positionOf(boxl);
int x = a.x + (box1.width(Q) 7/ 2);
int y = a.y - (boxl.height() 7 2);
return new Point(x, y);

}

@0verride
public void describeTo(Description d) {
d.appendText(*'connecting line exists between "
+ box1 + " and " + box2);

¥
3
The essence of the BoxConnectorMatcher is in the matches() method where it @
finds an edge point—any edge point—for both boxes and delegates to a Path-
Algorithm (2] object to determine whether the two coordinates are connected in the
image.

The implementation of PathAlgorithm is shown next. A word of warning: it’s a
lengthy piece of code and I'm not going to explain it in much detail.

Listing 5.15 The Pat hAl gor i t hmis responsible for finding a path between two pixels

public class PathAlgorithm {
private final Bufferedlmage img;
private Set<Point> visited;
private int lineColor;

public PathAlgorithm(Bufferedlmage image) {
this.img = image;

}

public boolean areConnected(Point start, Point end) {
visited = new HashSet<Point>();
lineColor = img.getRGB(start.x, start.y);
return areSomehowConnected(start, end);

}

private boolean areSomehowConnected(Point start, Point end) {
visited.add(start);
if (areDirectlyConnected(start, end)) return true;
for (Point next : unvisitedNeighborsOf(start)) {
if (areSomehowConnected(next, end)) return true;

}

5.7.3

Pixel perfection 101

return false;

}

private List<Point> unvisitedNeighborsOf(Point p) {
List<Point> neighbors = new ArrayList<Point>();
for (int xDiff = -1; xDiff <= 1; xDiff++) {
for (int yDiff = -1; yDiff <= 1; yDiff++) {
Point neighbor = new Point(p.x + xDiff, p.y + yDiff);
it (lisWithinlmageBoundary(neighbor)) continue;
int pixel = img.getRGB(neighbor.x, neighbor.y);
if (pixel == lineColor && !visited.contains(neighbor)) {
neighbors.add(neighbor);
}
}
}

return neighbors;

}

private boolean isWithinlmageBoundary(Point p) {
if (p-x<0|]] p.y <0) return false;
if (p-x >= img.getWidth()) return false;
if (p.y >= img.getHeight()) return false;
return true;

}

private boolean areDirectlyConnected(Point start, Point end) {
int xDistance = abs(start.x - end.x);
int yDistance = abs(start.y - end.y);
return xDistance <= 1 && yDistance <= 1;

}
}
The implementation of PathAlgorithm is basically a depth-first search, starting from
the starting coordinate and recursing into each neighboring coordinate of a matching
color, until we either run out of unvisited connected points or we stumble on a coordi-
nate that’s a direct neighbor of the ending coordinate.

Summary

Pixel perfection: as its name implies, is a test smell specific to graphics and code-
producing graphical output. It’s a sort of combination of magic numbers and primitive
assertion where a test is made both extremely difficult to read and extremely brittle.

Such tests are next to unreadable because they assert against hardcoded, low-level
details such as pixel coordinates and colors, even though the test would semantically
be about a much higher-level concept. Whether a pixel at a given coordinate is black
or white is different from concepts such as two shapes being connected or one shape
being drawn on top of another.

Such tests are extremely brittle because even small and supposedly unrelated
changes in the input—whether it’s another image, an object graph, or the way a graph-
ical object is rendered onscreen—can affect the output enough to break tests that scru-
tinize the output by checking pixel-precise coordinates for an exact color match. This

102

5.8

CHAPTER 5 Maintainability

is the same problem we’d be facing with the golden master technique of comparing a
rendered image to a canned image that we’ve manually checked to be correct.

These aren’t the kinds of tests that we’d like to maintain. We want to write tests
without such brittle precision, using fuzzy matching and smart algorithms instead of
trivial value comparisons.

What the example solution in section 5.7.2 proves is that we can write assertions
against graphical output that express our intent at the appropriate level of abstraction
—that is, higher-level concepts than pixels or coordinates. But you’ve also seen that
such custom assertions can be nontrivial to implement. Regardless, when weighed
against the extreme brittleness of pixel perfection, the payout is often worth the
effort.

Most of the test smells you’ve seen so far have been undoubtedly bad stuff that you
should avoid as a rule of thumb. The next smell is different as it’s essentially a good
thing turned bad.

Parameterized mess

As professional programmers, it’s our duty to study a wide range of techniques and
technologies, improving our ability to develop software. Some of these techniques are
so great that we tend to overdo them, as we’re always on the lookout for even a remote
chance or excuse to apply the latest and greatest tool we’ve just added to our toolbelt.
In the context of unit testing and especially JUnit 4, one of the most commonly over-
used techniques is a pattern called parameterized test. '’

The parameterized test pattern

The parameterized test pattern is, in essence, a way to remove duplication from data-
oriented tests that only differ in small ways.** For example, consider a test class
where the only difference between its 13 test methods is the simple input and
expected output values for the code under test. Let’s say the code takes in an int
and returns a String. You could turn this test class into a parameterized test and
delegate some of the boilerplate to the test framework itself; you’ll see a concrete
example of what this looks like in section 5.8.2.

With all the other ways at our disposal for keeping our test code clean and easy to
maintain, the context in which the parameterized test pattern truly has an edge over
the other alternatives is when the test data isn’t known before runtime, which is
rarely the case with unit tests.

19 Other test frameworks such as TestNG also support this pattern, but none of them are as wide spread as JUnit.
1" Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code, Addison-Wesley, 2007.

581

Parameterized mess 103

The parameterized test is a fine pattern, but when used too eagerly and in the wrong
context, the parameterized test turns into a code smell—a parameterized mess that’s difficult
to understand and to pinpoint the actual failure when one of the tests fails.

Example

I’d like to explore an example of this code smell by first looking at the kind of code
from which we usually refactor toward the parameterized test pattern. When it comes
to parameterized tests, the trigger is generally a situation not unlike our starting point
in this listing.

Listing 5.16 Typical starting point for parameterized test pattern

public class RomanNumeralsTest {
@Test
public void one() {
asserteEquals('Il™, format(1));

}

@Test
public void two() {
asserteEquals(Il1", format(2));

}

@Test
public void four() {
assertEquals("IV", format(4));

¥

@Test
public void five() {
asserteEquals('V", format(5));

}

@Test
public void seven(Q) {
assertEquals('VIi1", format(7));

}

@Test
public void nine() {
assertEquals("IX", format(9));

}

@Test
public void ten() {
assertEquals('X", format(10));

3
}
What we have in the listing is a bunch of one-liner test methods that only differ in the
input and expected output value. The code under test is a utility that’s responsible for
rendering numbers formatted as Roman numerals.

104

CHAPTER 5 Maintainability

This is exactly the kind of situation where the parameterized test pattern is
straightforward to apply, reducing line count mainly by getting rid of the boilerplate,
and that’s what the test method signatures in listing 5.16 currently are.

The following listing shows the same test rewritten to use the parameterized test
pattern and JUnit’s Parameterized test runner.

Listing 5.17 The parameterized test pattern reduces boilerplate

@RunWith(Parameterized.class) <1—o Special test runner
public class RomanNumeralsTest {

private int number;

private String numeral;

public RomanNumeralsTest(int number, String numeral) { @) Store
this.number = number; parameters
this.numeral = numeral; to fields
}
@Parameters List of
parameter

public static Collection<Object[]> data() {
return asList(new Object[1[1 { { 1, "I }, { 2, 11" },
{4, "v 3}, {5 v}, {7, "VvII" },
{9, "X %, {10, "X" } };

sets to test
with

}

@Test <7 Tests use

public void formatsPositivelntegers() { data fields

asserteEquals(numeral, format(number));

}

}

The way JUnit’s built-in facility for implementing parameterized tests works is simple.
We need to tell JUnit to execute our test class with the Parameterized runner @. When
the Parameterized runner takes over, it looks for a no-argument public static void
method tagged with the @Parameters ® annotation. This method is responsible for
returning a list of parameters; that is, the different variations of the data, including the
input as well as expected output needed by the test. Looping through this data, the run-
ner instantiates the test class once for each set of parameters, passing the parameters to
a constructor that stashes them to private fields €. Finally, the actual test methods use
the fixture stored in private fields O wo perform their assertions.

The problem with this instance of parameterized test comes down to a balance
between two kinds of a readability challenge. In listing 5.16 we observed boilerplate
that makes it difficult to see the beef—the one-liner inside each individual test
method. In listing 5.17 we’ve reduced the raw line count by one third, but in turn we
now have a cluttered syntax of lists inside lists that’s somewhat cumbersome to figure
out. That problem only gets worse when the number and complexity of parameters
gets bigger and the list grows longer. For example, take a look at this data set I found
in the tests for an open source accounting software:

Parameterized mess 105

Listing 5.18 The more parameters, the harder to follow and modify

@Parameters
public static List<Object[]> getData() {
return asList(new Object[]1[] {

{ SCHEDULE_FREQUENCY_EVERY_DAY .toString(),
getDate(2007, JANUARY, 1), getDate(2007, JANUARY, 31),
getDate(2007, FEBRUARY, 1), -31001 },

{ SCHEDULE_FREQUENCY_EVERY_DAY.toString(Q),
getDate(2007, JANUARY, 1), getDate(2007, JANUARY, 31),
getDate(2007, MARCH, 1), -31001 },

{ SCHEDULE_FREQUENCY_EVERY_WEEKDAY .toString(),
getDate(2007, JANUARY, 1), getDate(2007, JANUARY, 31),
getDate(2007, FEBRUARY, 1), -23001 },

{ SCHEDULE_FREQUENCY_BIWEEKLY.toString(Q),
getDate(2007, JANUARY, 1), getDate(2007, JANUARY, 31),
getDate(2007, FEBRUARY, 1), -2001 },

{ SCHEDULE_FREQUENCY_EVERY_WEEKDAY .toString(),
getDate(2007, JANUARY, 1), getDate(2007, JANUARY, 31),
getDate(2007, FEBRUARY, 1), -23001 },

H:
}

The good news is that it’s still just code, so we have our usual means of making the
@Parameters method more accessible. There’s an additional problem that’s harder to
solve.

Figure 5.2 shows the Eclipse test runner reporting a failure of one of our test cases
in listing 5.17. Tests dynamically generated by the Parameterized test runner are
essentially anonymous and carry no label beyond a running number.

{}UEBE.JE|°..)9..) El+¥ =0

Finished after 0.064 seconds
Runs: 7/7 B Errors: 0 B Failures: 1

v E:jpafamelerized R N arameterizedTest [Runner: JUnit 4] (0.001 s5)
» §310) (0.000 5)
> K (1] (0.000 5)
» Eil(2] (0.000 5)
» Eo(3] (0.000 5)
» §il(4] (0.000 s)
» Ei3(5] 0.000 5)
¥ il (6] (0.001 5)

3 formatsPositivelntegers[6] (0.001 s)

Failure Trace o £P

org.junit.ComparisonFailure: expected:<[X]> but was:<[IXI]>
at parameterized.RomanNumeralsParameterized Test.formatsPositivelntegers(R neralsParameterizedTest.java:32)

s m

Figure 5.2 Parameterized tests are practically anonymous, which makes it harder to interpret
test results.

106

5.82

CHAPTER 5 Maintainability

Without recognizable names or identifiers, when one of these tests fails it can be diffi-
cult to determine which of the n parameter sets is failing; the only information avail-
able is the assertion failure message. In this example, the error message happens to
contain enough details to identify the failing test case. But if we were making more
than one value comparison, for example, we’d only know one variable that may or
may not be unique within our whole data set.

Now that I've pointed out some of the challenges with parameterized tests that can
turn them into a source of code smells and maintainability issues, let’s talk about what
we can do about those problems.

What to do about it?

You may have heard the joke about a man complaining to the doctor that “My arm
hurts when I do this,” and the doctor responding with, “Well, don’t do that.” That can
be the easiest solution to a parameterized mess, too.

With that in mind and observing that so many parameterized tests end up causing
grey hair and naughty verbal expressions at the office, think twice before applying the
parameterized test pattern. For example, an alternative solution might be to reduce
the boilerplate-ridden scatter in listing 5.16 by packing multiple test cases inside one
test method:

public class RomanNumeralsTest {

@Test

public void formatsPositivelntegers() {
assertEquals('l", format(1));
assertEquals('Il1", format(2));
assertEquals("IV", format(4));
assertEquals('V'", format(5));
asserteEquals(C'VII", format(7));
assertEquals("IX", format(9));
assertEquals('X", format(10));

}
}
Having said that, when you do decide to apply the parameterized test pattern, there
are a few simple things you can do to avoid the problems of hard-to-read test data and
anonymous test failures that are difficult to identify. Let’s start by paying attention to
simplifying the test data and making it easier for the eye.

The essence of the readability problem in listing 5.17 comes down to long
sequences of anonymous data:

new Object[1[1 { { 1, "1™ }, {2, "1™ }, {4, "IV" },

{5, v 1 L7, vt 3, {9, "Ix* 3, {10, "X" } }
To make this kind of multilevel structure easier to follow, you need to find a way to
separate the parameter sets from each other. The simplest way to do that would be to
add them to a list one by one instead of using the inline-array declaration style, but
that would also add the kind of verbosity and duplication we want to get away from.

Parameterized mess 107

You could also indent the list so that each data set resides on its own line, but that
approach generally prevents you from using your IDE’s autoformatting features.'?
Other solutions to consider might involve wrapping each individual data set with a

varargs method a bit like this:

@Parameters
public static Collection<Object[]> data() {
return asList(set(1, "1'), //
set(2, "I1'), //
set(4, "IVvV'*), //
set(5, "V'), //
set(7, "VII'), //
set(9, "IX™), //
set(10, "X™));
3

private static Object[] set(Object... values) {
return values;

}

We’ve done two things here. First, we replaced the curly braces with a method call that
effectively separates each parameter set with a whole word, set. This is generally an
easier boundary to distinguish visually. Second, we’ve added comments between each
set to keep our IDE’s autoformatting from messing things up the next time somebody
wants to fix up code formatting.

Now, what can you do with the problem of parameterized, anonymous tests failing,
and not knowing which data set that arbitrary "[123]" in your test report refers to?
This problem stems from JUnit’s implementation of the Parameterized test runner
that doesn’t provide a way to link an individual test’s name to its data set. That’s why
you need to document the test case’s identity in your assertions’ failure messages.
@Test

public void formatsPositivelntegers() {
assertEquals(dataset(), numeral, format(number));

}

private String dataset() {
StringBuilder s = new StringBuilder();
s.append(*'Data set: ['").append(this.number);
s.append(, \'""").append(this.numeral).append(*'\""]-"");
return s.toString();

3

You can build a failure message that describes the full data set in a manner similar to
how we’ve constructed it in the @Parameters method, making JUnit render that infor-
mation when this test fails. Even if the test runner’s hierarchy still won’t identify your
test by a meaningful name, you have the next best thing—it’s tucked slightly farther
away in the failing test’s error message.

12 Having used Eclipse for so many years, I've developed an almost unconscious habit of automatically activating
the format shortcut when opening a source file in an editor. That habit tends to not conflict with a convention
that requires manual indentation case by case.

108

5.8.3

5.9

CHAPTER 5 Maintainability

Summary

The parameterized test pattern is a way to express repetitive tests in a compact man-
ner when they only differ in terms of input and output values. Domains where this pat-
tern tends to surface most often include validation, translation, string manipulation,
and all sorts of mathematics. In many cases, the improvement in reduced verbosity is
practically negated by the increased scatter and the reduced ability to trace a test fail-
ure back to the specific data set causing that test failure.

For those situations where you decide to go with a parameterized test, I identified
three ways of minimizing the undesirable effects of applying the parameterized test
pattern.

In order to help you visually distinguish the individual data sets from each other,
you can try to wrap each data set into a method call. A method call tends to pop out
easier from the surrounding code than the squiggly brackets that come with the usual
way of building the list of data sets.

You can also lean on indentation to separate data sets from each other. Modern
IDEs give you a powerful ability to automatically indent and format your code accord-
ing to a uniform style. This is extremely useful for maintaining consistency through-
out the code base, but it also tends to destroy carefully hand-indented listings. For this
reason you might want to suffix each line with a tiny comment to keep your IDE from
ravaging your special indentation.

Finally, since JUnit’s parameterized test implementation doesn’t give you a way to
trace an executed test back to the original data set, you need to rely on the failure
message thrown from a failing assertion. Including the full data set for the test case as
part of each assertion message helps quickly identify the scenario.

Each of these steps can save you an odd minute, and those minutes add up to big
bucks over time. Our next code smell is the same; though it might not seem like a big
thing, even small things add up and it’s our job as programmers to make sure we’re as
productive as we can be.

Whereas the parameterized test pattern is specific to test code, our next code smell
has wider roots in no less than object-oriented code quality metrics.

Lack of cohesion in methods

Cohesion is a central property of well-factored object-oriented code. Simply put, cohe-
sion means that a class represents a single thing, a single abstraction. Cohesion is
good—we want high cohesion and the cohesion is a code smell.

The in methods part refers to the way we determine the degree of cohesion by look-
ing at the commonalities between the methods of a class. Though there are many vari-
ations in how to calculate the lack of cohesion in methods, the common denominator
is that they’re all based on the rough idea that perfect cohesion means that every field
of a class is used by every method on that class.

In the context of unit tests and unit testing terminology, this could be expressed in
such a way that each test in a class should use the same fest fixture. Conversely, if tests

work on different fixtures, they should be refactored into more than one test class.

5.9.1

Lack of cohesion in methods 109

Let’s look at a concrete example of this test smell and discuss the practical prob-
lems that stem from lack of cohesion.

Example

The following example in listing 5.19 comes from an open source accounting software
package.l?’ The code we’re going to zoom in on deals with split accounting, which is
used to spread the cost of an item across multiple accounting groups. For example,
you might split the price of a new database server among three different budgets
because the server will be used by three different departments.

The code base handles split accounting operations with three domain objects:
Account, Split, and BudgetCategory. The operation itself is represented by a
Transaction object. The test class in listing 5.19 initializes a fixture of these domain
objects in a @Before method, and the class has a handful of test methods working on
those objects. I'm only showing two of those tests for brevity’s sake.

Listing 5.19 Test class suffering from lack of cohesion in methods

public class SplitsTest {
Account account; Multiple
Split split; ﬁx?ure
BudgetCategory bcl, bc2, bc3, bc4; objects
V7

@Test

public void fromSplits() throws Exception {
List<TransactionSplit> fromSplits =

new ArrayList<TransactionSplit>();

fromSplits.add(createSplit(bc3, 1200));
fromSplits.add(createSplit(bc4, 34));
Transaction t = createTransaction(split, account);
t.setFromSplits(fromSplits);

assertTrue(transactions(t).size() == 1);
3 PN Tests only
use subsets
@Test of fixture

public void toSplits() throws Exception {

List<TransactionSplit> toSplits =

new ArrayList<TransactionSplit>();
toSplits.add(createSplit(bcl, 1200));
toSplits.add(createSplit(bc2, 34));
Transaction t = createTransaction(account, split);
t.setToSplits(toSplits);
assertTrue(transactions(t).size() == 1);

}
}

Let’s cut to the chase. The smell in listing 5.19 comes from the test class’s fixture con-
sisting of @ several BudgetCategory objects and the @ test methods only using some

13 If you're the worrying type, make sure to never ever see the actual code that’s supposed to take care of your
pension plan, insurance, or bank account. Trust me. It’s better that way.

110

5.9.2

CHAPTER 5 Maintainability

of them. That’s a clear violation of the idea that each test works on the exact same fix-
ture; we have lack of cohesion in (test) methods.

From the grand perspective, having a more complex fixture than necessary makes
it harder for the programmer to understand what’s going on. More fields means more
moving things and more variables to wrap your head around.

It’s also hard, looking at one of the tests, to figure out which field it uses, as it’s not
obvious. Instead we’re left wondering, “Which category was bc3 again?” This problem
has its roots in one of the fundamental code smells: bad names. Though lack of cohe-
sion in test methods doesn’t make it impossible to name your fixture objects well, it
tends to make it pretty darn difficult.

For example, each test might work on an input and output, but since there’s one
pair of these objects for every test, you have to name them along the lines of empty-
Input, inputWithOneThing, inputWithThreeldenticalThings, and so forth. This
leads to a situation where it’s not trivial to look at the fixture and say, “Of course.
These two go together and the rest don’t have any part in this test.”

So what can you do in these situations?

What to do about it?

We’ve been talking about the lack of cohesion in methods being an object-oriented
metric that carries particular relevance in the context of test code. It also bears a
resemblance to another test smell we discussed in chapter 4. That smell was called split
personality. Only this time it’s not a test method suffering from split personality but the
test class.

We’ve already established one solution to this problem—the class should be split.
Another, typically much better solution might be to coerce the tests to use the same
fixture objects. For example, you could look at the difference between bcl, bc2, bc3,
and bc4 in listing 5.19 and see whether we can get rid of two.

Sometimes that doesn’t work; we actually do need more fixture objects than an
individual test needs. In those cases it’s often best to split the class, looking for suitable
boundaries such as the ones illustrated by figure 5.3. The question is, how do we go
about doing that? What should we look for as hints of where to split a test class?

Test Class
Shared
Shared Object #2
Object #1 —
"

Specific to Specific to
Test #1 Test #2
Figure 5.3 Splitting a test class into two,
Specific to Specific to we need to identify which parts of the
Test #1 Test #2 fixture are shared between all tests and

which are specific to one or more tests.

Lack of cohesion in methods 111

For example, you can only see two tests in listing 5.19, but none of the remaining tests
in the original class worked on more than two BudgetCategory objects, and always
either bcl and bc2 or be3 and bc4. You should look for clusters like these to find natu-
ral boundaries along which to split the class into two or three smaller and more
focused—cohesive—test classes.

Sometimes all you need to do then is to create another test class, move some meth-
ods and fixture objects over, and dust off your hands. More often than not, the tests
depend on the same utility methods, and we don’t like duplication. In those cases we
also need to either move those utility methods to a separate class that both of your
split test classes can use, or extract a common base class that provides these facilities to
all the split test classes. This latter approach might result in test classes that look like
the next two listings.

Listing 5.20 Split down test classes allow more specific fixtures and better cohesion

public class TestSplitsAcrossDifferentBudgetCategories
extends AbstractSplitsTestCase {
private BudgetCategory incomeCategory, standardCategory;

@Before

public void setup() throws Exception {
incomeCategory = new BudgetCategorylmpl();
incomeCategory.setlncome(true);
standardCategory = new BudgetCategorylmpl();
standardCategory.setlncome(false);

}

@0verride
protected List<BudgetCategory> budgetCategories() {
return asList(incomeCategory, standardCategory);

}

// tests omitted
}
Note how simple the fixture has become. Looking at this test class it’s obvious which
budget categories are involved and how they differ from each other. This is made pos-
sible by moving all the common bits into the abstract base class, AbstractSplits-
TestCase, shown next.

Listing 5.21 Abstract base class for our split down tests

public abstract class AbstractSplitsTestCase {
protected Account account;

@Before
public void initializeAccount() throws Exception { ... }

/** @ Fixture
* Concrete test classes implement this to give the utility objects
* methods access to the BudgetCategory objects in use. from
*/ concrete

protected abstract List<BudgetCategory> budgetCategories(); children

112

5.9.3

CHAPTER 5 Maintainability

protected List<Transaction> transactions(Transaction t)
throws ModelException {
Document d = ModelFactory.createDocument();

for (BudgetCategory bc : budgetCategories(Q)) { | @ Fixture objects
d.addBudgetCategory(bc); from concrete
3} children

d.addAccount(account);
d.addTransaction(t);
return d.getTransactions();

}

protected TransactionSplit createSplit(BudgetCategory category,
int amount) throws InvalidvValueException { ... }

protected Transaction createTransaction(Source from, Source to)
throws InvalidValueException { ... }
¥
Note how we’re acquiring the actual BudgetCategory @ objects from our concrete
children through an abstract method.

Inheritance and composition

What we’re doing here is reuse by inheritance, which is somewhat suspect. After all,
inheritance should imply an is-a relationship between the child and parent. The gen-
eral recommendation would be to choose composition over inheritance; that is, reuse
code by composing objects from other objects rather than reuse by sharing data and
methods through the inheritance hierarchy.

| wouldn’t be worried if you have an abstract test class here and there, but you could
go overboard with inheritance, so think twice before introducing abstract base
classes for your tests. One of the risks you’re facing may be a performance issue, as
we’ll discuss in chapter 9.

By moving smaller clusters of test methods to their dedicated test classes, we’ve
improved the problem with lack of cohesion and each test class is now focused around
a specific fixture that no longer boggles our minds. We decided to extract a common
base class in the process to avoid duplicating the plumbing that used to be in the pri-
vate methods of our non-cohesive behemoth of a test class.

Summary

Lack of cohesion in methods means that the test methods in a test class are only inter-
ested in some of the fixture’s objects.

The consequence of this is that a programmer developing or modifying such tests
has to deal with more moving parts than necessary. This complexity makes it difficult
to figure out which field is which, which of the fixture objects are used in which test,
and which of them you should edit in the setup. Furthermore, with such overlaps
between the kind of objects required by what could be dozens of tests, it tends to be
increasingly difficult to name the fixture objects well.

5.10

Summary 113

All of these problems boil down and point to a simple truth: those tests don’t belong
in the same test class. Sometimes the complexity of the bloated test fixture is accidental
and you can get rid of the whole problem by coercing the tests to use the same fixture
objects, shrinking the fixture into something more manageable. Often, we’re talking
about essential complexity that’s not—and shouldn’t be—going anywhere.

When you find that those various combinations of fixture objects are necessary,
your best remedy to the lack of cohesion tends to be twofold:

1 Move the tests to different test classes and (if necessary) extract a common base
class to hold any shared plumbing.

2 Create the fixture inside each test method with utility methods on a separate
class.

Though this kind of refactoring may seem like a lot of work, I assure you that it starts
to look like a small price to pay the first time you screw up with a complex fixture lack-
ing cohesion, breaking some functionality without noticing. It certainly did to me.

Mindful test data

This isn’t to say that you should always strive to use the exact same data in each
test. My friend J.B. likes to point out that mindfully using different test data in
each test reduces the likelihood of reusing fixture objects that are only acciden-
tally the same.

Similarly, if the exact value of a string isn’t meaningful to a test, it might be a good
idea to use a literal "whatever" instead of referring to a fixture object named
productDescription. Readability trumps maintainability; conveying the meaning is
often more important than perfect cohesion and absolute lack of duplication, so use
your test data mindfully!

Summary

In this chapter we’ve explored some test smells that can make maintenance more dif-
ficult than it has to be. Though most code smells derive their stench from different
kinds of readability problems, some smells are caused by other kinds of deficiencies
that hinder productivity as we maintain and edit our tests.

We established duplication as the root of all evil and pointed out how each bit of
duplication between our tests makes them that much harder to update and maintain.
We found conditional logic in test code resulting in grey hair and premature aging
because we can’t figure out what the test is actually doing.

Particularly troubling test smells we looked at include flaky tests that will fail at ran-
dom and file paths that cripple the mobility of our test code, failing on somebody
else’s computer. Also related to file paths, we touched on persistent temp files that lin-
ger around after their test, wreaking havoc on their successors who assume no such
temp file exists.

114

CHAPTER 5 Maintainability

The smell of a sleeping snail relates to multithreaded code that we’ve desperately
tried to wrangle with calls to Thread#sleep, grinding our blazing fast tests almost to a
halt as they wait for hundreds of milliseconds for something to happen.

Pixel perfection took us into the land of graphics and overly precise assertions—
the computer graphics breed that combines magic numbers and primitive assertions
into a hyperassertion that breaks as easily as a soap bubble.

Our analysis of the parameterized mess taught us to tread carefully with JUnit’s
Parameterized test runner, and also taught us some tricks for smoothing out the ride
when one of those anonymous tests suddenly starts failing or when we need to edit
our test cases.

Finally, we ventured into the land of metrics to reflect on what cohesion means for
a test class—and what to do when we suffer from the lack of it.

This is by far not all. In the next chapter we’ll dig into another set of test smells:
tests that betray our trust in them.

Trustworthiness

In this chapter

Test smells around code comments
Test smells around poor expectation management
Test smells around conditional execution

Trust is good and we generally like it when people are trustworthy. We’d prefer to
be able to trust people, as it makes a lot of things in life easier. We’d also like to be
able to trust our code—which is one of the reasons we write tests—and the trust
worthiness of our tests is a big deal for us. Software development is essentially
about modifying, evolving, and maintaining code, and if we can’t trust our tests,
we can’t be too confident about our code working after even the most seemingly
innocent change.

This chapter is a walkthrough of some of the biggest detractors to test trustwor-
thiness, a parade of test smells revolving around the problem of tests not being reli-
able. The parade starts with different ways that code comments can go bad.
Though the ability to annotate your code with comments written in plain English
can be a real boon, these comments can easily turn from useful information to mis-
information. Sometimes it’s even worse, when the whole body of a test has been
commented-out such that the test is still executed and passes with flying colors—
but it doesn’t actually do anything.

115

116

6.1

6.1.1

CHAPTER 6 Trustworthiness

The remainder of the chapter revolves around various forms of broken (or falsely
implied) promises that also lead unsuspicious programmers astray. We look at tests
that never fail (even when they should) and tests that suggest a lot but do something
completely different. Along the way we’ll explore trust issues with conditional state-
ments in our tests.

That’s quite a parade so let’s get started. I’'m anxious to rant about one of my favor-
ite topics—comments in your test code!

Commented-out tests

I don’t know who originally came up with the idea that programmers should be able
to sprinkle nonexecutable comments into their source code. (If you know, please
tell.) I'm glad that we have that ability, as comments can be of great help in trying to
understand code.

But often, comments backfire by confusing or even misleading us. Related to tests,
a particularly interesting failure mode with comments is a test method that’s been
commented-out, as it doesn’t communicate anything and just confuses people. When
we do that, we’re not commenting anything—we’re using comments as a poor man’s
version control.

Let’s take a look.

Example

Not long ago I was digging out code I'd written for a project from half a decade ago.
It’d been a while since I looked at the code, let alone developed it, so I was just scan-
ning the code base to remind myself what the architecture was like, and so forth. As
usual, I familiarized myself with the various objects by looking at their tests. After all,
the tests are what best document what the code actually does.

As I was scouring the tests for a class responsible for certain I/O operations, I
found that one of the 15 or so tests in the test class was commented out. There wasn’t
a single comment in the whole source file except for this test, shown in this listing.

Listing 6.1 Why is this test commented out?

// @Test

// public void recognizesFileBeingModifiedWhenltls() throws
// Exception {

// File newFile = File.createTempFile(getName(), ".tmp™);
// FileAppendingThread thread = new FileAppendingThread(newFile);
// thread.start();

// thread.waitUntilAppendingStarts();

// try {

// Thread.sleep(200);

// assertTrue(10.filelsBeingModified(newFile));

// } Finally {

// thread.interrupt();

/7 }

/7 }

6.1.2

Commented-out tests 117

I was baffled as I spotted the commented-out test. I scanned through it, biting my lip
and blaming the world’s IDEs for having messed up the formatting. (IDEs generally
treat all comments the same and format them like plain text, not code that’s sup-
posed to be indented.) In the end, I still couldn’t figure out why this test was com-
mented out.

The same problem occurs with tests that have had their @Test annotation com-
mented out. The code is there and it compiles and it looks like a test, but JUnit won’t
run it as a test because the annotation is missing.'

Assuming that I notice the missing annotation (which isn’t necessarily easy to
notice), why is it missing? Was it an accident? Did somebody intentionally disable this
test temporarily and forgot about it and checked it in? Who knows?

What to do about it?

When you find a test (or parts of a test) commented out, you're essentially looking at
dead code. Perhaps it used to have a meaning and a purpose, but today that purpose
either no longer exists or is lost, you can’t figure out why that commented-out code is
there.

The good news is that at this point there’s no question as to what you should do.
First, you’d ask around if someone else knows what’s going on with this test.? If
nobody seems to recollect, it really is straightforward:

1 Try to understand and validate its purpose. If you figure it out, uncomment the
test and refactor it so it communicates its intent better.
2 Otherwise, delete it.

That’s right. Delete it. That commented-out block of code has no right to stay in your
code base for one minute longer. Test code that’s never executed is merely noise that
doesn’t give you any more information about the correctness of your implementation
or guide you in its design. It’s like trying to make sense of a crazy person engaging in a
bad monologue. I don’t blame you for first checking whether you can bring that piece
of code back from version control later on if need be—but it needs to go!

In the case of listing 6.1, I did eventually manage to figure out the test’s purpose. I
had to uncomment the test and run it to see whether it passed. When I ran the test, it
passed. I still had no idea as to why it was commented out. Then I tried to run it on a
Windows computer instead of my Mac and the test failed! It turned out that there was
a slight difference in how these different platforms handled time.

It took a long while and I finally ended up determining that I’d probably been
working on this test, leaving it commented out and checked it into version control
due to switching to some other task, and then forgot all about that test.

! What if the test annotation and method signature were intact and only the body of the test were commented
out? Your tools would run it and report it as passing even though you didn’t check anything. We’ll return to
this problem in section 6.4.

2 You could find out by interrogating your version control system. I'd probably not bother.

118 CHAPTER 6 Trustworthiness

That case was one where the test actually had a purpose. Sometimes, that purpose
is long gone or buried so deep behind the opaque face of not-so-expressive test code
that it’s better to delete it and move on.

6.1.3 Summary

Code that’s commented out is never run. It’s dead code. That kind of code tends to
have a purpose when it’s originally written but the value of commented-out code per-
ishes quickly—especially if you have version control (and you should). Soon the value
it had turns into a productivity hit as you bang your head against a brick wall trying to
understand and remember why that test was commented out and whether it should or
shouldn’t exist.

In these situations you need to be pragmatic. If you can’t figure out the
commented-out test’s purpose soon, it’s likely that you never will. If that seems to be
the case, you're better off deleting the test. If we do manage to decipher its raison
d’étre, you should make sure that the intent comes through better from now on.

In summary, commented-out tests have such a bad smell because they baffle the
programmer who’s left wondering why that test has been commented out. Our next
test smell also deals with comments and the missing “why” but from a totally differ-
ent angle.

6.2 Misleading comments

Though commented-out code tends to be useless and confusing at best, even actual
comments—the ones intended to communicate code’s purpose—can smell bad. One
particularly nasty smell is a misleading comment.

Misleading comments are arbitrary in that they may suggest something that’s not
necessarily true.® Sometimes they’re misleading and the poor programmer reading
the comment and relying on that misinformation goes astray.

Let’s look at a test where such misleading comments play their tricks on the unsus-
pecting programmer.

6.2.1 Example

The example in the next listing comes from a debt collection agency’s accounting sys-
tem. It’s a test for an Account being (or not being) in good standing, depending on
whether it has unpaid debts past the due date. Take a few seconds to read through the
listing and to understand what the test is doing.

Listing 6.2 Misleading comments trick the unsuspecting programmer

@Test
public void pastDueDateDebtFlagsAccountNotInGoodStanding() {
// create a basic account

3 All comments are like that; they’re not executed with the code they’re commenting on so they can easily go
stale.

6.2.2

Misleading comments 119

Customer customer = new Customer();
DeliquencyPlan deliquencyPlan = DeliquencyPlan_.MONTHLY;
Account account = new CorporateAccount(customer, deliquencyPlan);

// register a debt that has a due date in the future
Money amount = new Money(*'EUR"™, 1000);
account.add(new Liability(customer, amount, Time.fromNow(l, DAYS)));

// account should still be in good standing
assertTrue(account. inGoodStanding());

// fast-forward past the due date
Time.moveForward(l, DAYS);

// account shouldn"t be in good standing anymore
assertFalse(account. inGoodStanding());

}

So what’s the test doing? It clearly consists of several steps, as indicated by the mere
presence of those one-line comments and the empty lines used to separate those
blocks of code. In the first block we create a basic account, then we register a debt on
the account, and then we verify that the account goes from good standing to not good
standing when time passes the due date.

Simple? Yes. Except that two of those comments were misleading and probably
gave the wrong impression of what the test is actually doing.

First of all, the first block of code is supposedly creating a “basic” account, but the
code actually creates a CorporateAccount with a specific delinquency plan. That’s not
what I’d consider “basic.” Second, a later comment suggests we simulate time passing
“past the due date” even though we’re actually fast-forwarding time to the due date
itself. On the due date is generally not the same as past the due date. Did you notice
that detail?

These kinds of discrepancies between what we pick up from reading the comments
and what the code actually does are misleading. Sometimes we get by despite those
discrepancies; sometimes we end up spending an extra 15 minutes debugging because
we overlooked the discrepancy and developed a misinformed understanding of what
the code does.

So how do we treat this ailment?

What to do about it?

In section 6.1 I suggested that a commented-out test should either be uncommented
and refactored to read better, or deleted. Deleting a comment is almost always worth
considering, as in this case of a misleading comment. That comment is doing more
harm than good, and it needs to go. But it was likely written for a purpose, so the ques-
tion is what to replace it with?

If the misleading comment seems to be there to explain what the code block is
doing, that smell calls for more readable code. Most often I'd recommend one of
these two solutions:

120 CHAPTER 6 Trustworthiness

1 Replace the comment with better names for variables and methods.
2 Extract a method from that commented block of code and name it well.*

The fundamental issue with such a comment—one that describes what code is
doing—is that it’s really the code’s responsibility to communicate its intent. If you feel
like you need a comment to explain what the code does, you haven’t refactored the
code enough. Maybe you haven’t named the variables well enough. Maybe the block
of code should be encapsulated behind a private method that has a descriptive name.

What makes for a good comment?
In short, a good code comment explains the why, not the what.

Whenever you encounter a comment that explains what code does, that’s a code
smell. The code should be readable enough that such a comment is unnecessary.
There are a few situations where a comment is truly necessary. Those situations tend
to be where the comment explains the rationale for a given block of code.

For example, whereas a comment explaining what a complicated for loop is doing
tends to be a smell, a similar for loop might have a good and valid comment explain-
ing that the loop is so ugly because it’s a performance-critical piece of code and you
haven’t found a way to improve its readability without sacrificing the performance.

Whenever you find yourself writing a comment, ask yourself whether you're describing
the “what” or the “why.” Then think again whether you should write that comment or
refactor the code you’re commenting.

Sometimes programmers add comments inside their methods to visually separate
blocks of code from each other. The concern is valid, as the ultimate purpose is to
help make the code easier to read. The means are suspect.

In such situations I usually suggest replacing the comment with an empty line—at
least that empty line won’t go stale like comments sometimes do. A colleague of mine
used to delete all empty lines from methods, too, because they were a code smell. A
method was too big if you felt you needed to separate steps with whitespace. Though
that may sound extreme, he has a point. That method is likely to be too big and you
should seriously consider refactoring it, possibly by extracting a method or two.

6.2.3 Summary

There are good kinds of comments and bad kinds of comments. The latter group
clearly outnumber the former. That’s why test-infected programmers should be wary
when encountering (or writing) those seemingly helpful comments amidst their test
code.

We just explored a particularly nasty kind of a comment: the misleading comment.
The main problem with misleading comments is that they’re unreliable and can’t be

* Surprisingly often the new method’s name turns out to be almost identical to the comment it replaced.

6.3

6.3.1

Never-failing tests 121

trusted. Yet, as we scan through our source code, we tend to read those comments
and, being the optimists we are, believe what the comment is saying without checking
that assumption against the actual code.

It’s not that we’d intentionally misguide ourselves and our colleagues. Most often a
comment is born valid and correct but goes stale as time passes and code changes, out
of sync with the comment that’s now arbitrary and confusing. It’s become a mislead-
ing comment.

We explored common solutions to dealing with a misleading comment. It all boils
down to getting rid of it. As we delete the comment, we also refactor the code so that
it’s readable without a comment. We may do this by naming variables better or we may
extract blocks of code into private methods, each with a descriptive name.

The good kind of comments are those which explain the rationale for code being
like it is. That’s something we might not be able to express with the constructs of our
programming language. Everything else is free game to be deleted and replaced
through refactoring.

In the end, test code that gets run tells us more than a comment that’s not exe-
cuted. Our next test smell also lacks informational value. Or how useful would you
consider a test that is run but can’t fail?

Never-failing tests

Never-failing tests are like Chuck Norris—they never fail—and that’s a bad thing. A test
that can’t fail has no value, as it will never alert you to a mishap. A test that can never
fail is probably worse than not having that test, as it creates a false sense of security.

Example

Perhaps the single most common context where never-failing tests are found is in tests
that check for an expected exception to be thrown.’ Here is an example of such a test.

Listing 6.3 Test that never fails

@Test
public void includeForMissingResourceFails() {
try {
new Environment().include(*'somethingthatdoesnotexist™);
} catch (10Exception e) {
assertThat(e.getMessage(),
contains("'somethingthatdoesnotexist'));

% Another common type of a never-failing test is a test without assertions.

122

6.3.2

CHAPTER 6 Trustworthiness

The result of the test in the previous listing is this:

1 If the code works as it should and an exception is thrown, the exception is
caught by the catch block and the test passes.

2 If the code doesn’t work as it should and an exception isn’t thrown, the method
returns, the test passes, and we’re oblivious to there being any problem with our
code.

What to do about it?

Whenever you test for an exception to be thrown, make sure you don’t forget to
fail () when that exception isn’t thrown. This listing points out the correct solution.

Listing 6.4 Adding the missing f ai | () call makes our test useful

@Test
public void includeForMissingResourceFails(Q) { Fail test
try { unless
new Environment().include(*'somethingthatdoesnotexist™); exception
failQ; is thrown

} catch (10Exception e) {
assertThat(e.getMessage(),
contains(‘'somethingthatdoesnotexist'™));

¥
}

The simple addition of a call to JUnit’s fail () method @ makes the test useful. Now
the test will fail unless that expected exception is thrown.

One of the features introduced in JUnit 4 was the expected attribute for the @Test
annotation. The presence of this attribute declares to JUnit that you expect this test
method to throw the specified type of exception and that the test should fail unless
such an exception is thrown. Essentially, we get rid of the whole try-catch block and the
fail () call that’s so easy to forget. This listing shows our example from listing 6.4
rewritten to use the annotation-based approach.

Listing 6.5 Declaring an anticipated exception with the @'est annotation

@Test(expected = I0Exception.class)
public void includingMissingResourceFails() {
new Environment().include(*'somethingthatdoesnotexist™);

}
Much shorter, much easier to parse, and much less prone to human error and forget-
fulness. The downside of this approach is also visible; since we don’t have access to the
actual exception object being thrown, we can’t make any further assertions against
that exception. For example, in listing 6.4 we checked that the exception message
includes the name of the missing resource that caused the exception.

Aside from “don’t make mistakes,” the best way to protect yourself from accidentally
writing a never-failing test is to develop a habit of running the test so that you see it fail,
possibly by temporarily altering the code it tests to intentionally trigger a failure.

6.3.3

6.4

6.4.1

Shallow promises 123

Summary

Tests are supposed to fail when they should. That’s a truism but an important one
when it comes to never-failing tests that give us a false sense of security. We don’t want
our tests leading us down the wrong path when we’re trying to diagnose a problem.

Neverfailing tests are mostly seen around tests that check for exceptions being
thrown or not thrown, as it’s easy to screw up with those try-catch blocks. We might
forget to fail() when an exception isn’t thrown, or we might accidentally swallow an
exception that should be thrown over to JUnit.

If you’re only interested in making sure that an exception is thrown or thatit’s of a
given type, the expected attribute for the @Test annotation is your friend. If you want
to make more specific checks against the thrown exception, you're left with no other
option but to wrap your code into a try-catch and be careful about doing it right.

Shallow promises

We recently had elections where I live. Leading up to the vote, you could see politi-
cians debating and interviewing on pretty much all of the national TV channels.
You’ve probably heard enough politician jokes to have formed the same perception
that politicians tend to make shallow promises that they don’t end up keeping—
always for good reasons, but still.

Programmers can be like that, too. Every now and then when you’re browsing test
code, your senses start hurting like you were Spider-man because you’re looking at a
test that promises much more than it delivers. This is a problem for the obvious rea-
son of programmers being misled by an untrustworthy test.

There’s more than one way to perpetrate this test smell, so we’ll take a glimpse ata
number of examples.

Example(s)
The underlying theme of shallow promises is that the test does much less than what it

says it does—or does nothing at all. There are three general categories of how this
might happen:

= Test doesn’t do anything.
= Test doesn’t actually test anything.
= Testisn’t as thorough as its name suggests.

The first and arguably most blatant violation of the programmer’s trust is shown in the
next listing.

Listing 6.6 A test that doesn’t do anything is next to useless

@Test

public void filteringObjects() throws Exception {
//Array array = new Array(*'joe", "jane', "john);
//Array Tiltered = array.filter(new Predicate<String>() {
// public boolean evaluate(String candidate) {

124 CHAPTER 6 Trustworthiness

// return candidate.length() == 4;
// %

/73);
//assertEquals(new Array('jane'™, "john"™), Ffiltered);

}

What we can see in the listing is a test with its body commented out. Effectively, this
test method is a no-op and should be ignored. In practice, our test frameworks will
run this test and report its success, potentially misleading a programmer looking at
the list of tests in his IDE flagged as passing to think that the functionality described
by the test’s name is already in there. In other words, it’s like a commented-out test but
even worse!

Furthermore, when we scan this commented-out test we can’t ignore it. There’s a
reason why that code was written and subsequently commented out—but we have no
idea as to why. Should this test be passing? Did somebody forget to uncomment it after
an experiment of some kind? We just don’t know.

Though it’s not that common to bump into tests that have been commented out
entirely or that don’t do anything, our second archetypal example of a shallow
promise is much more common. The following listing represents what such tests
often look like.

Listing 6.7 A test that doesn’t check anything is next to useless

@Test

public void cloneRetainsEssentialDetails() throws Exception {
Document model = ModelFactory.createDocument();
model .schedule(new Transaction("'Test", date(''2010-01-20"), 1));
model = model.clone();
Transaction tx = model.getScheduledTransactions().get(0);

}
On the surface this test looks good. It’s short, fairly balanced, and has a clear, under-
standable name—clone retains essential details. But on a closer look it turns out that
the test doesn’t actually check whether clone retains essential details. There’s no
assertTrue, no assertEquals, assertThat—no assertions whatsoever. And that
means that this test could be passing no matter what the clone behavior actually is.
More specifically, the only way this test would notice that the cloning doesn’t work as it
should would be if an exception is thrown while executing this code.

Some people call such tests happy path tests because they tend to never fail and
always suggest everything’s all right.’

Finally, our third example is depicted in the next listing. It represents perhaps the
most common pathology of a shallow promise.

5 And some of those tests came to be because the test failed so somebody deleted the assertion. I'm not kidding.

6.4.2

Shallow promises 125

Listing 6.8 A test that does less than it suggests

@Test
public void zipBetweenTwoArraysProducesAHash() throws Exception {
Array keys = new Array(‘'a", "b", "c');
Array values = new Array(l1, 2, 3);
Array zipped = keys.zip(values);
assertNotNul I (""We have a hash back', zipped.flatten());

}

Reading through the listing, do you see the shallow promise? The name of this test
suggests that a zip operation between two array objects would produce a hash. But the
test only checks that the zip method returns an array that can be flattened, and that
the flattened object isn’t null. That’s quite different from zip returning a hash, don’t
you think?

All of these examples of tests that promise one thing and do another can cause
grey hair in the poor programmer who’s misled into thinking that the described
behavior exists and works correctly while in reality, it doesn’t. So let’s talk about what
we should do to avoid that problem.

What to do about it?

Let’s start by looking at the situation in listing 6.6 where we have a test with its body
commented out.

First of all, why did we comment it out? Maybe we started writing it and realized
halfway through that it’s too big a step, commented it out, wrote a different test
instead, and forgot to come back to flesh out the commented-out test. Maybe we were
experimenting with something that broke the test and decided to comment it out
instead of deleting it, because we might soon want to restore it back to what it was.

Whatever the reason was for commenting out the test’s body, there would’ve been
a better option. The rule of thumb is to delete code, don’t comment it out. You have ver-
sion control, right? Plus, modern IDEs give us a local history with which we can undo
changes that never reached the version control repository.

An empty test is much better than a commented-out one also because it’s a clear
placeholder for a test that hasn’t been written—for behavior that’s currently missing,
broken, or unverified.

Maintaining a test list in code

Many programmers maintain a test list—a list of tests that should be written
(but haven’t been, yet). Some programmers prefer the low-tech approach of scrib-
bling notes on a piece of paper beside the keyboard. Others prefer to keep their test
lists next to the test code. Though | personally prefer adding a //TODO comment into
a test class to identify a missing test, others prefer creating empty test method
placeholders.

126

6.4.3

CHAPTER 6 Trustworthiness

(continued)

Using such empty placeholder methods as the test list can lead to the shallow prom-
ise problem when the programmer moves back and forth in the code base, acciden-
tally leaving behind some of those placeholders. With that in mind, | suggest that you
mark such placeholders with the JUnit @ Ilgnore annotation to make it more clear that
those tests haven’t been implemented properly and that the behavior described
doesn’t exist yet.

Even better would be to pick up the good old pen and paper. Aside from a clear sep-
aration of what’s been implemented and what’s still to do, pen and paper don’t con-
strain you to alphabetic notes—you can sketch diagrams, when that’s the most
natural way of describing what you’re thinking.

Our second archetype of shallow promises was shown in listing 6.7: a test without
assertions. The solution is simple: make sure you assert something. Though you might
dig into your favorite static analysis tools to see if there’s a way to check for this auto-
matically, there’s also a simple technique that helps in putting in those assertions: start
with the assert.

When you start writing the test by first typing in the assertion you eventually want
to make, you’re making it difficult to accidentally remove that assert from the result-
ing test. Furthermore, starting with the assertion helps you focus on the essence of the
test. What specifically is the behavior we want to check in this test?

Starting with the assertion can also help you steer clear of our third example of a
shallow promise, shown in listing 6.8—a test that checks something less thoroughly
than its name suggests. After all, when all you have is the name of the test and the
assertion statement, it’s almost impossible to not see if they’re in conflict.

Another trick that you might consider is to leave the test’s name initially empty or
call it, for example, TODO(), until you’ve fully sketched out the test. It’s easier to name
a test once you've figured out exactly what behavior it’s going to check.

The key here, as with all of these tricks, is to make it as easy as possible for the pro-
grammer (you) to see and notice when a test isn’t doing what it claims. With that in
mind, merely keeping tests small and focused is already a big help.

Summary

In this section we talked about tests that don’t deliver on their promises. We identified
three archetypes of such tests:

= Tests that don’t do anything
= Tests that don’t actually test anything
= Tests that aren’t as thorough as their names suggest

In all of these cases we’re putting ourselves and our colleagues at risk of wasting pre-
cious time by making false assumptions, making flawed decisions based on those
assumptions, and looking at the wrong places when we find out that things aren’t as

6.5

6.5.1

Lowered expectations 127

they should be. Time is one of the true constraints we have in our lives—don’t waste it
with such trivial mistakes as a test making a shallow promise.

With that in mind, you should be sure to delete code instead of commenting it out,
making sure that you don’t leave test code around without assertions, and you should
be extra careful in keeping your tests’ names in sync with what they’re actually check-
ing. Starting with the assertion, naming the test affer it’s written, and keeping tests
small can all be of great help. In the end, such tiny bits of discipline can save many
hours in a situation where every minute counts.

Speaking of discipline, our next test smell stinks of an interesting type of lapse in
discipline.

Lowered expectations

Programmers tend to be detail-oriented. We also tend to be lazy and often look for the
easiest way of doing things. That’s good—a lot of the time the easiest thing is what we
should do—but sometimes we can overdo it and we end up shooting ourselves in the
foot along the way.

This test smell is called lowered expectations because it’s a case of seeing an easy way
out and taking it at the cost of lowered standard of certainty and precision. Taking a
shortcut like that can often help you move faster, giving enough certainty that the
piece of code you just added does in fact make a difference in the program’s output
or behavior. In the long run, such tests can maintain a false sense of security precisely
because of their imprecision.

Let’s look at an example to illustrate this risk.

Example

The example shown next suffers from split logic, a test smell we’ve covered already,
and lowered expectations. See if you can spot them.

Listing 6.9 Calculating cyclomatic complexities for source files

public class ComplexityCalculatorTest {
private ComplexityCalculator complexity;

@Test
public void complexitylsZeroForNonExistentFiles() {
assertEquals(0.0, complexity.of(new Source('NoSuchFile.java™)));

}

@Test

public void complexityForSourceFile() {
double samplel = complexity.of(new Source('test/Samplel.java'™));
double sample2 = complexity.of(new Source("'test/Sample2.java'™));
assertThat(samplel, is(greaterThan(0.0)));
assertThat(sample2, is(greaterThan(0.0)));
assertTrue(samplel != sample2);

128 CHAPTER 6 Trustworthiness

What we have in the listing is a test class that defines the expected behavior of a
ComplexityCalculator calculating the cyclomatic complexity of a given source file. 7

First of all, we clearly have a case of split logic, as we established already. The test is
dealing with magic numbers because the reason for that number being 0.0 or greater
than 0.0 is hidden in the two source files referenced only by path: test/Samplel.java
and test/Sample2.java.

We already know what to do with split logic, so let’s not pay too much attention to
that; we mostly care about the lowered expectations right now.

Take a look at complexityForSourceFile() in listing 6.9. Note how we make three
assertions to verify that the complexity was calculated correctly. First, we verify that for
both source files the result is greater than zero, then we verify that both source files
received a different result. Assuming that this test passes and that both source files
should indeed receive a different result, we can be certain that there’s at least some
logic behind the calculation.

That funny way to “triangulate” our way into a somewhat vague assertion of cor-
rectness manifests the lowered expectations. We're essentially saying that it’s okay for
the actual calculation to be whatever as long as it’s not zero and not the same for two
different source files. In other words, that particular test is extremely robust for
change; so robust that it won’t break even when it should.

6.5.2 What to do about it?

The obvious solution for lowered expectations is to raise the bar higher and make the
test more specific about what you expect. In the case of listing 6.9 you might be
explicit about the exact complexity that the calculation should yield for the two
source files. That simple change would turn our five-liner into a two-liner, shown next.

Listing 6.10 Being more explicit simplifies our test

@Test
public void complexityForSourceFile() {
assertEquals(2, complexity.of(new Source('"test/Samplel.java')));
assertEquals(5, complexity.of(new Source(‘"test/Sample2.java')));
}

Much more specific, and much simpler. Listing 6.10 still suffers from the split logic
and magic number problems, but it’s no longer setting such low expectations; this
test is a lot more likely to fail if we mistakenly break the algorithm for calculating
complexity.®

It’s worth noting that being totally exact is not a virtue as such. For example, the
pixel perfection test smell described in chapter 5 points out the potential downfalls of

7 Cyclomatic complexity is a reasonably good indicator for (the lack of) code quality. A high number likely
means that the method in question is too big. Though it’s not common to run such static analysis for test code,
a test method with high cyclomatic complexity would suggest incidental details or a conditional test.

8 What would you do about the split logic in listing 6.10, by the way?

6.5.3

6.6

6.6.1

Platform prejudice 129

a test being too specific. You should look for an appropriate balance and level of
abstraction to express your tests.

Summary

Tests are supposed to fail if the behavior they’re specifying is broken. The lowered
expectations test smell leads to tests that are overly robust—they don’t fail when they
should.

The essence of lowered expectations is an assertion that’s too vague to properly
describe the expected behavior. When the assertions are too vague, you're contribut-
ing to a false sense of security; the functionality might be broken and yet your loosely
checked vague assertions might pass with flying colors.

The obvious solution to lowered expectations is to raise the bar by making your
assertions more specific and precise. By expressing your interests more directly, you’re
making your intent clear, and avoiding the false sense of security because your tests’
assertions will actually fail when the implementation changes in undesirable ways.

With that said, there’s nothing fundamentally bad about leaving out details in your
tests. In fact, being too specific with your assertions could mean that you’re risking the
problems of pixel perfection.

Next up, we have a couple of test smells that relate to conditional behavior. The
first—like so many things in life—is born from good intentions but smells like trouble.

Platform prejudice

We’ve come a long way since the word computer was synonymous with one specific
product that everybody used. Programmers increasingly need to consider multiple
alternative platforms and operating systems for their software. Though Java was once
pitched at us with the tag line “write once, run anywhere,” we’ve all found ourselves
implementing platform-specific functionality because not everything is abstracted away.

With our software products concerned with multiple platforms, our tests must do
the same. The platform prejudice test smell could be described as a failure to treat all
platforms equal. It’s more intricate than that, but perhaps an example will make it
crystal clear.

Example

The following example checks that a Configuration class properly identifies the
default downloads directory for the underlying platform.

Listing 6.11 Checking platform-specific download folders

@Test
public void knowsTheSystemsDownloadDirectory() throws Exception {
String dir = Configuration.downloadDir().getAbsolutePath();
Platform platform = Platform.current();
if (platform.isMac()) {
asserteEquals(dir, matches(*'/Users/(.*?)/Downloads™));
} else if (platform.isWindows()) {

130

6.6.2

CHAPTER 6 Trustworthiness

assertThat(dir.toLowerCase(),
matches('c:\\users\\(.*?)\\downloads'™));
3
3

The first thing that stands out is the if-else hack for carrying out different assertions
when running on different platforms. In other words, only one of those branches gets
executed on any given platform.

This is problematic for a couple of reasons. First, what if we’re running on Linux?
The test in listing 6.11 doesn’t indicate in any way that it’ll silently do nothing when
it’s executed on a platform other than Mac OS X or Windows. Second, when running
the test, we’re only checking for the correct behavior on the platform that we happen
to run on. That means the test will pass regardless of whether the behavior is broken
for other platforms.

So what might we do about this problem?

What to do about it?

Listing 6.11 brings up a couple of different problems. First of all, we’re hiding crucial
information within the test that really should be made visible to the outside; namely,
the fact that we have separate branches of checks that are performed for specific plat-
forms but only when running on those specific platforms.

One way to make those branches visible is to split listing 6.11 into multiple tests,
one per platform. This is shown next.

Listing 6.12 Different tests for different platforms

public class TestConfiguration {
Platform platform;
String downloadsDir;

@Before
public void setUp() {
platform = Platform.current();
downloadsDir = Configuration.downloadDir() .getAbsolutePath();

}

@Test
public void knowsTheSystemsDownloadDirectoryOnMacOsX()
throws Exception {
assumeTrue(platform.isMac());
assertEquals(downloadsDir,

matches("'/Users/(.*?)/Downloads™)); Abort test
¥ if on wrong

platform
@Test

public void knowsTheSystemsDownloadDirectoryOnWindows()
throws Exception {
assumeTrue(platform.isWindows());
assertThat(downloadsDir.toLowerCase(),
matches("'c:\\users\\(.*?)\\downloads'));

Platform prejudice 131

Note how we’ve also added guard clauses that use the org.junit.Assume#assume-
True() assumption API for aborting test execution @ when not running on a specific
platform. When such an assumption fails, JUnit won’t execute the remainder of the
test. Unfortunately, JUnit marks such tests as passed even though we really don’t know
whether the functionality is correct on those platforms.’

Even with the platform-specific tests now visible to the outside, the second and
more fundamental problem remains: only one of these tests will be executed. In order
to run all three, one would need three different computers. That problem stems from
the design of the code under test and our test smell highlights the need for a refactor-
ing.

We should strive to refactor the code base so that the Platform can be substituted
on a test-by-test basis, allowing us to run all of the tests in listing 6.12 on any platform.
After such refactoring our tests might look like the following.

Listing 6.13 Refactoring the design gets rid of the platform prejudice

@Test
public void knowsTheSystemsDownloadDirectoryOnMacOsX()
throws Exception {
String downloadsDir = new MacOsX().downloadDir();
assertEquals(downloadsDir,
matches(*'/Users/(.*?)/Downloads™));
}

@Test
public void knowsTheSystemsDownloadDirectoryOnWindows()
throws Exception {
String downloadsDir = new Windows() .downloadDir();
assertThat(downloadsDir.toLowerCase(),
matches(*'c:\\users\\(.*?)\\downloads'™));
}

Note how we’re directly instantiating the specific Platform subclass instead of going
through the indirection of Platform.current()and then working around the prob-
lem of running conditional tests based on what that Platform turns out to be. The
platform-detecting behavior of Platform.current() is something we need to test
somewhere, but those complications don’t belong to tests that deal with the behavior
of the platform implementations themselves.

On line feeds and carriage returns

If you’ve worked on systems that need to run on both Windows and UNIX systems,
you’ve probably bumped into one notable difference between these platforms, aside
from the different file paths—the newline characters.

¢ This issue has been on the table with JUnit developers for a while. I remain hopeful that it'll be fixed soon.

132

6.6.3

CHAPTER 6 Trustworthiness

(continued)

Traditionally, applications written for Windows have expected all kinds of text files to
have their lines separated by two characters (carriage return and line feed—\r\n)
whereas UNIX-like systems have standardized on just one (the line feed character,
\n).

Depending on what kind of systems you’re working on, it may or may not be important
that you write your tests using the platform-specific newline characters instead of
hardcoding a \n. Just using \n will usually turn out okay. Usually.

Some programmers choose to use a constant that adapts to the platform the code
is executed on, just to be sure, like so: static final String NL = File.path-
SeparatorChar == ":" 2 "\n" : "\r\n"';

Note that doing this in your test code also implies that any data files you’re process-
ing need to be either generated from the test code or adapted to match the platform-
specific newline characters.

Summary

Platform prejudice is a test smell that tends to creep in with the demand to support
multiple platforms such as Linux, Mac, and a bunch of Windows variants. When your
tests start carrying out different execution paths and different assertions based on
which platform you’re running on, you’re asking for trouble.

Whenever you see those multiple platforms mentioned in your tests, you should
make them visible to the outside by pulling them into separate tests. That way at least
you’re aware of the existence of platform-specific logic.

You still have conditional test execution, as splitting the tests doesn’t yet fix the
actual problem. Even after splitting the tests and using JUnit’s nice Assume API instead
of brutal if-else hacks, you might still be looking at the list of tests in your IDE,
falsely thinking that all of that behavior spelled out by those nicely named tests actu-
ally works on all platforms you support, because they all seem to be passing even
though some of them weren’t run.

The real solution can be found in refactoring the code base such that the test smell
disappears. Wherever you have platform prejudice in your tests, you should look for
ways to streamline the tests so that each test can instantiate and use the specific plat-
form it wants.

In the end, the root cause for platform prejudice can be traced to a tiny fraction of
platform detection logic somewhere. That logic should be isolated with a set of tests
that are explicit about running on just one particular platform, isolating the problem
and making it much more manageable.

Platform prejudice is a special case of conditional tests: executing (or not execut-
ing) a test based on a condition that’s hidden away inside a test. Let’s take a moment
to explore such conditional tests in a more generic context.

6.7

6.7.1

Run
directory
listing

Conditional tests 133

Conditional tests

Modern programming languages are amazing. Over the years we’ve seen languages
evolve and APIs expand. Among other things, we’ve seen language constructs make
their way from libraries into the core language. But more power isn’t good when it’s
used wrongly, and the conditional test smell is a case in point.

A conditional test is one that’s hiding a secret conditional within a test method,
making the test logic different from what its name would suggest. Our previous test
smell, platform prejudice, featured an example of one specific type of conditional
test, but let’s make the case for conditional tests in our tests being bad in general, and
we’ll do that with an example.

Example

The next listing presents a test that checks the behavior of a Process object responsi-
ble for executing system commands. This particular test has been written to check
that arguments are being passed correctly.

Listing 6.14 Checking that a system command was executed correctly

@Test Create
public void multipleArgumentsAreSentToShell() throws Exception { temp
File dir = createTempDirWithChild(hello.txt"); </ files

String[] cmd = new String[]l { "Is", "-1", dir.getAbsolutePath() };

if (process.exitCode() == 0) { Check
assertEquals(hello.txt", process.output().-trim(Q)); listing

g> Process process = new Process(cmd).runAndWait();

}
}
Let’s see what we’re doing here. First up, the test creates a temporary directory with a
file @ called hello.txt and then runs a directory listing @ in that temporary directory.
Next, we have the hidden conditional.'’ If the process exited clean (exit code is zero),
we assert that the directory listing € contains exactly what we expect to see with the
specific arguments that were given.

The problem with this conditional branch is that it might evaluate to false and,
subsequently, the assertion wouldn’t be made and the test would silently pass. For
example, we might’ve broken the Process#runAndWait() method in such a way that
any system command will fail, yielding a non-zero exit code. Our test in listing 6.14
would happily pass despite nothing actually working.

Somewhat undesirable, no?

10 Tt’s hiding in plain sight, just invisible from looking at the outline of the class and the names of test methods.

134 CHAPTER 6 Trustworthiness

6.7.2 What to do about it?

Again, a test should fail when the behavior it is testing breaks. If something goes
wrong, you should loudly announce it, not swallow it in silence.

With that in mind, when stumbling on a conditional in our tests, you should make
sure that your test has a chance of failing in every branch of that conditional. In listing
6.14 we could do that by adding an assertion for the process having exited success-
fully."! This is shown next.

Listing 6.15 Replacing the conditional with an assertion

@Test
public void multipleArgumentsAreSentToShell() throws Exception {
File dir = createTempDirWithChild("hello.txt™);

String[] cmd = new String[] { "Is", "-1", dir.getAbsolutePath() };
Process process = new Process(cmd).runAndWait();

assertEquals(0, process.exitCode());

assertEquals(hello.txt", process.output(Q).-trimQ);
3
With the addition of that assertion, the test will fail unless the process exits properly,
solving the problems previously caused by the conditional statement.

In addition to ensuring that each branch of the conditional will trigger a failure
when appropriate, you should consider making each branch a test of its own. After all,
the conditional wouldn’t have made sense if it always evaluated to the same result, so
clearly there are multiple potential execution paths the software should expect. In our
simple example in listings 6.14 and 6.15, the alternative execution path would be one
where the command execution fails. Hence, you might add a new test that checks the
exit code being non-zero:

@Test

public void returnsNonZeroExitCodeForFailedCommands() {
String[] cmd = new String[] { "this", "will", "fail" };
Process process = new Process(cmd).runAndWait();
assertThat(process.exitCode(), is(greaterThan(0)));

}

With this addition, all branches of the conditional of listing 6.14 are fully covered with
tests that don’t suffer from the same problem. We have the original test for making

sure that arguments get passed on to the underlying shell, and we have the test seeing
that the exit code signals failure when the system command fails.

' Semantically, a JUnit assumption would be a better fit but, at the time of writing this, the Assume API is still
broken and failed assumptions will silently abort the test and mark it as passed, which is exactly what we don
want.

Summary 135

6.7.3 Summary

Conditional statements in tests are bad because they tend to be misleading. They
might be passing when they shouldn’t and even when they pass for the right reasons,
we don’t know unless we fire up the debugger and see whether the execution path did
in fact go through our conditionally executed branch.

As a rule of thumb, all branches in a test method should have a chance to fail. Fur-
thermore, since each of those branches represents a different scenario and different
behavior, they really should be split into separate tests.

The conditional structure such as an if block represents some kind of uncertainty
about how the code’s execution will turn out. If that’s not the case and there’s no
uncertainty then the best option might be to delete the conditional and move on.'? If
there’s some uncertainty, it tends to be a good idea to replace the conditional with an
assertion that confirms and makes explicit the assumptions the test operates under.

6.8 Summary

This chapter walked through a number of test smells dealing with untrustworthy and
unreliable tests. Roughly half of the smells in this chapter revolved around tests that
won’t tell you when something breaks—tests that don’t fail when they should. The
other half deals with tests that mislead in other ways.

We began with the potential pitfalls of abused comments in the form of com-
mented-out tests and misleading comments. You saw the problems with neverfailing
tests and tests that make shallow promises. Lowered expectations are a problem
because you might not know when things are broken, and the same goes with plat-
form prejudice and other conditional tests.

All of these test smells share the common symptom of misleading you into think-
ing that everything is fine when it’s not, whether that’s by claiming that a test passes
when it’s not even run or by claiming to test some behavior when it’s not checking
anything whatsoever.

In a way, the test smells in this chapter have the combined downsides of the smells
described in chapters 4 and 5: they reduce readability and make maintenance more
difficult.

This chapter concludes part 2 and our catalog of test smells. In part 3 we’ll shift
our attention to totally different topics, such as testable designs and pragmatic
approaches to writing and running tests with the latest and greatest that technology
has to offer.

12 There aren’t many good reasons to use an if in a test method, and even for the good ones there’s always a
better alternative.

Part 3

Diversions

Er a moment, the working name of this third part of the book was
“Advanced.” However, reconsidering the use of such a strong word loaded with
meaning, we concluded that it would be misleading to call it that. Instead, we
decided to call it “Diversions” because that’s what it is—a set of diversions that
are interesting and useful to the advanced practitioner but aren’t exactly
“required reading” for becoming one.

The topics in this part are about taking what you have and turning the knobs
farther toward eleven. In chapter 7 we’ll open the can of worms labeled “design”
and try to paint a picture of what constitutes (or doesn’t constitute) as testable
design. After all, our ability to write tests for our code goes hand in hand with
our ability to design our code—period.

In chapter 8 we’ll turn the boat 180 degrees and explore the symbiosis of JVM
languages and how it would look if we tested our Java code with tests written in
another programming language. This may or may not be a good idea for the
project you’re working on today. However, there’s no denying that alternative
JVM languages are here to stay, and it could very well be that some time later
you’ll thank yourself for writing some of those tests with one. Who knows!

This part concludes with the more down-to-earth topic of sluggish builds. It’s
a common phenomenon to see build times grow longer and longer over the life-
time of a project until your feedback loops are next to unbearable. That’s why
we’ve dedicated chapter 9 to speeding up our builds, both by tweaking our test
code (which is often a major contributor to the build time) and by refining the
way our build is run.

Ready to roll?

lestable design

In this chapter

= What is testable design?
= What is untestable design?
= How to create testable designs

In the preface of Implementation Patterns (Addison Wesley Professional, 2007), Kent
Beck compares programming to an American TV show called Jeopardy. In the show
the host provides answers and the contestants’ job is to guess which question that
answer was for. “A short section at the end of a book.” “What is an epilogue?” “Correct.”

Kent makes the analogy to programming and points out that Java provides
answers in the form of its language constructs, and the programmer’s job is to fig-
ure out what the questions are and which problems are solved by which language
construct. He offers the following example: if the answer is “Declare a field as a
set,” the question might be, “How can I tell other programmers that a collection
contains no duplicates?”

The same happens with design. Throughout our education and especially the
first years of our professional careers, we’re taught solutions. Our senior colleagues
show us “the way things are done around here,” and we pick up coding conventions
from the code we work with, and sometimes we pick up stuff from books like this.

139

140

7.1

7.1.1

CHAPTER 7 Testable design

But it’s not enough to know solutions. We also need to learn to identify the problems
they solve. That’s why this book includes a catalog of test smells.

This chapter aims to identify the common testability problems that stem from
design decisions, such as making a method static, and the use of certain language
constructs like final. We’ll start with a discussion of what we’re looking for when we
say we want “testable design,” a modular design that likely abides by certain design
principles and avoids certain implementation details that make it harder to write tests.
From there we’ll move on to detailing the specific testability issues we try to avoid and
we’ll conclude the chapter with simple guidelines for designing testable code.

What’s testable design?

The fundamental value proposition of testable design is being better able to test code.
Quoting Roy Osherove, the author of The Art of Unit Testing with Examples in .NET
(Manning Publications, 2009), “a given piece of code should be easy and quick to
write a unit test against.” More specifically, testable design makes it easy to instantiate
classes, substitute implementations, simulate different scenarios, and invoke particu-
lar execution paths from our test code.

Testability isn’t an absolute yes-or-no property of a design. As Scott Bellware put it,
“Testability is not a term that describes whether software can be tested. It refers to soft-
ware that is easily tested.”! It should be a breeze for a programmer to set up scenarios
in unit tests. The less testable the design, the more burdensome it is for the program-
mer to write those tests. The big question is, what are testable designs made of—how
do we end up with such designs?

Though you’ll often hear quips about software development being a young profes-
sion, we have decades of experience to draw from and that experience has taught us a
lot about constructing software in a variety of programming paradigms. One of the
things we’ve learned is the virtues of modular design.

Modular design

What makes a design modular is its nature of being composed of separate modules,
each serving a particular purpose in the design. By breaking down a program’s overall
functionality into distinct responsibilities and assigning those responsibilities to sepa-
rate components, we end up with a design that has plenty of flexibility.

That flexibility builds on the various seams we’ve introduced by way of composing
the overall design from discrete modules, with each individual module containing
everything necessary to fulfill its responsibility. This style of programming aims at hav-
ing as few dependencies between modules as possible, as illustrated in figure 7.1.

Constructing software from small components helps groups of people collaborate
on larger products because functional changes to the product tend to be more iso-
lated to a specific part of the code base. This follows from the characteristic of

! Scott Bellware, “Good Design is Easily-Learned,” Jan. 12, 2009, http://mng.bz/IAMK.

http://mng.bz/IAMK

What’s testable design? 141

Figure 7.1 Modular designs
minimize the dependencies
between modules

modular design, where the system is partitioned into discrete functional elements
with their respective responsibilities over a specific function or capability.

This structure, encouraged by modular design, enables after-the-fact augmentation
of a system, changing or adding new functionality by merely plugging in a new module,
as long as the modules are sufficiently self-contained and loosely coupled, and func-
tional concerns are separated within the code base. This also directly aids testability
because the properties of modular design are the ones that make code testable.

Generations of programmers have put these ideals in practice and found them a
valuable goal to strive for. But the concept of modular design is fairly abstract. Luckily,
our elders have also crystallized some of their hard-earned experience into somewhat
more concrete design principles for us to keep in mind.

7.1.2 SOLID design principles

Plenty of design principles are documented in literature. One of the more widely
spread collections of design principles are the SOLID principles. SOLID is an acronym
and stands for a set of five design principles documented by Robert C. Martin.

The nice thing about object-oriented design principles such as SOLID is that they
mesh well with testability. Keep your code in line with design principles such as SOLID
and you’re that much more likely to end up with a modular design.

So let’s see what the SOLID principles are and how they contribute to the testability
of a design.

SINGLE RESPONSIBILITY PRINCIPLE
The Single Responsibility Principle (SRP) says, “There should never be more than one
reason for a class to change.” In other words, classes should be small, focused, and
have a high cohesion. It goes further than that, as methods should also have just one
reason to change. This is what Sandro Mancuso calls the inside view.?

Code that follows the SRP is easier to approach and understand, which in turn
makes it easier to test because writing tests is essentially an act of specifying the

2 See “SRP: Simplicity and Complexity,” July 26, 2011, http://mng.bz/08ks.

http://craftedsw.blogspot.com/2011/07/srp-simplicity-and-complexity.html
http://mng.bz/08ks

142 CHAPTER 7 Testable design

expected behavior, expressing our understanding of the problem the code is
intended to solve. Furthermore, taking the inside view, the less complexity a method
has, the less complexity is required in a test to thoroughly test that code.

OPEN-CLOSED PRINCIPLE
The Open-Closed Principle (OCP) says that classes should be “open for extension but
closed for modification.” Though that may sound abstract, all it means is that you
want to be able to change what a class does without changing its source code; for
instance, by swapping in an alternative strategy.

Classes that delegate specific responsibilities to other objects allow tests to substi-
tute a test double when needed to simulate a specific scenario.

Liskov SUBSTITUTION PRINCIPLE

The Liskov Substitution Principle (LSP) says, “Subclasses should be substitutable for
their base classes.” In essence, code that uses an instance of class A should continue to
function properly if passed an instance of class B, a subclass of A.

LSP is about class hierarchies that exist for the right reason, embodying a valid
abstraction, and not merely as a vehicle of code reuse because it happens to be conve-
nient. Though among the less crucial SOLID principles from a testability point of view,
violating the LSP does imply a handicap for the test-infected programmer. Class hier-
archies that follow the LSP contribute to testability by enabling the use of contract
tests—tests written for an interface that can be executed against all implementations of
that interface.

INTERFACE SEGREGATION PRINCIPLE

The Interface Segregation Principle (ISP) suggests that “Many client specific inter-
faces are better than one general purpose interface.” In short, you should keep inter-
faces small and focused.?

Small interfaces improve testability by making it easier to write and use test dou-
bles. For instance, one test might want to stub collaborator A, fake collaborator B, and
substitute a spy for collaborator C. With each collaborator having its own small inter-
face, it’s straightforward to implement the test doubles.

DEPENDENCY INVERSION PRINCIPLE

The fifth SOLID principle is the Dependency Inversion Principle (DIP), which says
code should “depend on abstractions, not on concretions.” Taken to one extreme, the
DIP suggests that a class shouldn’t instantiate its own collaborators but rather have
their interfaces passed in.

For writing tests, the ability to pass collaborators in rather than selectively override
parts of the code under test is huge. Such dependency injection is a boon to testability
because not only is substituting collaborators possible, but it’s also made effortless: the
tests use the code just like it’s used in production.

It’s important for programmers to understand common design principles and to
be able to envision concrete implementations and their implications. Over time, you

3 Sound familiar? I once overheard someone refer to the ISP as “SRP for interfaces.”

Testability issues 143

gather a sufficient collection of mental notes and learn to pattern-match them against
the code you’re looking at, being able to draw on that knowledge and experience.

7.1.3 Modular design in context

It’s not that easy, because though we’re pretty good at identifying suitable imple-
mentation alternatives for the problem we’re solving, we should also be able to envi-
sion those solutions as part of the larger whole—from the perspective of the code
that pulls together those smaller components. Tim Berners-Lee, the man who
invented the World Wide Web, once wrote the following about the principles of
design: “It is not only necessary to make sure your own system is designed to be
made of modular parts. It is also necessary to realize that your own system, no mat-
ter how big and wonderful it seems now, should always be designed to be a part of
another larger system.”*

In other words, modularity as such isn’t good unless the design is fit for the way
you want to use it and grow it. You're in good fortune—I have a trick up my sleeve that
makes it easier to arrive at modular designs that respect common design principles
and behave well in their larger context.

7.1.4 Test-driving toward modular design

The fastest way to absorb modular design is to start test-driving your code. The act of
writing tests before the implementation they call for is essentially a way to ensure that
you're taking the client’s view on the code you’re shaping. That means that you're
that much more likely to end up with a design that’s fit for purpose. Plus, there’s no
question of how testable the design is.

It’s not just the test-first facet of TDD that spurs modular design. TDD practitioners
also refactor their code frequently so they're constantly looking for too big methods
to split, better abstractions to introduce, and duplications to remove. J.B. Rainsberger
talks about how minimizing duplication and maximizing clarity leads to modular
design in his article on “The Four Elements of Simple Design.™

There are many techniques and ways to learn modular design at your disposal. It’s
only a matter of choosing whether you care about your code enough to adopt disci-
plined practices, such as test-driven development and merciless refactoring.

Now let’s take a look at some of the obstacles that we often find in our way, stand-
ing between us and our testable design.

7.2 Testability issues

Most often, a programmer struggling to write a test is facing off against one of a few
common show-stoppers. They mostly fall under two categories: restricted access, and
inability to substitute certain parts of the implementation. Though there are many

4 Tim Berners-Lee, “Principles of Design,” last updated March 2, 2010, http://www.w3.org/Designlssues/
Principles.html.

® J.B. Rainsberger, “The Four Elements of Simple Design,
the-four-elements-of-simple-design

»

2009, http://www.jbrains.ca/permalink/

http://www.w3.org/DesignIssues/Principles.html
http://www.w3.org/DesignIssues/Principles.html
http://www.jbrains.ca/permalink/the-four-elements-of-simple-design

144 CHAPTER 7 Testable design

ways for testability to be less than ideal, a lot of the time the first barrier to get over is
as trivial as being unable to instantiate a class in your test.

7.2.1 Can’t instantiate a class

One of the first things we as programmers tend to do when writing a test is to instanti-
ate some objects. It could be an object you want to test that you can’t instantiate, but
most often the culprit is a collaborator you need to pass in to the object you’re testing.

This mostly happens with third-party libraries that weren’t designed with testability
in mind, but sometimes you only have yourself to blame. Typically, you’ve been overly
conservative with your visibility modifiers and now you’re paying for it as the compiler
points out your short-sightedness.

Another common cause for the inability to instantiate a class with a constructor is
a static initialization block that assumes you’re running in a full-blown production
environment, leading to a totally unexpected exception blowing up in your face when
you try to run your test. For instance, consider the following snippet of testability-
destruction:

public class DocumentRepository {
private static final String API_KEY = "'d869db7fe62fb07c";
private static String sessionToken;

static {
String serverHostName = System.getenv("'ACL_SERVER_HOST'");
SessionClient api = new SessionClientImpl(serverHostName);
sessionToken = api.openSession(AP1_KEY);

¥
public DocumentRepository() {

}

}

Trying to instantiate this class in a test running on your laptop, you could easily stum-
ble on a NullPointerException because you hadn’t set an environment variable
named ACL_SERVER_HOST, or a UnknownHostException because your laptop fails to
connect to the real server running in the lab behind a firewall. Dependencies like this
are business as usual; the real problem is that, since the dependency is hardcoded into
a static initialization block, there’s not much you can do about it.

7.2.2 Can’t invoke a method

Even with all objects instantiated and ready to go, your test might stumble on executing
the interaction and scenario you want. For instance, you might want to invoke a method
that’s marked private. It’s the overly conservative visibility modifier issue again!®
Another source for the inability to invoke the method you want might be its opac-
ity; you can’t figure out what the method expects to receive as its arguments. This is

® T’d argue that in this case the true issue is that the private method should really be public on a new class.
Clearly it’s complicated enough, because otherwise you wouldn’t want to test it directly.

Testability issues 145

especially true with APIs that rely on good old java.util.Map. Though that may be a
“flexible” API, it comes with some serious issues. You can’t intuitively see what the Map
should contain, so you have to go into the source code or documentation to find out,
which grinds your pace to a halt. The same goes with the private method you want to
test directly. Unless you refactor the design, you’re left with two bad alternatives: don’t
test it or whip up the Reflection API to circumvent the visibility modifier.

7.2.3 Can’t observe the outcome

Even if you have the means to invoke the method you want, you might have problems
determining whether the right things happened afterward. The “hello world” of unit
tests is to invoke a method and assert something about its return value. But if the
method is supposed to engage in an interaction with collaborating objects or if it
doesn’t return anything as a void method, it gets more complicated.

Sometimes you find yourself incapable of intercepting the interaction you’re inter-
ested in. This might be because the collaborator is hard-wired into the method you’re
testing and can’t be substituted with a test double. Other times, your trouble stems
from the method under test starting threads to do the work, but our test code can’t
intercept that thread’s execution.

This ties closely with the other major category of testability issues: the trouble you
have to go through to selectively substitute parts of the implementation.

7.2.4 Can’t substitute a collaborator

Failure to substitute a collaborator is a common testability problem. It might be
because the production code has a hardcoded new Collaborator() where you want to
test its interaction with that particular collaborator. In other words, you’re missing a
“seam” where you can intercept and observe the interaction; you’re technically inca-
pable of substituting the collaborator.

Though such hardcoded collaborator implementation is all too frequent and
extremely inconvenient, perhaps even more common an occurrence is a structure
that doesn’t make it impossible to substitute a collaborator, but that makes it unnec-
essarily strenuous. That structure is sometimes referred to as a method chain: get-
Collaborator() .doStuff() .askForStuff().doMoreStuff().”

Even if you could substitute the collaborator, such a method chain means that your
test double needs to return a test double that needs to return a test double that needs
to... Tedious!

7.2.5 Can’t override a method

Substituting test doubles for collaborators is a crucially important tool in writing unit
tests. But it’s not the only tool: sometimes you don’t want to substitute a collaborator

7 This situation calls for a reference to the Law of Demeter, which warns us about code knowing too much about
other units of code: http://en.wikipedia.org/wiki/Law_of_Demeter.

http://en.wikipedia.org/wiki/Law_of_Demeter

146 CHAPTER 7 Testable design

but rather a part of the object under test. Say the method you’d like to invoke and test
acquires a collaborator through a method like this:

private static final Collaborator getCollaborator() { --. }

Now, all three of those keywords (private, final, static) essentially mean that you
can’t do this in your test:
@Test
public void test() {
final Collaborator collaborator = new TestDouble();
ObjectUnderTest o = new ObjectUnderTest() {
@0verride
private static final getCollaborator() {
return collaborator;
3
}:

}

You can’t do that because the compiler won’t let you override a method that’s final, a
method that’s private, nor a method that’s static.® Again, your options are limited
to a range from bad to worse and involve heavy-duty reflection and byte code manipu-
lation—none of which we want to do.

Having faced all of these testability issues again and again over the years, I've come
to appreciate a few simple heuristics—guidelines—for testable design. Let’s take a
look at them.

7.3 Guidelines for testable design

The following is a set of do’s and do not’s I've gathered and whose importance I've
learned through repeated yak shaving.? They aren’t in any particular order, and none
of them is a universal truth—just things to keep in mind so that you think twice before
deciding to go against these guidelines.

With that disclaimer, let’s start with some guidelines that relate to what we talked
about in the previous section.

7.3.1 Avoid complex private methods

There’s no easy way to test a private method. Therefore, you should strive to make it
so that you don’t feel the need to test your private methods directly.

Note that I didn’t say you shouldn’t test your private methods, but that you
shouldn’t test them directly. As long as those methods are trivial utilities and shorthands
to make your public methods read well, it should be perfectly fine that they get tested
only through those public methods.

8 Note that static methods can be hidden by a subclass, but that’s not the same as overriding, and largely useless
in terms of what we’re looking for.
¥ Yak-shaving defined, http://en.wiktionary.org/wiki/yak_shaving.

http://en.wiktionary.org/wiki/yak_shaving

Guidelines for testable design 147

When the private method isn’t that straightforward and when you do feel like you
want to write tests for it, you should refactor your code so that the logic encapsulated
by the private method gets moved over to another object responsible for that logic,
and where it’s a public method as it should be.

7.3.2 Avoid final methods

Few programs need final methods. The odds are you don’t need them either.

The main purpose of marking a method as final is to ensure that it isn’t overwrit-
ten by a subclass. An Oracle Technology Network article on secure coding guidelines
for Java'’ suggests that “making a class final prevents a malicious subclass from adding
finalizers, cloning and overriding random methods.” Though that’s true in some con-
texts, it doesn’t mean that you should need the final modifier.

There are two problems with the preceding logic. First, those potential subclasses
are likely written by the people sitting next to you. Second, the Reflection API can be
used to remove the Final modifier. In practice, the only situation where you might
reasonably want to make a method final is when you load foreign classes at runtime,
or you don’t trust your colleagues (which sounds like you have much bigger issues to
worry about).

You might add a third situation to this list: not trusting yourself; for example, not
trusting yourself to not accidentally override the wrong method in a concrete class
that’s part of a template method pattern."’ Even then, your tests should catch that mis-
take quite easily. (And if you’re really paranoid you could go all out and write a con-
tract test that checks for proper use with the Reflection API.)

The big question is this: does that final keyword interfere with your tests, and if
it does, does the burden of worse testability outweigh the benefit of having the final
there.

What about the performance of final?

One of the arguments that people sometimes lean on in support of final methods
is performance. Namely, it’s said that since final methods can’t be overridden, the
compiler can optimize the code by inlining the method’s implementation.

It turns out that the compiler can’t safely do this because the method might have a
non-final declaration at runtime. But a JIT compiler would be able to inline such
methods at runtime, which does present a theoretical performance benefit.

Jack Shirazi and Kirk Pepperdine, the authors of Java Performance Tuning, 2nd Edition
(O’Reilly Media, January 2003), and javaperformancetuning.com have said, “I
wouldn’t go out of my way to declare a method or class final purely for performance
reasons. Only after you’ve definitely identified a performance problem is this even
worth considering.”

10 “Secure Coding Guidelines for the Java Programming Language, Version 4.0,” http://www.oracle.com/tech-
network/java/seccodeguide-139067.html.
u “Template method pattern,” http://en.wikipedia.org/wiki/Template_method_pattern.

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://en.wikipedia.org/wiki/Template_method_pattern

148

7.3.3

7.34

CHAPTER 7 Testable design

Avoid static methods

Most static methods shouldn’t be. The reason to have them is generally either
because they don’t relate to a specific instance of a class or because we couldn’t bother
figuring out where it belongs so we made it a static method in this utility class. The for-
mer motive is solid but the latter is mere ignorance or lack of interest. Yet another rea-
son, and an unfortunately common one, is to make it easier to provide global access to
the method by making it static.

Some methods are naturally static. For example, a utility method that performs a
calculation on numbers would likely be a good candidate for a static method. So
what distinguishes a method as one that should or shouldn’t be static? Perhaps the
example in the following listing serves to make the idea more clear.

Listing 7.1 Avoid st at i ¢ methods that you might want to stub out

public static int rollDie(int sides) {
return 1 + (int)(Math.random() * sides);

}
The rollDie() method produces a random result as if you’d rolled a die with a given
number of sides. Dealing with random factors in automated tests is generally something
you should avoid, so you’ll likely want to stub out the rolIDie() method in your tests.
My rule of thumb is to not make it static if you foresee that you might want to
stub it out in a unit test one day. It turns out that I rarely need to stub out a pure calcu-
lation. On the other hand, I frequently find myself wanting to stub out static meth-
ods that serve as an entry point to a service or a collaborator object.
Pay attention to the kind of methods you declare static. A static method is easy to
write, but you’ll have a hard time later if you ever need to stub it out in a test. Instead,
create an object that provides that functionality through an instance method.

Use new with care

The new keyword is the most common form of hardcoding. Every time you “new up”
an object you're nailing down its exact implementation. For that reason, your meth-
ods should only instantiate objects you won’t want to substitute with test doubles. This
listing points out this pattern.

Listing 7.2 The new keyword hardcodes the implementation class

public String createTagName(String topic) {

Timestamper ¢ = new Timestamper();

return topic + c.timestamp();
¥
The method in the listing builds a string based on the given input and a timestamp
generated by a Timestamper, which is instantiated inside the method.

Many programmers don’t think of new as the kind of red flag that static and
final are for testinfected programmers. That doesn’t make it completely innocent,

7.3.5

Guidelines for testable design 149

as there’s no way (other than byte code manipulation) for a test to override the spe-
cific class being instantiated within the method under test; for example, the Time-
stamper in listing 7.2.

When instantiating objects, you should ask yourself: is this object something you’d
want to swap out in a test? If it’s a true collaborator and you might want to change its
implementation on a test-by-test basis, it should be passed into the method somehow
rather than instantiated from within that method.

Avoid logic in constructors

Constructors are hard to bypass because a subclass’s constructor will always trigger at
least one of the superclass constructors. Hence, you should avoid any test-critical code
or logic in your constructors.

The next listing is a contrived implementation of a wuniversally unique identifier
(UUID), which is made up of the generating computer’s MAC address and a time-
stamp.

Listing 7.3 Doing too much in a constructor

public class UUID {
private String value;

public UUIDQ {
// First, obtain the computer®s MAC address by
// running ipconfig.exe and parsing its output
long macAddress = 0;
Process p = Runtime.getRuntime() .exec(
new String[] { "ipconfig”, "/Zall'™ }, null);
BufferedReader in = new BufferedReader(
new InputStreamReader(p-getlnputStream()));
String line = null;
while (macAddress == null &&
(line = in.readLine()) != null) {
macAddress = extractMACAddressFrom(line);

}

// Obtain the UTC time and rearrange

// its bytes for a version 1 UUID

long timeMillis = (System.currentTimeMillis() * 10000)
+ 0x01B21DD213814000L ;

long time = timeMillis << 32;

time |= (timeMillis & OxFFFFO0000000L) >> 16;

time |= 0x1000 | ((timeMillis >> 48) & OxOFFF);

}
}
Let’s say you’d like to test the UUID class shown in listing 7.3. Looking at its bloated
constructor, you have a testability issue: you can only instantiate this class (or its sub-
classes) on a Windows computer because it tries to execute ipconfig /all. I happen
to be running a Mac so I’'m screwed!

150

7.3.6

CHAPTER 7 Testable design

A much better approach would be to extract all of that code into protected meth-
ods that can be overridden by subclasses, as shown here.

Listing 7.4 Moved logic from constructor to protected helper methods

public class UUID {
private String value;

public UWIDQ {
long macAddress = acquireMacAddress();
long timestamp = acquireUuidTimestamp();
value = composeUuidStringFrom(macAddress, timestamp);

}

protected long acquireMacAddress() { ..- }
protected long acquireUuidTimestamp() { --- }

private static String composeUuidStringFrom(
long macAddress, long timestamp) { ... }
3

With the modifications in listing 7.4, you can instantiate UUID objects in your tests
regardless of which operating system you’re running by overriding the specific bits
you want:
@Test
public void test() {
UUID uuid = new UIDQO {
@0verride
protected long acquireMacAddress() {
return O0; // bypass actual MAC address resolution

}
¥

}

To summarize this guideline, whatever code you find in your constructors, make sure
that it’s not something you’ll want to substitute in a unit test. If there is such code,
you’d better move it to a method or a parameter object you can override. 2

Avoid the Singleton

The Singleton pattern has cost this industry millions and millions of dollars in bad
code. It was once written down as a pattern for “ensuring a class has one instance, and
to provide a global point of access to it.” I suggest you don’t need either half of that
proposition.

There are situations where you want just one instance of a class to exist at runtime.
But the Singleton pattern tends to prevent tests from creating different variants, too.
Let’s look at the traditional way to implement a Singleton, shown in the next listing.

12 Overriding a method that’s called from the constructor is tricky and could result in unexpected behavior.
Refer to the Java Language Specification (http://mng.bz/YFFT) for details.

http://mng.bz/YFFT
http://mng.bz/YFFT

Guidelines for testable design 151

Listing 7.5 Traditional implementation of the Singleton pattern

public class Clock {
private static final Clock singletonlnstance = new Clock();

// private constructor prevents instantiation from other classes
private ClockQ) { }

public static Clock getinstance() {
return singletonlnstance;
3
}
Making the constructor private and restricting access to the getlnstance() method
essentially means that you can’t substitute the Clock instance once it’s been initialized.
This is a big issue because whenever you want to test code that uses the Clock Single-
ton, you’re stuck:
public class Log {
public void log(String message) {
String prefix = "[" + Clock.getlnstance().-timestamp() + "] *;
logFile.write(prefix + message);
¥
3
Wherever the code you want to test acquires the Clock instance through the static
Singleton accessor, your only option is to inject a new value for the Singleton
instance in the Singleton class using reflection (and you don’t want to use reflection
in your tests), or by adding a setter method for doing that.

SURVIVING A SINGLETON If you do find yourself with a static Singleton acces-
sor, consider making the singleton getlnstance() method return an inter-
face instead of the concrete class. An interface is much easier to fake when
you don’t need to inherit from the concrete class!

The much better—and testable—design would be a singleton with a lowercase ‘s’ that
doesn’t enforce a single instance but rather relies on the programmers’ agreement that
“we’ll only instantiate one of these in production.” After all, if you need to protect
yourself from sloppy teammates you have bigger problems to worry about.

7.3.7 Favor composition over inheritance

Inheritance for the purpose of reuse is like curing a sore thumb with a butcher knife.
Inheritance does allow you to reuse code but it also brings a rigid class hierarchy that
inhibits testability.

I'll let Misko Hevery, a clean code evangelist at Google, explain the crux of the
issue:'?

13 James Sugrue blog, an interview with MiSko Hevery, “The Benefits of Testable Code,” November 17, 2009,
http://java.dzone.com/articles/benefits-testable-code.

http://java.dzone.com/articles/benefits-testable-code

152

7.3.8

7.3.9

CHAPTER 7 Testable design

The point of inheritance is to take advantage of polymorphic behavior NOT
to reuse code, and people miss that; they see inheritance as a cheap way to
add behavior to a class. When I design code I like to think about options.
When I inherit, I reduce my options. I am now sub-class of that class and can-
not be a sub-class of something else. I have permanently fixed my construc-
tion to that of the superclass, and I am at a mercy of the super-class changing
APIs. My freedom to change is fixed at compile time.

On the other hand composition gives me options. I don’t have to call
superclass. I can reuse different implementations (as supposed to reusing
your super methods), and I can change my mind at runtime. Which is why if
possible I will always solve my problem with composition over inheritance.
(But only inheritance can give you polymorphism.)

Note that MiSko isn’t saying inheritance is bad; inheritance for polymorphism is
totally okay. But if your intent is to reuse functionality it’s often better to do that by
means of composition: using another object rather than inheriting from its class.

Wrap external libraries

Not everybody is as good at coming up with testable designs as you are. With that in
mind, be extremely wary of inheriting from classes in third-party external libraries,
and think twice before scattering direct calls to an external library throughout your
code base.

We already touched on the testability problems with inheritance. Inheriting from
an external library tends to be worse, as you don’t have as much control over the code
you're inheriting from. Whether it’s through inheritance or direct calls, the more
entangled your code is with the external library, the more likely it is that you’ll need
those external classes to be test-friendly.

Pay attention to the testability of the classes in the external library’s API and, if you
see red flags, be sure to wrap the library behind your own interface that’s test-friendly
and makes it easy to substitute the actual implementation.

INABILITY TO CHANGE THE DESIGN Every now and then you’ll find yourself
wondering what to do because you’re stuck in a situation where your design
isn’t testable and you can’t change the design to be more testable. Despite the
fact that the code you’re looking at is technically “yours,” this situation is the
same as with external libraries, which you also have little control over. Thus,
the approach to dealing with this testability challenge is also much alike: wrap
the untestable piece of code into a thin layer that s testable.

Avoid service lookups

Most service lookups (like acquiring a Singleton instance through a static method
call) are a bad trade-off between a seemingly clean interface and testability. It’s only
seemingly clean because the dependency that could’ve been explicit as a constructor
parameter has been hidden within the class. It might not be technically impossible
to substitute that dependency in a test, but it’s bound to be that much more work to

do so.

Guidelines for testable design 153

Let’s take a look at an example. The next listing presents a class responsible for
making remote search requests to a web service through an APIClient.

Listing 7.6 Service lookups are harder to stub than constructor parameters

public class Assets {
public Collection<Asset> search(String... keywords) {
APIRequest searchRequest = createSearchRequestFrom(keywords);
APICredentials credentials = Configuration.getCredentials();
APIClient api = APIClient.getlinstance(credentials);
return api.search(searchRequest);

}

private APIRequest createSearchRequestFrom(String... keywords) {
// omitted for brevity

b
b4
Note how the search() method acquires the APIClient with a service lookup. This
design doesn’t drive testability as well as we’d like. This listing shows how you might
write a test for this object.

Listing 7.7 Stubbing out a service lookup implies an extra step

@Test

public void searchingByKeywords() {
final String[] keywords = {"one', "two", "three"}
final Collection<Asset> results = createListOfRandomAssets();
APIClient.setlnstance(new FakeAPIClient(keywords, results));
Assets assets = new Assets();
assertEquals(results, assets.search(keywords));

}

The indirection implied by the service lookup within Assets stipulates that we go
through the extra step of configuring the service lookup provider (APIClient) to
return our test double when someone asks for it. Though it’s just a one-liner in this
test, it implies several lines of code in APIClient that only exist to work around a test-
ability issue.

Now, let’s contrast this to a situation where we’ve employed constructor injection
to pass our test double directly to the APIClient. This listing shows what that test
would look like.

Listing 7.8 Constructor parameters are easier to substitute

@Test

public void searchByOneKeyword() {
final String[] keywords = {"one", "two", 'three'"}
final Collection<Asset> results = createlListOfRandomAssets();
Assets assets = new Assets(new FakeAPIClient(keywords, results));
asserteEquals(results, assets.search(keywords));

}

154

74

CHAPTER 7 Testable design

Again, it’s just one line shorter but that’s a full 20% less than listing 7.7 and we don’t
need the workaround setter method in APICIient either. Aside from our code being
more compact, passing dependencies explicitly through the constructor is a natural,
straightforward means to wire up our objects with their collaborators. Friends don’t
let friends do static service lookups. '

Summary

We started off this chapter by discussing what testable design is, making a corollary to
modular design and introducing the SOLID design principles of the Single Responsibil-
ity Principle, the Open-Closed Principle, the Liskov Substitution Principle, the Interface Segre-
gation Principle, and the Dependency Inversion Principle. Abiding to these principles is
likely to lead to more modular design and, therefore, more testable design.

Issues with testability boil down to our inability to write tests or the excess trouble
we have to go through to get it done. These troubles include:

= Inability to instantiate a class

= Inability to invoke a method

= Inability to observe a method’s outcome or side effects
= Inability to substitute a test double

= Inability to override a method

Learning from these issues and drawing from our experience, I described a number
of guidelines to avoid the aforementioned testability issues and to arrive at testable
designs. Those guidelines teach you to avoid final, static, and complex private
methods. You also learned to treat the new keyword with care, as it essentially hard-
codes an implementation we can’t substitute.

You should avoid significant logic in your constructors because they're hard to
override. You should avoid the traditional implementation of the Singleton pattern
and instead opt for the just create one approach. You know to favor composition over
inheritance because it’s more flexible than the class hierarchy implied by inheritance.

We noted the danger of inheriting from, and making liberal direct use of, external
libraries, as such libraries are out of your control and often exhibit a less testable
design than your own. Finally, you learned to avoid service lookups and go for passing
your dependencies in through constructor parameters instead.

Though they're far from being hard-and-fast rules, keeping these guidelines in
mind and stopping to think for a second before going against them is bound to help
you devise more testable designs.

" Worried that your constructor is already taking in six parameters? It sounds like your code might be missing
an abstraction or two—that’s what such data clumps often reveal after a closer look. If that’s the case, perhaps
introducing a parameter object (http://www.refactoring.com/catalog/introduceParameterObject.html)
would help.

http://www.refactoring.com/catalog/introduceParameterObject.html

Summary 155

And there’s more! The internet is chock full of good information related to test-
able design. My favorites are probably the Google Tech Talk videos. If you have some
time to spare, go to youtube.com and search for “The Clean Code Talks.” A lot of
good stuff there!

When you’re done with those videos, we’re going to move on to another topic alto-
gether. In the next chapter, you’re going to see how you might use other JVM lan-
guages for writing tests for your Java code.

Writing tests in other
JVM languages

In this chapter

= Test smells around code comments
= Test smells around poor expectation management
= Test smells around conditional execution

Programming is about expressing your ideas and intent in a language understood
by a computer. For a Java programmer, that means writing code in a language that
the Java compiler can compile into bytecode to be run on the JVM. More than one
programming language can be used for writing code to be run on the JVM, though.

Each alternative JVM language has its distinct syntax and feel but all have some-
thing in common: they claim to be more concise and more expressive than Java for
creating applications on the JVM.

In this chapter we’ll explore what kinds of advantages these modern program-
ming languages might have for the specific task of writing unit tests. You’ll witness
the ups and downs of writing tests in a dynamic language such as Groovy, and
dip your toes into test frameworks that take advantage of these dynamic languages’

156

8.1

811

The premise of mixing JVM languages 157

expressive power and the BDD style of specifying desired behavior to offer a serious
alternative to writing tests in Java and JUnit.
As Dean Wampler said in 2009, “This is an exciting time to be a Java programmer.”

The premise of mixing JVM languages

The history of alternative JVM languages began almost 15 years ago when Jim
Hugunin wrote Jython, an implementation of the Python language for the JVM.
Though Jython struggled to gain momentum and its development had practically
ceased by 2005, it served as inspiration for many more JVM languages to come.

Soon after the Jython project was announced, other languages joined the race.
JRuby, a Java implementation of the Ruby programming language, had been under
development since 2001, and James Strachan announced Groovy as a serious alterna-
tive for scripting on the JVM in 2003. Also in 2003, Martin Odersky released the Scala
programming language, and in 2007 Rich Hickey’s Lisp dialect, Clojure, joined
the ranks of serious JVM languages. With all of these languages running on the
JVM, I wouldn’t be surprised if the next 10 years was named the decade of polyglot
programming.’

General benefits

Each of these languages offers an alternative approach to writing programs for the JVM.

Whereas Groovy promised smoother interoperability with Java code and much-desired

conciseness with its stripped-down syntax, JRuby offered a more drastic move away

from the curly-brace world of Java syntax. Scala promised to bring the power of func-

tional programming on top of the object-oriented Java programming language, and

Clojure presents a pure functional programming language true to its Lisp heritage.
As an overview, some of the potential advantages of these languages include:

= Less boilerplate syntax hiding the beef
= More literal data structures

= Additional methods for standard types
= More powerful language constructs

For instance, getting rid of boilerplate such as unnecessary visibility modifiers and
curly braces leaves more space for your intent to shine through from the code you
write. Just look at how you’d define a class in Ruby:

class Book
def initialize(title = "Work in Progress™)
@title = title
@pages = [1
end

def write page

! Polyglot programming—combining multiple programming languages and multiple “modularity paradigms”
in application development.

158

CHAPTER 8 Writing tests in other JVM languages

@pages << page
end

def page_count
@pages.size

end
end
Not a single curly brace, parentheses are largely optional, no declarations are needed
for private fields, and no need to say return out loud. Quite succinct, don’t you think?

Similarly, being able to define arrays and map structures without the constraints

of Java’s generics-related, angle-bracket jungle is a relief not just on the programmer’s
mind but on the wrists, too. Here’s how easy it is to define complicated, multi-
dimensional data structures in Ruby:
my_data = {

:key => "value®,

:list => ["L*, "I", "s", "T" 1],

:map => { :zinside => :the_map }
}
One of the most common complaints voiced by programmers switching from one lan-
guage to another is all those handy methods on basic types that Java is missing—string
manipulation and collection operations in particular come to mind. Can you imagine
how many lines of Java code it’d take to partition a list of objects into two using one of
the object’s attributes like this piece of Scala does?

val (minors, adults) = people partition (_.age < 18)

Another one of my favorite features of Scala is the combined power of case classes and
pattern matching for representing nontrivial class hierarchies in a way that not only
allows for adding new types into the hierarchy but also new operations. You’ll proba-
bly have to pick up a book like Joshua Suereth’s Scala in Depth (Manning Publications,
2012) to get the full depth of case classes, but the next listing gives a taste of what you
can do with them.

Listing 8.1 Scala’s case classes and pattern matching

abstract class Tree Define
case class Branch(left: Tree, right: Tree) extends Tree case
case class Bunch(numberOfBananas: Int) extends Tree classes

def countBananas(t: Tree): Int = t match {
case Branch(left, right) => Method for

countBananas(left) + countBananas(right) counting
case Bunch(numberOfBananas) => numberOfBananas ::)raer::anas in
¥

val myPlant = Branch(
Branch(Bunch(1), Bunch(2)),
Branch(Bunch(3), Bunch(4)))

Create banana plant
with two branches, each
holding two bunches

printin(""lI"ve got " + countBananas(myPlant)
+ " bananas in my treel!")

8.1.2

The premise of mixing JVM languages 159

New languages, new syntax, and new APIs may seem daunting at first, but you’re never
left to your own devices. A whole bunch of information and documentation is avail-
able about all of these languages, both online and between bound covers. Add to that,
the communities forming around these new programming languages are friendly and
full of enthusiasm that’s hard to not pick up.

These languages place the power of new language constructs at our disposal. Clo-
sures, list comprehension, native regular expressions, string interpolation, pattern
matching, implicit type conversions—the list goes on and these language features are
bound to come in handy sooner or later.

We have a more specific interest in this chapter: how does using these languages
help us in writing and maintaining tests for our Java code? Let’s talk about that before
diving into practice.

Writing tests

All of the general benefits of syntactic sugar and expressiveness, rich APIs, and power-
ful language constructs apply to writing tests in these other JVM languages. Many com-
panies (mine included) are increasingly moving toward mature languages such as
Scala for developing their production systems. Many others are hesitant to take the
leap due to a variety of reasons.

READABILITY OVER RAW PERFORMANCE

One of the more common reasons quoted for not writing production code in dynamic
languages such as Groovy or Ruby is performance. The joy of expressive and concise
syntax sometimes trades off against absolute peak performance. That potential perfor-
mance hit doesn’t tend to matter when it comes to test code. The priority for test code,
after all, is to be readable and that’s where the power of dynamic languages comes to
play. As long as the performance hit isn’t massive, you’re often better off with the
added expressiveness and simplicity of the syntax.?

TESTS AS A “GATEWAY DRUG”

Aside from the advantage of using a language better suited for the job, teams can
experiment and learn in a safe environment by initially moving to the new language
only for automated tests. With this gateway drug approach, programmers have time to
learn the language and its idioms without fear of unforeseen production issues due to
unfamiliarity with the technology.

There are downsides to this polyglot approach, too. First, mixing two program-
ming languages in the development environment may add to the complexity of build
processes. Second, if you're test-driving your Java code with tests written in Groovy, for
example, it’s harder to see how well the emerging API is suited for being called from
other Java code—the rest of the production code.

2 Coincidentally, some 15 years ago many C/C++ programmers dismissed Java due to its inferior performance.
Today, the JVM beats many native compilers with its just-in-time compilation and runtime optimizations.

160

8.2

CHAPTER 8 Writing tests in other JVM languages

SOME LANGUAGES SUIT TESTS BETTER THAN OTHERS

With the specific purpose of writing tests in an alternative language in mind, I can say
that some of these languages are better suited for writing tests than others. I say that
because all programming languages are designed, first and foremost, for the purpose
of writing applications or systems software. This is where the more advanced language
features and constructs show their worth.

At the same time, those language features may be somewhat insignificant for
expressing your straightforward tests better or more concisely. For instance, you
hardly want to introduce complex class hierarchies in your test code, so Scala’s case
classes might not be that useful. You probably don’t need the safety of side-effect-free
functions as much either when writing focused unit tests, so introducing Clojure and
its functional programming paradigm into your Java project might not make much
sense.

All'in all, the languages most suitable for writing tests are those that provide a con-
cise syntax and versatile data structures, not the ones that flex into any kind of com-
plex calculation imaginable. With this in mind, the most likely top candidates to
consider would be Ruby and Groovy—the former having an extremely minimal syntax
and the latter being more accessible to a Java programmer.

The best way to gauge the suitability of such alternative JVM languages for writing
tests for your Java code is through firsthand experience. The next best thing is what
we’ll do next—study what kind of tools you have to choose from and how your code
and tests turn out with that toolset.

We’ll start by looking at the simple comparison of writing JUnit tests in Groovy and
then expand our exploration further into other test frameworks.

Writing unit tests with Groovy

Groovy’s premise for writing unit tests is a significantly lighter syntax for expressing
your intent. Though Groovy still resembles Java, its lightness comes from making a lot
of Java’s syntax optional.

For instance, in Groovy semicolons, parentheses, and the return keyword are
optional and can be left out, as illustrated by the following listing.

Listing 8.2 Groovy’s syntax is like stripped down Java

void logAndReturn(String message) {

def logMessage = "${new Date()} - ${message}"

println logMessage

logMessage
¥
The listing also illustrates a number of other ways in which Groovy reduces the
amount of boilerplate programmers have to write. Because Groovy’s default visibility
modifier is public, you can omit it like in listing 8.2 unless you specifically want to
restrict access. You can also see how, in Groovy, you can choose to not declare a vari-
able’s type and instead declare it with def.

Writing unit tests with Groovy 161

We often find ourselves constructing strings from other strings, numerals, and
other objects’ string representations. Groovy makes this a lot cleaner as well. You can
see that in how the logMessage is constructed in listing 8.2.

These are just some of Groovy’s language features that contribute to a nicer syntax
overall. We’re specifically interested in writing tests, so let’s talk about the more spe-
cific task of test setup and how Groovy can help there.

8.2.1 Simplified setup for tests

The essence of a unit test’s setup boils down to constructing object graphs for input and
collaborators for the code under test to interact with. Groovy makes the work of com-
plex object creation much simpler than Java. The following illustrates how your setup
ends up being much shorter and easier to read than its Java counterpart would be.

Listing 8.3 Groovy shines at creating objects for testing

class ClusterTest {
def numberOfServers = 3
def cluster

@Before
Assigning 0 void setUp() {
to fields cluster = new Cluster()
through numberOfServers.times { }o it is the loop

default def name = "server-${it}" variable
constructor [. cluster.add new Server(name: name, maxConnections: 1)
}
}

The example illustrates many features that make Groovy such a great language for
constructing complex objects. To start with, there are looping constructs © that let
you encapsulate the creation of multiple slightly similar objects for your test fixture.*

Groovy also lets you assign field values for objects by passing them through the
default constructor @. Server only has a default constructor, for example. This fea-
ture can be extremely handy when you want to instantiate JavaBeans-style objects that
would otherwise require separate setter calls.

Furthermore, you can create fake implementations of interfaces burdened by get-

ter and setter methods by defining a parameter:
class Person { String name }

The preceding code automatically generates getName() and setName(String name),
which makes for more concise implementations of JavaBeans-style interfaces.

* This is called string interpolation and it’s a common feature of dynamic scripting languages.
* You shouldn’t go overboard with loops, as they tend to invite complexity that you don’t want in your test code.

162

CHAPTER 8 Writing tests in other JVM languages

It’s not just JavaBeans-style interfaces. Groovy makes it easy to create test doubles
for interfaces in general. The following one-liner, for instance, shows how you can
implement a java. lang.Runnable with a simple block:

def fakeRunnable = { println "Running!"™ } as Runnable
For implementing more complicated interfaces you can use a map instead of a block:

def reverse = [
equals: false,
compare: { Object[] args -> args[1].compareTo(args[0]) }

] as Comparator
Collections._sort(list, reverse)

In this code, the Comparator object’s equals() method will always return false and
its compare(a, b) method will do a reverse natural sort (b.compareTo(a)).

Other than making it easy to define simple classes, Groovy also allows defining
multiple top-level classes in the same source file. This is handy for keeping test dou-
bles next to the tests that use them without cluttering the test class with several inner
classes.

Speaking of keeping things in the same source file, Groovy’s multiline strings let
you rewrite the awkward setup method from listing 4.6 without any StringBui lders:

class LogFileTransformerTest {
String logFile;

@Before
public void setUpBuildLogFile() {
logFile = """ [2005-05-23 21:20:33] LAUNCHED

[2005-05-23 21:20:33] session-id###SID
[2005-05-23 21:20:33] user-id###UID
[2005-05-23 21:20:33] presentation-id###PID
[2005-05-23 21:20:35] screenl
[2005-05-23 21:20:36] screen2
[2005-05-23 21:21:36] screen3
[2005-05-23 21:21:36] screen4
[2005-05-23 21:22:00] screen5
[2005-05-23 21:22:48] STOPPED"™"

3

// ...
¥
For a more comprehensive introduction to the various syntactic sugar Groovy has to
offer, refer to the “Groovy style and language guide” at http://mng.bz/Rvfs.

Now, let’s conclude our tour in Groovyland by looking at what a regular JUnit 4
test would look like in Groovy.

http://mng.bz/Rvfs

822

Default |~

visibility
modifier

is public |

Parentheses
are optional

8.3

Expressive power with BDD tools 163

Groovier JUnit 4 tests

For comparison, let’s take a JUnit 4 test and rewrite it using Groovy. The next listing
presents a unit test class written in plain old Java.

Listing 8.4 An example of a JUnit test class written in Java

public class RegularJuUnitTest {
private ComplexityCalculator complexity = new ComplexityCalculator();

@Test

public void complexityForSourceFile() {
double samplel = complexity.of(new Source(''Samplel.java'™));
double sample2 = complexity.of(new Source('Sample2_java'));
assertThat(samplel, is(greaterThan(0.0)));
assertThat(sample2, is(greaterThan(0.0)));
assertTrue(samplel != sample2);

¥

3

That’s a fairly typical JUnit test from the simple end of the spectrum. This listing
shows how this same test would look by writing it in Groovy.

Listing 8.5 Groovy removes the syntax clutter from our test code

class GroovyJUnitTest {
def complexity = new ComplexityCalculator()

Variable
@T(_est i i types are
void complexityForSourceFile() { implicit

def samplel = complexity.of new Source(*'Samplel.java™)
def sample2 = complexity.of new Source(Sample2.java'™)
assertThat samplel, is(greaterThan(0.0d))

assertThat sample2, is(greaterThan(0.0d))

assertTrue samplel != sample2

}
}
Notice that the length of the source code is identical. Despite Groovy’s plentiful syn-
tactic sugar, most well-written JUnit tests won’t turn out much shorter with Groovy. But
they’ll have fewer parentheses and semicolons, and the more complicated the tests
get, the more benefit Groovy yields.

There’s a lot more conciseness to reap by switching to a test framework that makes
full use of Groovy’s features.

Expressive power with BDD tools

BDD was born out of certain TDD practitioners looking for a better vocabulary to
describe the intent of the tests written as part of the TDD cycle. The word test didn’t
quite capture the spirit of specifying desired behavior and it carries a lot of connota-
tions. Instead, the community started talking about specifications (or just specs) and
behavior rather than tests and test methods.

164

83.1

CHAPTER 8 Writing tests in other JVM languages

As a side effect of looking for a better vocabulary, the BDD community wrote a
bunch of handy alternatives to established test frameworks like JUnit. Aside from
helping you steer clear of the muddy waters of testing when you’re really specifying
desired behavior, these tools tend to highlight the test’s intent and fade the syntax into
the background.

Let’s see how your tests might look if you wrote them using some of these tools
instead.

Groovy specs with easyb

One of the key measures of usefulness for a test framework is how easy it is for a pro-
grammer to write a test. Another key measure is the signal-to-noise ratio of describing
intent and the syntax required to express that intent. The more syntax a test has, the
more opaque it tends to be, as it gets harder to scan through the boilerplate and find
the essence.

Alternative JVM languages like Groovy, Ruby, and Scala boast leaner syntax, and
many test framework authors have taken advantage of that. One of those frameworks
is easyb, which embodies the given-when-then vocabulary popular with BDD frameworks
(http://easyb.org). The following listing presents a simple example spec written with
easyb, describing a list’s desired behavior in two distinct scenarios.

Listing 8.6 Two scenarios specified with the open source easyb framework

scenario "New lists are empty”, {
given "a new list"
then ""the list should be empty"

}

scenario "Lists with things In them are not empty”, {
given "a new list"
when "an object is added"
then "the list should not be empty"

}

Note how the two scenarios read almost as well as natural language. These scenario out-
lines communicate the intent clearly. easyb provides this pleasant balance of freedom
(the literal strings) and structure (given-when-then).

The outline doesn’t help the computer check that the specification is fulfilled. For
that you need to elaborate the scenarios more. This is shown next.

Listing 8.7 easyb scenarios elaborated to let us check for compliance

scenario "New lists are empty", {
given "a new list", {
list = new List(Q)
3
then "the list should be empty", {
list.isEmpty()-shouldBe true
3
3

http://easyb.org

8.3.2

Expressive power with BDD tools 165

scenario "Lists with things in them are not empty", {
given "a new list", {
list = new List()

}

when "an object is added", {
list.add(new Object())

then "the list should not be empty", {
list.isEmpty()-shouldBe false

}
}
Scanning through the elaborated scenarios’ given-when-then steps in the previous list-
ing, you see the meaning of each step in plain English, as well as the technical details
of what that step means in terms of code execution.

This can be useful when working with highly specialized domains and opaque APIs
that aren’t so obvious. It can also feel somewhat redundant if the code you’re working
with has a good API and flows through your mind as easily as it does through your fin-
gers. As usual, the answer to whether easyb is right for your particular project is, “It
depends.”

easyb isn’t the only BDD-style tool in existence. The Spock Framework (www
.spockframework.org) provides a feature set similar to easyb. A couple of its special
features warrant a mention so let’s take a closer look.

Spock Framework: steroids for writing more expressive tests

At a glance, tests (specs) written with the open source Spock Framework don’t look
much different from earlier easyb scenarios. To illustrate the similarity, the following
listing presents a specification for the same LISt object you saw in listing 8.7.

Listing 8.8 Spock Framework syntax has the same concise feel as easyb

import spock.lang.*

class ListSpec extends Specification {
def setup() {
list = new List()

}

def "is initially empty"(Q {
expect: <@ Assertions
list.isEmpty() == true

}

def "is no longer empty when objects are added"() {
when: <@ Stimulus
list.add(new Object())
then: <@ Response
list.isEmpty() == false

}

166 CHAPTER 8 Writing tests in other JVM languages

Spock Framework’s approach is much more declarative than easyb’s, for example. At
the core of the framework’s behavior is the concept of blocks and their execution as part
of a feature method’s lifecycle. The previous listing features three of Spock’s six types of
blocks.

The contents of a when block @ can be arbitrary code that’s executed as stimulus
to the code under test. Statements within an expect @ or then block @ are treated as
assertions and expected to evaluate to true.” This makes a separate assertion API
somewhat unnecessary for most situations, although you’re still likely to want to
extract some of the more elaborate statements into a custom assertion API for your
project.

The remaining blocks you didn’t see in the previous listing are setup (and its alias,
given), cleanup, and where.

The setup (given) is most often omitted, as any code in a feature method before
the first block will be treated implicitly as setup. A cleanup block would be used to
free up any resources used by the feature method, similar to what JUnit’s @After
methods are most often used for.

The where block is more interesting and is best explained with an example from
Spock Framework’s documentation.® A where block always comes last in a feature
method and effectively parameterizes its execution. The following listing illustrates
how that works out.

Listing 8.9 Data-driven feature methods with wher e blocks

def "computing the maximum of two numbers"() {
expect:
Math.max(a, b) == c

where:

a << [5, 3]

b << [1, 9]

c << [5, 9]
¥
The feature method essentially says that the expect block should be evaluated for two
combinations of values for the variables a, b, and c: [5, 1, 5] and [3, 9, 9].

Such parameterized tests can be a convenient way to express multiple variations in
one go. They can also become a burden if the number of parameterized variables
grows beyond a small handful. Use your newly acquired superpowers with care.

I said that Spock Framework has a couple of features that warrant a special men-
tion. The blocks you’ve seen so far are one, and the other feature is Spock Frame-
work’s support for specifying interactions with test doubles.

® Non-Boolean values are evaluated according to Groovy truth.
6 “SpockBasics, Anatomy of a Spock specification,” http://code.google.com/p/spock/wiki/SpockBasics.

http://code.google.com/p/spock/wiki/SpockBasics

8.3.3

Fiona
should
receive

one copy

Expressive power with BDD tools 167

Spock Framework’s test doubles are on steroids, too

The Spock Framework comes with built-in support for creating test doubles for inter-
faces and nonfinal classes. In Spock’s taxonomy these are called mocks and they can
be created in one of two ways:

def screen = Mock(Screen) // "dynamic" style

Keyboard keyboard = Mock() // "static" style

Both styles are valid—in the latter case the type of the Mock is inferred from the type
of the variable.

As usual, these test doubles are configured by invoking their methods in a certain
context. Whether Spock treats them as stubs or mocks depends on how and in which
context they're invoked. For example, to stub a method to return a specific value,
you’d say:

keyboard.receive() >> "this is stubbed input"

The >> operator tells the keyboard to return a hardcoded string when its receive
method is invoked. Similarly, faking an exception would look like this:

keyboard.receive() >> { throw new KeyboardDisconnectedException }

Checking for intended interactions taking place, the Mock instances are invoked
within a then block specifying how many times you expect the method to be invoked
during the test. The following listing shows an example specification with a feature
method making use of Spock Framework’s Mock objects.

Listing 8.10 Spock Framework’s Mbck objects are straightforward

import spock.lang.*

class NewsletterSpec extends Specification {
def newsletter = new Newsletter()
def frank = Mock(Subscriber)
def fiona = Mock(Subscriber)
def issue = Mock(lIssue)

def "delivers an issue to all subscribers”() {
given: "Fiona and Frank each have subscribed"
newsletter.subscribe(frank)

newsletter.subscribe(fiona) Fiona has one
subscription,
and: "Frank has a duplicate subscription” Frank hI;s two

newsletter.subscribe(frank)

when:
newsletter.send(issue)

then: "Frank receives two copies of the issue" 9 Frank should
> 1 * fiona.receive(issue) receive two
2 * frank.receive(issue) <1 copies
}

168

8.4

CHAPTER 8 Writing tests in other JVM languages

Specifying expected interactions
Spock Framework supports more than just the basic “n times” cardinality for speci-
fying the number of expected invocations. It’s also possible to say:

(3..) * frank.receive(issue) // at least 3 times
or

(_--3) * frank.receive(issue) // at most 3 times
Furthermore, you could state that you’re not interested in the arguments of an invo-
cation by saying:

2 * frank.receive() // any argument will do
These are just some of the more common features that Spock Framework’s test dou-

bles support. Do check the official documentation at www.spockframework.com for
full disclosure.

In the previous listing, the specification class creates a fixture made of a Newsletter,
two Subscribers, and an Issue to be sent to the subscribers.

Though the subscriber Fiona has just one subscription to the newsletter, Frank has
two @. Therefore, Fiona should receive exactly one copy of the newsletter @ and
Frank should get two ©.

This way of specifying the expected number of interactions is both explicit and
intuitive. Again, there’s no mention of “asserting” anything—we’re simply stating what
we expect to happen. All in all, even the tiny examples of test code you’ve seen in this
chapter scream the awesomeness of dynamic JVM languages like Groovy for writing
tests. If it’s a great time to be a Java programmer, it’s an even more amazing time to be
a test-infected Java programmer.

Summary

We began this chapter by reviewing some of the proposed benefits of programming in
alternative JVM languages such as Groovy, Ruby, and Scala. There tends to be less boil-
erplate syntax and more powerful language constructs that lead to more readable
code overall. Whether it’s for a safe playground for learning a new language or for the
language’s advantages as such, there are many test improvements to be had simply by
reaching for a dynamic language.

This chapter’s examples revolved around Groovy, one of the more widespread
alternative JVM languages. Groovy has managed to hit the sweet spot for many pro-
grammers, being as close to Java as it gets and yet arming the programmer with a
much thinner syntax and vastly greater power and flexibility of language.

It boils down to small details such as optional semicolons and parentheses, the abil-
ity to omit a keyword here and there, choosing to let a variable’s type be inferred from
the context, and deciding that the default visibility modifier is public. These small
things add up and it’s much easier to write concise and articulate tests.

Summary 169

You saw that it’s possible to take advantage of the syntactic sugar of dynamic lan-
guages like Groovy, continuing to write your tests with good old JUnit. You can also
take the red pill and see how far the rabbit hole goes. Recent open source BDD frame-
works, such as easyb and the Spock Framework, present a more drastic step away from
the traditional JUnitstyle of expressing desired behavior for your code. A lot of the
time, that step is for the better.

Whether adopting a different language and a new framework for testing your Java
code is something you should seriously consider depends a lot on your circumstances.
With that said, there’s no question that the potential of significantly cleaner code is
there, and the main decision factors revolve around the people involved. The technol-
ogy exists and it’s solid.

Speeding up test execution

In this chapter

Finding the root causes why a build is slow
How to make test code run faster
How to tweak an automated build to run faster

By now you’ve formulated an idea about why you write automated unit tests and
what makes (or doesn’t make) for a good unit test. One of the properties of a good
unit test is that it runs fast. Nevertheless, as you accumulate a bigger and bigger
suite of tests, your feedback loop grows too. This chapter explains strategies for
speeding up the execution of your test suite—the time it takes to run all of your
unit tests—so that you’ll get that precious feedback in a timely manner.

First, we’ll get to the bottom of why we’re looking for faster test execution and
faster build times. Then, we’ll draw an overall strategy for taking on a slow build.
There are two parts to that strategy and the majority of this chapter is focused on
those two missions:

1 Speeding up tests
2 Speeding up a build

Speeding up tests means diving into the code base to find opportunities for making
tests run faster. We’ll look at slowness inherited from the class hierarchy of our

170

9.1

9.1.1

Looking for a speed-up 171

tests, we’ll take a critical look at what code we’re executing during our tests, and we’ll
pay special attention to any place where we access the network, a database, or the
plain old filesystem.

In speeding up a build, we raise our focus from the details of test code and look at
how our build scripts are running our tests. In our search for a shorter build loop,
we’ll look at boosting performance with a higher-powered computer—or multiple
computers—considering the potential upside of running tests in parallel both locally
and in the cloud.

As far as test speed optimization goes, you have options. You can speed up your test
code or you can change the way you run that code to get it done faster. Before we go
there, let’s throw some light on why we’re looking for speed in the first place.

Looking for a speed-up

Programmers have traditionally been keen on making their code run as fast as they
can. Things may have changed a little over the decades but still we all carry that inner
desire for our code to be a bit faster than it is. Back in the day, the rationale was obvi-
ous: the hardware set stringent requirements and constraints for any code that would
be run, be it the amount of memory or registers available or the cycle with which the
processor could carry out instructions.

Today, we aren’t nearly as constrained as we used to be and yet we still end up wait-
ing for the computer to do its part. Starting off a build, we lean back and sigh, “If only
I had a faster computer.” As the tests pass, one by one printing a little dot on the
screen, we slowly drift away wondering whether we should get a faster CPU or whether
it’s really about the number of cores the CPU has. “Maybe it’s my hard drive? That
thing is getting old. It’s started making noise, too.”

And that’s where the problem lies: our train of thought runs faster than our tests,
and that difference creates a conflict.

The need for speed

Our need for more speed comes from our test suite taking so long to run that we’re
faced with a choice between rather bad options. Either we stare at the terminal screen
until we lose the flow, or we trigger off the build and task-switch to something else.
The former Kkills our energy and the latter creates trouble down the road as we miss
the precious fast feedback and find problems late.

The importance of our tests running fast boils down to the fact that delayed feed-
back causes trouble. In the small scale, developers have to wait for information—vali-
dation for what they’re doing—and are held back with this task. In the large scale, our
builds take such a long time that developers only run a subset of their test suites
before checking in, and leave running the full test suite to a build server while they
move on to the next task. When that full test run completes and something does in
fact break, developers are faced with another task-switch, losing focus and eating away
their productivity.

172

9.1.2

9.1.3

CHAPTER 9 Speeding up test execution

So we want faster feedback but how do we get it> How should developers approach
their tests and their builds to make that feedback cycle shorter?

Approaching the situation

What do programmers do when they face a performance issue? They pull out the
profiler to identify the hot spots and figure out why the performance is what it is. They
apply a fix and profile the system again to see whether the fix actually improves
performance.

Slow tests and slow builds should be tackled with the same overall approach: avoid
making assumptions about what the problem is and, instead, gather data about the sit-
uation by analyzing the test execution. Once you’ve identified the essential hot spots,
pull out your toolbox and get to work.

As you apply your trusted screwdriver and hammer the build into better shape,
remember to rerun the build frequently to check whether you’re making the kind of
progress you’re expecting to see.

Now, let’s talk about how you can profile your tests and find those hot spots.

Profiling a build

When a build is slow the biggest chunk of slow almost always comes from running
tests.! It’s better to be sure, though, so the first thing to do should probably be some
kind of a rough performance profiling for the whole build to know where all that time
is spent.

Now let’s look at some concrete ways of doing this. First, let’s assume Apache Ant
as the build tool and see how you might go about it.

PROFILING AN ANT BUILD
If your build is automated with Apache Ant, it’s easy to get the basic numbers of how
long each target takes:

ant -logger org.apache.tools.ant.listener.ProfileLogger test

Ant comes with a builtin logger that emits task and target durations in milliseconds. I
ran the ProfilelLogger on one fairly big open source project. Filtering out the usual
output and leaving just the profiler information about build targets, this is what the
report told me:

Listing 9.1 Ant’s built-in Pr of i | eLogger reports target durations

Target init: started Mon Jan 02 00:54:38 EET 2012

Target init: finished Mon Jan 02 00:54:38 EET 2012 (35ms)
Target compile: started Mon Jan 02 00:54:38 EET 2012

Target compile: finished Mon Jan 02 00:54:41 EET 2012 (2278ms)
Target cobertura-init: started Mon Jan 02 00:54:41 EET 2012

! The other common sources are the overhead of starting a bunch of external processes and massive filesystem
operations.

Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target
Target

Looking for a speed-up 173

cobertura-init: finished Mon Jan 02 00:54:41 EET 2012 (62ms)
compile-tests: started Mon Jan 02 00:54:41 EET 2012

compile-tests: finished Mon Jan 02 00:54:41 EET 2012 (78ms)

jar: started Mon Jan 02 00:54:41 EET 2012

jar: finished Mon Jan 02 00:54:41 EET 2012 (542ms)

instrument: started Mon Jan 02 00:54:41 EET 2012

instrument: finished Mon Jan 02 00:54:43 EET 2012 (2026ms)

test: started Mon Jan 02 00:54:43 EET 2012 Running
test: finished Mon Jan 02 01:00:55 EET 2012 (371673ms) tests
coverage-report: started Mon Jan 02 01:00:55 EET 2012 Collating
coverage-report: finished Mon Jan 02 01:01:22 EET 2012 (26883ms) | coverage
failure-check: started Mon Jan 02 01:01:22 EET 2012 report
failure-check: finished Mon Jan 02 01:01:22 EET 2012 (3ms)

Looking at the output in the listing you can see that the vast majority of time (370 sec-
onds) is spent running tests and the second biggest chuck is some 27 seconds of creat-
ing a coverage report. The compile and instrument targets, for example, are only
slightly over 2 seconds and the rest are smaller. In this particular project any perfor-

mance

optimization you make outside of the test target doesn’t have much of an

effect on the overall build time. That’s what you should be focusing on.

Tidier profiler output with Ant-Contrib

Ant’s built-in ProfilelLogger is handy but its output is rather verbose and takes a
bit of legwork to trim down into the essential information shown in listing 9.1. If you
find yourself doing this kind of analysis again and again, it might make sense to get
help from the Ant-Contrib open source library (http://ant-contrib.sourceforge .net).

Ant-Contrib provides a set of additional Ant tasks and listeners, including the
<stopwatch/> task and the net.sf.antcontrib.perf.AntPerformance-
Listener listener. They both produce a more focused and accessible output for

your build-profiling needs.

PROFILING A MAVEN BUILD

Maven doesn’t have a built-in utility for measuring how long each part of the build
takes. With that said, all it takes to get those measures is to add the maven-build-utils
extension (https://github.com/lkoskela/maven-build-utils) in your POM file, which
does the bookkeeping for you, as shown next:?

Listing 9.2 Enabling a Maven extension is straightforward

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0">

<build>
<extensions>

2 Extensions were added as a feature in Maven 3

http://ant-contrib.sourceforge.net
https://github.com/lkoskela/maven-build-utils

174 CHAPTER 9 Speeding up test execution

<extension>) Register
<groupld>com.github. lkoskela</groupld> extension
<artifactld>maven-build-utils</artifactld>
<version>1.4</version>
</extension>
</extensions>
</build>

<properties>
<maven-build-utils.activationProfiles> Name
perfstats activation
</maven-build-utils.activationProfiles> profile
</properties>

<profiles>
<profile> | @ Register
<id>perfstats</id> profile
</profile>
</profiles>

</project>
This simple addition activates the extension and produces a listing of execution dura-
tions for each Maven lifecycle phase and goal that was executed.

The first thing we’re doing in listing 9.2 is to register the build extension @. This
tells Maven to initialize our extension and let it hook to lifecycle events during the
build. Next we need to tell maven-build-utils when it should run the analysis (we don’t
necessarily want to do it all the time) by identifying the activation profile @ with the
maven-bui ld-utils.activationProfiles property—I've chosen to call our profile
perfstats. Finally, in order for any of this to make sense we need to have a profile by
that name @ in our POM.

I enabled the extension on one open source project by invoking Maven with our
perfstats profile using the -P parameter and got this kind of output:

Listing 9.3 Sample build profile output for an open source project

$ mvn package -P perfstats

[INFO] --—-- BUILD STEP DURATIONS === == mmm o

[INFO] [generate-sources 1,2s 3%]
LINFO] model lo-maven-plugin:java 1,1s 93%
[INFO] model lo-maven-plugin:xpp3-reader 0,1s 4%
[INFQO] model lo-maven-plugin:xpp3-writer 0,0s 2%
[INFO] [generate-resources 3,0s 8%]
[INFO] maven-remote-resources-plugin:process 2,4s 79%
[INFO] bui ldnumber-maven-plugin:create 0,6s 20%
[INFO] [process-resources 0,3s 0%]
[INFO] maven-resources-plugin:resources 0,3s 100%
[INFO] [compile 1,9s 5%]
LINFO] maven-compiler-plugin:compile 1,9s 100%
[INFO] [process-classes 9,8s 26%]

9.14

Looking for a speed-up 175

[INFO] animal-sniffer-maven-plugin:check 7,85 7%
[INFO] plexus-component-metadata:generate-metadata 2,0s 20%
[INFO] [process-test-resources 0,4s 0%]
[INFO] maven-resources-plugin:testResources 0,4s 100%
[INFO] [test-compile 0,1s 0%]
[INFO] maven-compiler-plugin:testCompile 0,1s 100%
[INFO] [process-test-classes 0,5s 1%]
[INFO] plexus-component-metadata:generate-test-metadata 0,5s 100%
[INFO] [test 19,0s 52%]
[INFO] maven-surefire-plugin:test 19,0s 100%
[INFO] [package 0,5s 1%]
[INFO] maven-jar-plugin:jar 0,5s 100%

The output includes absolute durations for each phase and goal in seconds. We can
also see each goal’s contribution to its phase as a percentage as well as each phase’s
contribution to the whole build. Not terribly scientific but more than enough to pin-
point where most of the time is spent. Clearly most of our time is spent running tests
(52%) but also a big chunk of time is spent in the process-classes phase (26%), mostly by
a plugin called animal-sniffer-maven-plugin.®

It’s important that we understand what kind of improvements we can expect from
tweaking our tests and how that fits into the big picture. The tests are often on top of
the time-sink list, but it’s good to check because sometimes the CPU is choking on
something else.

Now let’s turn our attention to the situations where you do see a potential improve-
ment from trimming your unit tests’ execution times.

Profiling tests

Once you’ve determined that you should look at optimizing your tests, you need to
pinpoint where the current bottleneck is. Once again, you could dust off your trusted
Java profiler. With that said, likely you’ll be better off getting an overview from the
tools and reports you already have. If you still didn’t figure out where all that time has
gone, by all means, fire up the profiler but don’t jump to it too quickly. You could
spend hours with a profiler narrowing down the hot spots, whereas a simple test
report might tell you immediately where to look.

Let’s talk about how exactly you might peruse a test report. Figure 9.1 shows an
HTML test report generated with Ant’s built-in <junitreport/> task.

Looking at the generated report, you can see a column labeled Time(s), which
tells you how many seconds it took to execute tests in a specific package, tests in a spe-
cific class, or in an individual test method. Though it’s not the easiest way of figuring
out which tests are the slowest, the information is all there.

If you happen to use Maven, don’t worry—there’s an equivalent report generator
for you, too. Maven generates test reports with the built-in maven-surefire-plugin.
Figure 9.2 shows a sample Maven test report I generated for an open source project.

¥ No, I don’t have the slightest idea what that plugin does.

176 CHAPTER 9 Speeding up test execution

8006 Unit Test Results.

|P;_:>] @ [+ @ file:///Projects/hamcrest-java/build/junit/junit-no’ & | (Q- Google

Summary

Tests Failures Errors Success rate Time
351 0 1] 100.00% 1.039

Note: failures are anticipated and checked for with assertions while errors are unanticipated.

Packages

Note: package statistics are not computed recursively, they only sum up all of its testsuites numbers.
Name Tests Errors Failures Time(s) Time Stamp Host
org.hamcrest 19 0 0 0.144 2012-01-02T723:43:03 L352
org.hamcrest.beans 24 0 0 0.114 2012-01-02T723:43:03 L352
org.hamcrest.collection 114 0 0 0.224 2012-01-02723:43:03 L352
org.hamcrest.core 74 0 0 0.088 2012-01-02T723:43:03 L352
org.hamcrest.generator 31 1] 0 0.127 2012-01-02T23:43:04 L352
org.hamcrest.generator.config 1 0 0 0.013 2012-01-02T723:43:04 L352
org.hamcrest.integration 4 0 0 0.014 2012-01-02T723:43:04 L352
org.hamcrest.number a3 0 0 0.007 2012-01-02T23:43:04 L352
org.hamcrest.object 18 v} 0 0.021 2012-01-02T23:43:04 L352
org.hamcrest.text 41 0 0 0.110 2012-01-02T23:43:04 L352
org.hamcrest.xml 12 0 0 0.177 2012-01-02T23:43:04 L352
Package org.hamcrest
Name Tests Errors Failures Time(s) Time Stamp Host
BaseMatcherTest 1 0 0 0.080 2012-01-02T723:43:03 L352
CustomMatcherTest 1 0 0 0.006 2012-01-02T723:43:03 L352

mT: feMatcherT 4 0 0 0.015 2012-01-02T23:43:03 L352

Fi r her 4 0 1] 0.016 2012-01-02T23:43:03 L352
JavalangMatcherAssertTest 2 0 0 0.011 2012-01-02T23:43:03 L352
MatcherAssertTest 5 0 0 0.006 2012-01-02T23:43:03 L352

Figure 9.1 Ant’s <j uni tr eport/ > task creates a nice test report.

Maven'’s test report is much like Ant’s, with the statistics for packages followed by
package-specific breakdowns, all the way to individual test methods. Again, all the
information is there and you just need to scan through the report keeping an eye on
the Time (s) column to make note of slow tests that warrant a closer look.

These reports are basic tools, but already a big help in drilling down to the slow
tests. Though you want to know where the time goes, you don’t want to spend hours
making note of every single test method’s duration.

Looking for a speed-up 177

e 0o Surefire Report A
C Google

+ Oﬁle H!Projects{mawn coreﬂarget,fsltefsureﬂre-re

Package List

[Summary] [Package List] [Test Cases]

mmmm te | Time |

org.apache.maven.lifecycle

0 0 0 100% 4,711
org.apache.maven.project.canonical 1 0 0 0 100% 0,068
org.apache.maven.lifecycle.internal 19 0 0 0 100% 1,559
org.apache.maven.execution 2 0] o 100% 0,011
org.apache.maven.rtinfo.internal 2 (1]] 1] 100% 0,094
org.apache.maven.project 148 0 0 0 100% 7,618
org.apache.maven.project.artifact D, 0 0] 100% 0,121
org.apach en.lifecycle.internal.stub 1 0 1] 0 100% 0
org.apache.maven 4 0 0 0 100% 0,667
org.apache.maven.settings 4 0 0 0 100% 0,208
org.apache.maven.toolchain 2 0 0 0 100% 0,003
org.apache.maven.repository 1] (1] 0] 0% 0,001
org.apache.maven.plugin 27 0 0 0 100% 2,582
org.apache.maven.configuration 2 0 0 0 100% 2,495

Note: package statistics are not computed recursively, they only sum up all of its testsuites numbers.

=lorg.apache.maven.lifecycle
-_m——-ﬂm
&b DefaultlifecyclesTest 0 (1] 0 100% 0,186
&b DefaultSchedulesTest 1 0 0 0 100% 0,104
‘:“ LifecycleExecutorSubModulesTest 1 0 (1] 0 100% 0,147
‘3“ LifecycleExecutorTest 12 0 0 1] 100% 4,271
‘,\‘ MavenExecutionPlanTest 6 0 (1] 0 100% 0,003
-l org.apache.maven.project.canonical

Figure 9.2 Maven’s maven-surefire-plugin creates a nice test report, too.

Leaning on a continuous integration server

Continuous integration is the practice of the whole team synchronizing its changes so
frequently—several times a day—that it’s almost continuous. A related technique is
to set up a continuous integration server that assists in making sure that the work
that the team is synchronizing is solid.

178

9.2

9.21

CHAPTER 9 Speeding up test execution

(continued)

A continuous integration server would typically listen for changes committed to ver-
sion control and, observing a commit, run a full build against that revision of source
code. If the compilation, test runs, or anything else in that build fails, the server
would then notify the development team that something was wrong with the latest
commit.

Having a continuous integration server is generally useful, as it ensures that the code
you’re writing doesn’t just work on your machine but also on other machines. It can
also be used to alleviate the problem of a slow build, so that the developer only runs
a relevant subset of tests while developing. Whenever the developer commits a
change to version control, the continuous integration server runs the full test set,
catching any problem that was missed by the developer’s chosen subset of tests.

This is something to consider, as it tends to tighten your feedback loop from unit
tests a bit. But it comes with a price tag. If there’s a problem that your subset doesn’t
spot, the knowledge of that issue comes much later than it would if you were running
the full test suite all the time.

Your toolbox of speed-ups has two compartments. On one side you have battle-tested
tricks and checklists around tweaking test code. On the other side you have tips and
tricks for manipulating your build scripts for that extra bit of oomph. Sometimes the
biggest bang for the buck is in tuning your test code and sometimes the code isn’t
what’s bogging your build down.

In summary, there are two distinct areas where you can work on improving the
speed of our feedback cycle: code and build. The remainder of this chapter is split
between these two pieces of the pie, each presenting tips and strategies for speeding
up our test runs. We’ll start with code and finish with more grandiose plans for our
build infrastructure.

Speeding up test code

The essence of speeding up test code is to find slow things and either make them run
faster or not run them at all. This doesn’t mean that you should identify your slowest
test and delete it. That might be a good move, too, but perhaps it’s possible to speed it
up so that you can keep it around as part of your safety net of regression tests.

In the next few sections we’ll explore a number of common suspects for test slow-
ness. Keeping this short list in mind can take you quickly to the source of slowness and
avoid the hurdle of firing up a full-blown Java profiler. Let the exploration begin!

Don'’t sleep unless you’re tired

It might seem like a no-brainer but if you want to keep your tests fast, you shouldn’t let
them sleep any longer than they need to. This is a surprisingly common issue in the
field, so I wanted to point it out explicitly even though we won’t go into it any deeper
than that. The problem of sleeping snails and potential solutions to them was dis-

9.2.2

Speeding up test code 179

cussed in section 5.6 so there’s not much point in reiterating them beyond this: don’t
rely on Thread.sleep() when you have synchronization objects that’ll do the trick
much more reliably.

There. Now let’s move on to more interesting test-speed gotchas.

Beware the bloated base class

One place where I often find sources of slowness is a custom base class for tests. These
base classes tend to host a number of utility methods as well as common setup and
teardown behavior. All of that code may add to your convenience as a developer writ-
ing tests, but there’s a potential cost to it as well.

Most likely all of those tests don’t need all of that convenience-adding behavior. If
that’s the case, you need to be careful not to accidentally amortize the performance
hit of running that code over and over again for all of your tests in a large code base.

You don’t want your test to set up things you’ll never use!

THE SLOWNESS IS IN THE STRUCTURE

The reason why a test class hierarchy and its stack of setup and teardown methods are
potentially such a drag on test execution time lies in how JUnit treats those hierar-
chies. When JUnit is about to execute the tests in a given test class, it first looks for any
@BeforeClass annotated methods in the whole inheritance tree with reflection, walking
all the way up to java.lang.Object (which obviously doesn’t have any JUnit annota-
tions). JUnit then executes all of these @BeforeClass methods, parents first.

Before each @Test method, it does the same with the @Before annotation, scan-
ning every superclass and executing all of the setup methods it found. After running
the test, it scans for and executes any @After methods and, once all tests in the class
are executed, scans for and runs any @AfterClass annotations.

In other words, if you inherit from another class, that class’s setup and teardown
will be run alongside your own whether or not they’re needed. The deeper the inher-
itance tree, the more likely that some of those setup and teardown executions and the
traversal through the hierarchy are wasted CPU time.

EXAMPLE

Let’s consider a scenario depicted in figure 9.3 where you have a hierarchy of base
classes that provides a variety of utilities and setup/teardown behavior for your con-
crete test classes.

What you see in figure 9.3 is an abuse of class inheritance. The AbstractTestCase
class hosts custom assertions general enough to be of use by many, if not most, of your
test classes.

MiddlewareTestCase extends that set of utilities with methods for looking up mid-
dleware components like Enterprise JavaBeans. The DependencylnjectingTestCase
serves as a base class for any tests needing to wire up components with their depen-
dencies. Two of the concrete test classes, TestPortalFacadeEJB and TestService-
LookupFactory, extend from here having all of those utilities at their disposal.

180

CHAPTER 9 Speeding up test execution

<<abstract>> Provides common custom
AbstractTestCase assertions for tests

Provides utilities for finding
and operating with
middleware components

<<abstract>>
MiddlewareTestCase

Lll

<<abstract>> Provides utilities for doing
DependencylnjectingTestCase | dependency injection in tests

T

<<abstract>>
TestPortalFacadeEJB TestServiceLookupFactory DatabaseTestCase
Tests some middleware Tests things that rely on the Sets up a lightweight database
layer components dependency-injection infrastructure for testing persistence
TestCustomerEntity TestAccountEntity
Tests the "Customer" entity Tests the "Account” entity
and its persistence and its persistence

Figure 9.3 A hierarchy of abstract base classes providing various utilities for concrete test classes.
Long inheritance chains like this can often cause unnecessary slowness.

Also extending from the DependencylnjectingTestCase is the abstract Database-
TestCase, which provides setup and teardown for persistence-related tests operating
against a database. Figure 9.3 shows two concrete test classes extending from the
DatabaseTestCase: TestCustomerEntity and TestAccountEntity. That’s quite a
hierarchy.

There’s nothing intrinsically wrong about class hierarchies but there are concrete
downsides to having big hierarchies. For one, refactoring anything in the chain of
inheritance may potentially have a vast effect—that refactoring is going to be that
much more laborious to carry out. Second—and this is crucial from a build-speed per-
spective—it’s unlikely that all concrete classes at the bottom of that hierarchy actually
need and use all of those utilities.

Let’s imagine that your tests have an average of 10 milliseconds of unnecessary
overhead from such an inheritance chain. In a codebase with 10,000 unit tests that
would mean a minule and a half of extra wait time. In my last project it would’ve been
three minutes. Oh, and how many times a day do you run your build? Likely more
than just once a day.

9.2.3

Speeding up test code 181

In order to avoid that waste, you should prefer composition over inheritance (just
like with our production code) and make use of Java’s static imports and JUnit’s @Rule
feature to provide helper methods and setup/teardown behavior for your tests.

In summary, you don’t want your test to set up things you’ll never use. You also
don’t want strange people crashing your party and trashing the place, which sort of
leads us to the next common culprit of slow tests.

Speaking of setup...

Watch out for redundant setup and teardown

One of the first things you learn about JUnit is how to move common parts of your
test methods into special setup and teardown methods tagged with the @Before and
@After annotations. This is an extremely useful utility, but with great power comes the
ability to maim yourself, performance-wise.

The code in @Before and @After methods is run once for each and every single
test. If your test class has 12 test methods, its @Before and @After methods are run 12
times—regardless of whether they need to be run every time. Sometimes this might be
acceptable, but sometimes that piece of code takes a while to execute and those whiles
add up.

When you do have a test class where the setup needs to be done just once, it’s
delightfully simple to fix by replacing @Before with @BeforeClass. Sometimes the
redundancy is harder to see and sometimes—this is important—your trivial fix doesn’t
work because there’s no redundancy after all.

There’s nothing like an example to illustrate the underlying problem so let’s look
at the following listing, which presents a case that might not be as straightforward as it
seems.

Listing 9.4 Some setup and teardown could be done less frequently

public class BritishCurrencyFormatTest {
private Locale originallLocale;

@Before

public void setlLocaleForTests() {
originalLocale = Locale.getDefault();
Locale.setDefault(Locale.UK);

}

@After
public void restoreOriginalLocale() {
Locale.setDefault(originalLocale);

3

// actual test methods omitted
T
The setup takes the current locale, stores it for safekeeping, and sets a new locale for
the tests’ purposes. The teardown restores the original locale so that this test class
leaves the environment in the same state that it was.

182

9.24

CHAPTER 9 Speeding up test execution

On the surface it looks like a no-brainer to swap in @BeforeClass and @After-
Class, followed by a quick celebration of shaving off another millisecond from our
build time.* It’s true that we could do that—as long as no other tests will be run in
between these test methods. You can only rely on @BeforeClass and @AfterClass if
you can trust that other threads aren’t going to change the locale and won’t expect a
specific locale being set.

In other words, what you should be looking for is a setup method that performs an
immutable, side-effect-free operation again and again—or one that has side effects
nobody else cares about.

One of my technical reviewers, Martin Skurla, provided a great example of this
kind of a situation. He had a set of tests and a @Before method that would look for
source files in a certain directory within the project and parse them into an object
graph used by the tests. Because all of this was done in a @Before method, those same
source files were parsed several times. Once Martin noticed what was going on, he
wrote a small utility class that would cache the resulting object graph and skip the
parsing when it could. After all, those source files wouldn’t change between tests.

Having @Before and @After at your disposal is next to priceless. Nevertheless, if
your build is running slow it might be worth checking how much of that time is spent
in setup and teardown—and that they aren’t being executed for no good reason.

Be picky about who you invite to your test

The more code you execute, the longer it takes. That’s a simple way to put it as far as
our next guideline goes. One potential way of speeding up your tests is to run less code
as part of those tests. In practice that means drawing the line tightly around the code
under test and cutting off any collaborators that are irrelevant for the test at hand.

Figure 9.4 illustrates this with an example that involves three classes and their
respective tests. Pay attention especially to the top-left corner of the diagram:
TransactionTest and Transaction.

—_— = T =
Transaction P = =~ ~ P)
Test S/ N/ \Validator
/ \ 4 Test :

« ; Validator \

v v SRS |

\ ; ' / : N

{ Processor | Figure 9.4 Test isolation reduces
N] / .
__________________ PNE S) the number of variables that may

/" Processor ~ _ - affect the results. By cutting off the
} Test / = === neighboring components your tests
T run faster, too.

* Seriously, if we were just talking about 1 millisecond, we probably wouldn’t bother trying to optimize it away.

9.2.5

Speeding up test code 183

In figure 9.4 you see three classes from a banking system. The Transaction class is
responsible for creating transactions to be sent for processing. The Validator class is
responsible for running all kinds of checks against the transaction to make sure that
it’s a valid transaction. The Processor’s job is to process transactions and pass them
along to other systems. These three classes represent the production code. Outside of
this circle are the test classes.

Let’s focus on the TransactionTest. As you can see in the diagram, Transaction-
Test operates on the Transaction class and has cut off its two collaborators, Validator
and Processor. Why? Because your tests will run faster if they short-circuit a dozen val-
idation operations and whatever processing the Processor would do if you let it, and
because the specific validations and processing these two components perform aren’t
of interest to the TransactionTest.

Think about it this way: all you want to check in TransactionTest is that the cre-
ated transaction is both validated and processed. The exact details of those actions
aren’t important so you can safely stub them out for TransactionTest. Those details
will be checked in ValidatorTest and ProcessorTest, respectively.

Stubbing out such unimportant parts for a specific test can save you some dear
time from a long-running build. Replacing compute-intensive components with blaz-
ing fast test doubles will make your tests faster simply because there are fewer CPU
instructions to execute.

Sometimes, it’s not so much about the sheer number of instructions you execute
but the #ype of instruction. One particularly common example of this is a collaborator
that starts making long-distance calls to neighboring systems or the internet. That’s
why you should try to keep your tests local as far as possible.

Stay local, stay fast

As a baseline, reading a couple of bytes from memory takes a fraction of a microsec-
ond. Reading those same bytes off a web service running in the cloud takes at least
100,000 times longer than accessing a local variable or invoking a method within the
same process. This is the essence of why you should try to keep your tests as local as
possible, devoid of any slow network calls.

Let’s say that you're developing a trading-floor application for a Wall Street trading
company. Your application integrates with all kinds of backend systems and, for the
sake of the example, let’s say that one of those integrations is a web service call to
query stock information. Figure 9.5 explains this scenario in terms of classes involved.

What we have here is the class under test, StockTickerWidget, calling a
StockInfoService, which uses a component called WebServiceClient to make a web
service call over a network connection to the serverside StockInfoWebService. When
writing a test for the StockTickerWidget you're only interested in the interaction
between it and the StocklInfoService, not the interaction between the StocklInfo-
Service and the web service.

184

9.2.6

CHAPTER 9 Speeding up test execution

CStockTickerWidget)—»C StockInfoService)

test boundary

-1 WebServiceClient }
TN W,
I/ \\
1 7
‘., Network ‘\‘
{ J
‘—"__,"\\\ /’ --------------------- \\ .)
A{ StocklinfoWebService i Figure 9.5 Leaving the actual

network call outside the test
saves a lot of time

Looking at just the transport overhead, that first leg is about one microsecond, the
second leg is about the same, and the third might be somewhere between 100-300 mil-
liseconds. Cutting out that third leg would shrink the overhead roughly...a lot.

As we discussed in chapter 3, substituting a test double for the StockInfoService
or the WebServiceClient would make the test more isolated, deterministic, and reli-
able. It would also allow you to simulate special conditions such as the network being
down or web service calls timing out.

From this chapter’s point of view, the big thing here is the vast speed-up from
avoiding network calls, whether to a real web service running at Yahoo! or a fake one
running in localhost. One or two might not make much of a difference but if it
becomes the norm, you’ll start to notice.

To recap, one rule of thumb is to avoid making network calls in your unit tests.
More specifically, you should see that the code you’re testing doesn’t access the net-
work because “calling the neighbors” is a seriously slow conversation.

A particularly popular neighbor is the database server, the friend you always call to
help you persist things. Let’s talk about that next.

Resist the temptation to hit the database

As we just established, making network calls is costly business in terms of test execu-
tion speed. That’s only part of the problem. For many situations where you make net-
work calls, many of those services are slow in themselves. A lot of the time, that
slowness boils down to further network calls behind the scenes or filesystem access.

If your baseline was a fraction of a microsecond when reading data from memory,
reading that same data from an open file handle would take roughly 10 times longer.
If we include opening and closing the file handle, we’re talking about 1,000 times
longer than accessing a variable. In short, reading and writing to the filesystem is slow
as molasses.

Figure 9.6 shows a somewhat typical setup where the class under test, Card-
Controller, uses a data access object (DAO) to query and update the actual database.

Speeding up test code 185

- VRN

Test boundary: -

H // \)y T 1
: ' deel) i

C CardController) ; *> Network /‘,‘ P! Database :
H \ ,) 1
. N

\‘_/,__//—’ w
/ 1
N / |
l R Lo . N
H /7 \\ : :
CardDAO] JPA EntityManager) | Filesystem !

Figure 9.6 Bypassing the actual database call avoids unnecessary network and filesystem access

The CardDAO is our abstraction for persisting and looking up persisted entities related
to debit and credit cards. Under the hood it uses the standard Java Persistence API
(JPA) to talk to the database. If you want to bypass the database calls, you need to sub-
stitute a test double for the underlying EntityManager or the CardDAOQ itself. As a rule
of thumb, you should err on the side of tighter isolation.

It’s better to fake the collaborator as close to the code under test as possible. I say
this because the behavior you want to specify is specifically the interaction between
the code under test and the collaborator, not the collaborator’s collaborators. More-
over, substituting the direct collaborator lets you express your test code much closer to
the language and vocabulary of the code and interaction you’re testing.

For systems where persistence plays a central role, you must pay attention to sus-
taining a level of testability with your architectural decisions. To make your test-
infected life easier, you should be able to rely on a consistent architecture that lets you
stub out persistence altogether in your unit tests, testing the persistence infrastructure
such as entity mappings of an objectrelational mapping (ORM) framework in a much
smaller number of integration tests.

In summary, you want to minimize access to the database because it’s slow and the
actual property of your objects being persistent is likely irrelevant to the logic and
behavior your unit test is perusing. Correct persistence is something you definitely

Lightweight, drop-in replacement for the database

Aside from substituting a test double for your data access object, the next best thing
might be to use a lightweight replacement for your database. For instance, if your per-
sistence layer is built on an ORM framework and you don’t need to hand-craft SQL
statements, it likely doesn’t make much of a difference whether the underlying data-
base product is an Oracle, MySQL, or PostgreSQL.

In fact, most likely you should be able to swap in something much more lightweight—
an in-memory, in-process database such as HyperSQL (also known as HSQLDB). The
key advantage of an in-memory, in-process database is that such a lightweight alter-
native conveniently avoids the slowest links in the persistence chain—the network
calls and the file access.

186

9.2.7

CHAPTER 9 Speeding up test execution

want to check for, but you can do that elsewhere—most likely as part of your integra-
tion tests.

Desperately trying to carry the calling the neighbors metaphor a bit longer, friends
don’t let friends use a database in their unit tests.

So far you’ve learned that unit tests should stay away from the network interface
and the filesystem if execution speed is a factor. File I/O isn’t exclusive to databases, so
let’s talk more about those other common appearances of filesystem access in our unit
tests.

There’s no slower I/0 than file I/0

You want to minimize access to the filesystem in order to keep your tests fast. There
are two parts to this: you can look at what your tests are doing themselves, and you can
look at what the code under test is doing that involves file I/O. Some of that file I/O is
essential to the functionality and some of that is unnecessary or orthogonal to the
behavior you want to check.

AvOID DIRECT FILE ACCESS IN TEST CODE

For example, your test code might suffer from split logic (see section 4.6), reading a
bunch of data from files stashed somewhere in your project’s directory structure. Not
only is this inconvenient from a readability and maintainability perspective but, if
those resources are read and parsed again and again, it could be a real drag on your
tests’ performance as well.

If the source of that data isn’t relevant to the behavior you want to check, you
should consider finding a way to avoid that file I/O with some of the options discussed
in section 4.6. At the least, you should look into reading those external resources just
once, caching them so that you’ll suffer the performance hit just once.

So what about the file I/O that goes on inside the code you’re testing?

INTERCEPT FILE ACCESS FROM CODE UNDER TEST
When you look inside the production code, one of the most common operations that
involves reading or writing to the filesystem is logging. This is convenient because the
vast majority of logging that goes on in a typical code base isn’t essential to the business
logic or behavior you’re checking with your unit tests. Logging also happens to be easy
to turn off entirely, which makes it one of my favorite build-speed optimization tricks.

So how big of an improvement are we talking about here, turning off logging for
the duration of tests? I ran the tests in a code base with the normal production settings
for logging and the individual unit tests’ execution time ranged between 100-300 mil-
liseconds. Running those same tests with logging level set to OFF, the execution times
dropped to a range of 1-150 milliseconds. This happens to be a code base littered with
logging statements, so the impact is huge. Nevertheless, I wouldn’t be surprised to see
double-digit percentage improvements in a typical Java web application simply by dis-
abling logging for the duration of test execution.

Since this is a favorite, let’s take a little detour and peek at an example of how it’s
done.

9.3

Speeding up the build 187

DISABLING LOGGING WITH A LITTLE CLASS PATH TRICKERY
Most popular logging frameworks, including the standard java.util.logging facility,
allow configuration through a configuration file placed into the class path. For
instance, a project built with Maven likely keeps its logging configuration in src/
main/resources. The file might look like this:

handlers = java.util.logging.FileHandler

Set the default logging level for the root logger
-level = WARN

Set the default logging level and format
Java.util.logging.FileHandler.level = INFO

Set the default logging level for the project-specific logger
com.project.level = INFO

Most logging configurations are more evolved than this, but it does illustrate how you
might have a handler that logs any info level or higher messages to a file as well as any
warnings or more severe messages logged by the third-party libraries you use.

Thanks to Maven’s standard directory structure, you can replace this normal log-
ging configuration with one that you only use when running your automated tests. All
you need to do is to place another, alternative configuration file at src/test/
resources, which gets picked up first because the contents of this directory are placed
in the class path before src/main/resources:

Set logging levels to a minimum when running tests

handlers = java.util._logging.ConsoleHandler

-level = OFF

com.mycompany . level = ERROR

This example of a minimal logging configuration would essentially disable all logging
except errors reported by your own code. You might choose to tweak the logging level
to your liking, for example, to report errors from third-party libraries, too, or to liter-
ally disable all logging including your own. When something goes wrong, tests are fail-
ing, and you want to see what’s going on, it’s equally simple to temporarily enable
logging and rerun the failing tests.

We’ve noted a handful of common culprits for slow builds. They form a checklist
of sorts for what to keep an eye out for if you’re worried about your build being too
slow. Keeping these in mind is a good idea if your feedback loop starts growing too
long. But what if the slowness isn’t about the tests being slow? What if you can’t find a
performance improvement from tweaking your test code? Maybe it’s time to give your
infrastructure a look and see if you can speed things up over there.

Speeding up the build

When it comes to optimizing build speed outside of the code you’re building and test-
ing, the big question is once again, what’s the bottleneck? Fundamentally, your build
is either CPU-bound or I/O-bound. What that means is that upgrading your old hard
disk to a blazing fast solid-state drive (SSD) has much less of an impact to your build

188

9.3.1

CHAPTER 9 Speeding up test execution

time if it’s your CPU that’s running white hot throughout the build. Most likely
improvements to both I/0 and CPU performance will have an impact—the question is
how big of one.

The following sections will introduce a number of changes to your build infrastruc-
ture that may have a positive impact. Your homework is to profile your build and
explore which of them has the biggest impact in your particular situation.’?

Table 9.1 summarizes the six elemental approaches that the techniques described
in the remainder of this chapter build on. The left side shows strategies for boosting
the CPU-bound parts of your build and the right side shows optimizations for the I/O-
bound parts.

CPU-bound? 1/0-bound?
Use a faster CPU Use a faster disk
Use more CPU cores Use more threads
Use more computers Use more disks Table 9.1 Options for speeding up

a CPU or 1/0-bound build

More or faster (or both). It sounds simple and a lot of the time it is. Upgrading your
CPU or hard drive almost certainly gives you better overall performance. Splitting and
distributing the work to multiple CPU cores is often almost as linear an improvement.
Running your tests in multiple threads helps you keep the CPU warm while another
thread is waiting on the disk.

Throwing better hardware at the problem is almost trivial and it works really well
up to a point. But there’s a limit to how fast a CPU or how fast a hard drive you can
buy. From there on you need to resort to the more sophisticated end of the spectrum.

The remainder of this chapter will explore three such solutions, which are varia-
tions of:

= Using a faster disk to accelerate disk operations

= Parallelizing the build to more CPUs and more threads
= Turning to the cloud for a faster CPU

= Distributing the build to multiple computers

Sound interesting? I hope so because I'm thrilled! Now let’s jump right in and elabo-
rate on how you might go about implementing these strategies.
Faster I/0 with a RAM disk

Aside from buying a faster physical hard drive, one potential way of getting a faster
disk is to mount your filesystem on a virtual disk backed by your computer’s RAM
memory.® Once you've allocated part of the computer’s physical memory to be used as

® Ifyou’re running a UNIX-like system you might want to look at running tools such as ps, top, mpstat, sar,
iostat, vmstat, filemon, and tprof to learn more about your build’s characteristics.
6 See “RAM drive,” http://en.wikipedia.org/wiki/RAM_disk.

http://en.wikipedia.org/wiki/RAM_disk

9.3.2

Speeding up the build 189

such a virtual disk partition, you can read and write files on it as usual—it’ll just be a
lot faster because you’re effectively reading and writing to memory rather than a spin-
ning hard drive.

Some UNIX-like systems come with just such a filesystem, called tmpfs, out of the
box; for the rest you can easily set up an equivalent memory-backed corner of “disk”
that your build can use.

Creating a 128-megabyte file system with tmpfs on Linux, for example, is this
simple:’
$ mkdir ./my_ram_disk
$ mount -t tmpfs -o size=128M,mode=777 tmpfs ./my_ram_disk
The tmpfs filesystem could be mounted in the beginning of your build script, for
example, and unmounted or detached after all tests have been executed. All you need
to do then is to have your tests run with an effective configuration that directs all file
access to files residing on your newly mounted filesystem.

In order to create a similar memory-backed filesystem on Mac OS X (which doesn’t
support tmpfs), you need to reach to another tool called hdid before you can mount
a memory-backed filesystem:®
$ RAMDISK="hdid -nomount ram://256000"
$ newfs_hfs $RAMDISK
$ mkdir ./my_ram_disk
$ mount -t hfs $RAMDISK ./my_ram_disk
Reading and writing to a RAM disk created like this is only barely faster than regular
filesystems on a proper SSD disk, and modern operating systems are anyway memory-
mapping files to improve disk I/O performance, but compared to a plain old tradi-
tional spinning disk, the difference can be significant. Try and see it for yourself!

And if a RAM disk doesn’t give you enough of a boost, don’t fret, we have a couple
of tricks left up our sleeves. For instance, maybe parallelizing the build will cut down
your build time?

Parallelizing the build

What'’s almost certain is that your build, whatever it’s doing, isn’t using all of your com-
puter’s capacity all of the time. This is good news because it means that there’s poten-
tial for a performance boost from utilizing more of what you already have.

For instance, let’s say you have a multicore CPU. (My fairly modest laptop has a
dual-core processor.) Are you harnessing both of those cores when you build? If a sig-
nificant portion of your build is CPU-bound, utilizing two CPU cores instead of one
might shrink your build time by almost 50%.

Parallelization can make sense even within the scope of a single CPU core, if your
build isn’t completely CPU-bound and spends a significant amount of time doing disk

7 See tempfs, http://en.wikipedia.org/wiki/Tmpfs.
8 If you're wondering about the magic number 256,000, the size for hdid is given as the number of 512-byte
blocks: 256,000 * 512 bytes = 128 megabytes.

http://en.wikipedia.org/wiki/Tmpfs

190

CHAPTER 9 Speeding up test execution

I/0. Imagine that 80% of your build is about the CPU crunching numbers and the
remaining 20% of the time it’s your hard drive that’s getting busy. Your opportunity
lies in that 20% of disk I/O and, more specifically, what the CPU is (or isn’t) doing in
the meantime.

Running tests in several threads doesn’t necessarily parallelize their execution in
the sense that a single-core CPU might simply be switching back and forth between the
threads rather than running all of them at the same time. What running your tests in
several threads does facilitate, even with single-core CPUs, is running code on one
thread while another thread is waiting on disk I/O.

Let’s take a look at how you might implement such concurrency with your trusted
workhorses: Ant and Maven.

PARALLELIZING TESTS WITH MAVEN

When it comes to parallelizing test execution, Maven couldn’t make it much easier
than it already is. Maven’s built-in test runner can be configured to deal out your test
suite to an arbitrary number of threads. All that’s needed is a bit of configuration in
your POM as shown next.

Listing 9.5 Instructing Maven’s Surefire plugin to run tests in parallel

<project>
<build>
<plugins>
<plugin>
<artifactld>maven-surefire-plugin</artifactld>
<version>2.11</version>
<configuration>
<parallel>classes</parallel>
<threadCount>2</threadCount>
</configuration>
</plugin>
</plugins>
</build>

</project>
The configuration in the listing instructs Maven’s built-in test runner called Surefire to
run unit tests in parallel using two threads per each CPU core. It’s also possible to

specify an exact thread count regardless of how many cores there are by disabling the
per-core feature:

<perCoreThreadCount>false</perCoreThreadCount>

The <parallel/> attribute accepts three different strategies for allocating tests to the
worker threads:
= classes runs each test class in a different thread.

= methods runs each test method from one test class in a different thread.
= both does both.

Speeding up the build 191

Of these three alternatives, it’s probably easiest to start with classes since that’s least
likely to surface those unwanted dependencies between your tests. It’s generally good
to get both working sooner or later, though.

In addition to specifying the number of threads to use, you can also tell Surefire to
use as many threads as it wishes:

<useUnlimitedThreads>true</useUnlimitedThreads>

With this configuration, Surefire will look at the <parallel/> attribute and launch
threads based on the total number of classes and/or methods your tests have.
Whether or not this is faster, you’ll have to try and see for yourself.

TESTNG AND MAVEN’S <PARALLEL/> CONFIGURATION Surefire’s support for par-
allel test execution of TestNG tests isn’t quite as configurable as it is for JUnit
tests. Most importantly, the perCoreThreadCount and useUnlimitedThreads
configurations aren’t available.

Now, what if you don’t have a pom.xml but a build_xml?

Parallelizing multimodule Maven builds

The release of Maven 3 brought along a promising experimental feature: the -T
command-line argument for parallelizing the whole build. Running Maven with
mvn -T 4 clean install, for example, would analyze the build’s dependencies and
attempt to parallelize its execution to four threads.

If you’'d prefer to be more flexible and use as many threads as you have CPU cores,
you could say mvn -T 1C clean install and on a quad-core computer you’d get four
threads while on a dual-core laptop you'd get two threads.

PARALLELIZING TESTS WITH ANT

Since Apache Ant doesn’t do anything by default (unlike Maven) you need to explic-
itly invoke a certain Ant task in order to execute your tests. The following listing shows
a fairly typical Ant target used for running a project’s JUnit tests in a serial manner.

Listing 9.6 Typical Ant target for running JUnit tests

<target name=""test''>
<mkdir dir="build/junit-output'/>
<junit errorproperty="failed" failureproperty="failed"
haltonfailure="false" haltonerror="false"
fork="yes" forkmode="perBatch">
<formatter type="xml"/>
<classpath refid=""test.classpath'/>
<batchtest todir="build/junit-output">
<fileset dir="src/test/java'>
<include name="**/Test*_java'/>
<include name="**/*Test.java'/>
</fileset>

192

CHAPTER 9 Speeding up test execution

</batchtest>
</junit>

</target>
The target in the listing forks a clean JVM instance for running all unit tests in one big
batch. Forking a JVM for running tests is considered a good practice but make sure
that you’re not forking too many JVM instances. You'll probably want to set forkmode
as either once or perBatch; the default value of perTest would spin up a new JVM for
every test you run.

Unfortunately, Ant doesn’t have a built-in way of parallelizing test runs like Maven
does. You can do the deed yourself—it’s just more legwork. The next listing shows a
configuration that divides our test suite into four batches and creates a JVM instance
for each batch, effectively running our tests in parallel.

Listing 9.7 Ant script for running JUnit tests in parallel

<taskdef resource="net/sf/antcontrib/antcontrib.properties'>
<classpath refid=""compile.classpath'/>
</taskdef>

<property name="filter"
value=""com. lassekoskela.ant.selectors.RoundRobinSelector'/>

<target name=""test'> Run set of
<mkdir dir="build/junit-output'/> parallel
<parallel threadcount="4"> tasks
<antcallback target="-run-test-batch" return="failed">
<param name="junit._batches" value="4"/>
<param name="junit.batch" value="1"/>
</antcal lback>
<antcallback target="-run-test-batch" return="failed">

<param name="junit.batches" value="4"/> Invoke

<param name="junit.batch" value="2"/> JUnit task
</antcal Iback> for specific
<antcal lback target="-run-test- partition

batch" return="failed"> < of tests

<param name="junit._batches" value="4"/>
<param name="junit._batch" value="3"/>
</antcal lback>
<antcallback target="-run-test-batch" return="failed">
<param name="junit._batches" value="4"/>
<param name="junit.batch" value="4"/>

</antcal Iback> j) Fail build if
</parallel> some tests
<fail message="Tests failed." if="failed"/> < failed
</target>
<target name="-run-test-batch"> <1 Parameterized
<junit failureproperty="failed" errorproperty="failed" target that
haltonfailure="false" haltonerror="false" triggers
fork="yes" forkmode="perBatch'> standard

<formatter type="xml"/> © Junit task
<classpath refid=""test.classpath"/>
<batchtest todir="build/junit-output'>

Speeding up the build 193

<fileset dir="src/test">
<include name="**/*Test.java'/>
<include name="**/Test*_java'/>
<custom classname="${filter}" classpath="${test.classpath}'">
<param name='partitions' value="${junit.batches}"/>
<param name=''selected" value="${junit.batch}"/>
</custom>
</fileset>
</batchtest>
</junit>
</target>
Let’s walk through what goes on in the listing. When we invoke the test target we cre-
ate an output directory for test result files and set up a parallel block @ that executes
its tasks in four threads. Each of those tasks @ calls a parameterized target € that
runs one part of our test suite. Once all of our parallel tasks have finished, we check
whether the failure property was set and fail the build @ if it was.

One thing that may strike you as a foreign element in listing 9.7 is the <custom/>
element, which is our custom extension to Ant’s type hierarchy.’ The interesting bits
of RoundRobinSelector are shown in the following listing. (Full source code is avail-
able at https://github.com/lkoskela/ant-build-utils.) We’ve omitted the trivial bits
that connect those <param/> elements into the private fields.

Listing 9.8 Custom Ant type that filters a list of tests in round-robin style

public class RoundRobinSelector extends BaseExtendSelector {
private int counter;
private int partitions;
private int selected;

public boolean isSelected(File dir, String name, File path) {
counter = (counter % partitions) + 1;
return counter == selected;

}

}

The RoundRobinSelector selects every nth test class from the full test suite based on
which partition was selected. It might not be an optimal distribution of tests among
the four threads, but the odds of being a decent distribution are pretty good.

You’ve seen two Ant scripts for running JUnit tests, one of them parallelized. What
about the relative performance of these two configurations? How much faster it is to
run your tests in four parallel batches instead of one big batch? The specific impact
varies between code bases, but running them with one of my projects showed a whop-
ping 20% improvement, largely because those tests included a lot of integration tests
that did file and network 1/0.

¢ See “Custom Components,” http://ant.apache.org/manual/Types/custom-programming.html.

http://ant.apache.org/manual/Types/custom-programming.html
https://github.com/lkoskela/ant-build-utils

194

9.3.3

CHAPTER 9 Speeding up test execution

Parallelizing your build to run tests concurrently with multiple cores and threads is
relatively easy to do, as you’ve seen. The impact on a typical unit test suite may be
“just” a 5% reduction in overall build time. Nevertheless, all of these small improve-
ments add up and there’s no reason not to find the optimal number of threads to run
your tests with.

With that said, if you're looking for a bigger boost, a few pieces in this puzzle will
give you more leverage than using a faster CPU.

Offload to a higher-powered CPU

A typical build spends most of its duration waiting on the CPU. In other words, the sin-
gle biggest bottleneck you have is most likely the CPU, and speeding up the CPU would
instantly speed up your build, too. Assuming that you can’t just swap in an actual CPU
to your computer, how can you get a faster CPU?

A couple of years ago I was on a project that had accumulated a big build. Running
a full, clean build would mean compiling thousands of classes and running some
20,000 automated tests across a handful of modules. The full build took some 24 min-
utes on our laptops, which meant that developers wouldn’t run the full build before
checking their changes into version control. This, in turn, led to an almost constantly
broken build; there was always some code that wouldn’t compile or a test that had bro-
ken. It wasn’t just the slow feedback, though. While the build was running, the com-
puter was practically unusable with the build eating up all of the CPU cores.

The situation was unbearable and several developers had attempted to tweak the
build system in the hopes of speeding it up—to no avail—until one of my colleagues
came to work one day with an out-of-the-box solution to our challenges. He had
tweaked our build scripts just enough to offload all the grunt work to a remote com-
puter. This setup is illustrated in figure 9.7.

"Jocn a"oari-c g

MAZ0n
A o¢ Xver Mr\-)
o — >(9 ©
Veuloper GJ
W V4

J:‘ SYync > ‘E] !
" " >
AN build _ - 7 Scrvch Bwld
',d' Str};{'—;u*'f“*.

Figure 9.7 A remote build setup on top of a cloud computing platform

Speeding up the build 195

All you had to do was to send a message to a bot named Joe in our virtual chat room,
asking for a server, and export the hostname you got in return to an environment vari-
able. The next time we ran the build it would magically run it on a remote computer,
eating up almost none of our own CPU.

What the bot did was to invoke Amazon Web Services (AWS) http://aws
.amazon.com/API to allocate a virtual server for the developer. When the build script
would detect that a virtual server had been allocated to the developer running the
build, it would synchronize the developer’s working copy of the codebase to the
server with rsync, and pipe the build command to be executed on the server with
ssh. The following listing shows a slightly simplified version of such a build script for
a Maven project.

Listing 9.9 UNIX shell script that runs a Maven build on a remote server

#1/bin/bash

function usage {
echo "usage: $0 [options] [arguments for maven]"

echo """

echo "Options:™

echo " -h/--help Display this help.™

echo " -1/--local Build locally."

echo " -r/--remote [hostname] Build remotely on given server."
echo """

echo "Note: Unless overridden with -1 or -r, the remote"
echo "build machine"s hostname is determined from the"
echo "REMOTE_MACHINE environment variable (if present)."

echo
3
BUILD_CMD="mvn"
while ["$1" = "" 7; do o Process
case $1 in command-line
-1 | --local) REMOTE_MACHINE=""" ;; arguments
-r | --remote) shift & & REMOTE_MACHINE="$1" ;;
-h | --help) usage && exit 1 ;;
*) BUILD_CMD="$BUILD_CMD $1"
. esac
Determine shift
whether done
to build

remotely | . if [" 1= "$REMOTE_MACHINE"]; then
RSYNC=""rsync --quiet -az --delete --cvs-exclude"
RSYNC_UPLOAD=""$RSYNC --delete-excluded --exclude target/"
RSYNC_DOWNLOAD=""$RSYNC --include "**/target/**" --exclude "*._*""

REMOTE_DIR=""~/test COPY local files

Run build i $RSYNC_UPLOAD ./ $REMOTE_MACHINE:$REMOTE_DIR to server
on server ssh -q -t $REMOTE_MACHINE *cd $REMOTE_DIR ; bash -ic "$BUILD_CMD""

Copy build > $RSYNC_DOWNLOAD $REMOTE_MACHINE:$REMOTE_DIR ./
results else Default to
from $BUILD_CMD < local build
server fi

http://aws.amazon.com/API

196

9.34

CHAPTER 9 Speeding up test execution

The script in listing 9.9 would parse the provided arguments @ and determine
whether to build locally or remotely @ (and, if remotely, on what server). If a remote
build was called for, the script would first copy the local files over to the server @,
then invoke Maven on the server @, and finally download the build results © to the
developer’s local filesystem. The overhead of this upload and download over the net-
work was less than a minute in the first build of the day and the rest of the day it was
just a few seconds.

Effect on overall build time? What used to be 24 minutes was now less than 4 min-
utes, thanks to running the build in parallel threads with the most powerful compute
unit Amazon had available.'® Increased cost? Around $5 per day per developer. Not a
bad deal for crunching your build time from 24 minutes to under 4.

The beauty of this story is that though we couldn’t upgrade our laptops in order to
get faster CPUs, we could source virtual servers from a cloud computing provider like
Amazon. Our solution was essentially a bag of home-grown shell scripts for the server
allocation, workspace sync, and remote commands. Though that’s doable, there may
be an easier way for you to consider. That easier way happens to open the door to
using multiple remote computers instead of just one. Why don’t we go ahead and see if
that looks as good as it sounds?

Distribute the build

If the biggest leverage for most builds is to use a faster CPU, how about using seventeen
faster CPUs? That may be overkill for most projects but the notion of using more than
one computer (and all of their cores) to do the heavy lifting for your builds does war-
rant serious thought. Let’s start that train of thought by breaking down the problem:
what do you need to figure out in order to run your builds remotely with multiple
computers?

First, running a build remotely requires that you duplicate the necessary code,
data, and other resources to the remote computer you’d like to harness for your per-
sonal compute farm. Second, you need to find a way to trigger commands to be exe-
cuted on that computer and to download the logs and output files back to the
developer’s computer. In the project illustrated by figure 9.7 we did all of this with
some Ruby and shell scripts.

That’s not all there is to distributing builds, when it comes to using multiple com-
puters. You also need to find a way to parallelize the build. And in order to parallelize
you need to decide how to slice and dice the work so that you can hand out individual
slices to a bunch of random computers that don’t know about each other.

SLICING THE BUILD INTO DISTRIBUTABLE PARTS
Let’s have a look at figure 9.8 to help set some context for this problem.

The figure depicts the essential steps in a build process. Everything starts from a
set of source files (code, images, data files, and so on), which are compiled into byte

10 If memory serves me correctly, it was an 8-core CPU back then.

Speeding up the build 197

Tesk
SW“‘ 3‘5‘“ f:w \s z?:‘* Figure 9.8 A build compiles
compile source code into byte code,

,.u /'_* d- ’-—7\ / "‘ 100/ runs tests to produce test
,, L results, and collates test
results into a report.

code. With the compiled code, you can then run tests, producing a set of test result
documents. Finally, those test result documents can be collated into a single aggregate
report of the whole build’s test results.

So how do you partition this workflow into slices that you can do in parallel? You've
already seen ways to parallelize a local build. Given that you have the necessary shell
scripts for pushing the whole build to be executed on a remote server, it’s not a huge
step from our Ant script in listing 9.7 to pushing each of those partitions of your test
suite to remote computers.

Similarly, because the test result files produced by Ant’s and Maven’s standard test
runners are uniquely named, it’s almost trivial to download whatever output each
build produced into a single folder on the developer’s computer for the final step of
generating a test report.

What’s more of a challenge is the compilation step. Slicing compilation is difficult
because you can’t just randomly compile 50% of the source files on one computer and
the other 50% on another computer. The code has dependencies, which means that
your slicing algorithm would need to be much more sophisticated. In practice, you’d
need to analyze the dependencies and structure your code so that you can compile
the shared interfaces first and compile the remaining modules in parallel against the
byte code of the shared interfaces."!

Luckily, for most Java projects the compilation step is much faster than test exe-
cution, so you're probably okay with performing the compilation all in one go, on
one computer, and focusing your attention on parallelizing and distributing the test
execution.

DISTRIBUTED TEST EXECUTION WITH GRIDGAIN

The good news when it comes to distributed computing is that it’s no news—the soft-
ware development industry has spent decades finding ways of making computers talk
to each other. Particularly interesting developments for Java programmers are those
that involve the JVM, and any technology that’ll distribute your computation with as
little code as possible is sure to get our attention.

One technology that matches that description is GridGain.'* GridGain is an open
source middleware product that (among other things) lets you distribute workload on
the grid: an arbitrary number of computers in the network. In other words, you could
set up your own AWS-style cloud computing farm to your local network at the office.

I Modularizing your code base may be a good idea regardless of whether or not you parallelize the build.
12 Read more about GridGain at https://github.com/gridgain/gridgain.

https://github.com/gridgain/gridgain

198

CHAPTER 9 Speeding up test execution

There’s good and bad news about GridGain’s offering. The good news is that Grid-
Gain provides utilities specifically geared at distributing JUnit tests. The bad news is
that those utilities make you jump through hoops to set up a test suite.

To understand those hoops, let’s look at the following listing, which shows an
example of a test suite annotated to run with GridGain’s GridJunit4Suite runner.

Listing 9.10 GridGain currently supports a test suite with three fixed partitions

import org.gridgain.grid.test._junit4_GridJunit4Suite;

- - - _ Use GridGain
@RunWith(GridJunit4Suite.class) < for distributed
@SuiteClasses({ execution

FixedDistributedTestSuite._Partitionl.class, < Enumerate
FixedDistributedTestSuite.Partition2.class, partitions in this
FixedDistributedTestSuite.Partition3.class distributed suite

b
public class FixedDistributedTestSuite {

@RunWith(Suite.class)

@SuiteClasses({ <
com.manning.PresentationEventTest.class,
com.manning.PresentationSessionTest.class,
com.manning.PresentationListTest.class,
com.manning.PresentationTest.class

b

public static class Partitionl { }

@RunWith(Suite.class) Enumerate test

@SuiteClasses({ @ classes
com.manning.DownloadTest.class, belonging to
com.manning.DownloadltemTest.class, each partition

com.manning.ProductEqualsTest.class,
com.manning.ProductTest.class

)

public static class Partition2 { }

@RunWith(Suite.class)

@SuiteClasses({ <
com.manning.-HttpDownloaderTest.class,
com.manning.SocketListenerTest.class,
com.manning.TcpServerTest.class

)

public static class Partition3 { }

}

The test class in listing 9.10 is a fairly standard JUnit test suite class. What makes it
somewhat unusual is the @RunWith @ annotation that instructs JUnit to hand over to
GridGain’s distributed runner. The other thing that’s unusual here is that the suite
consists of three test classes described as inner classes of the top-level suite @ for the
developer’s convenience.

The inner classes define three fixed partitions of your test classes €. Because we
(currently) can’t do this programmatically at runtime, we’ve had to manually split
our tests into the partitions and explicitly call them out one by one. Certainly not

Speeding up the build 199

something we’d like to do but, for now, the best we can do with GridGain’s current
limitations.

As of this writing, GridGain only supports the standard Suite runner, which means
that you can’t use utilities such as JUnit-DynamicSuite for programmatically collecting
test classes to execute.'?

Running FixedDistributedTestSuite from listing 9.10 doesn’t do anything spe-
cial yet. It’ll just run all of your tests locally on your own computer. The missing piece
you still need in order to distribute those tests’ execution is to set up the grid and line
up some worker nodes to do the heavy lifting for you.

GridGain comes with sample configuration and startup scripts for launching nodes
for distributed test execution. The output from running the startup script, bin/
ggjunit.sh, is shown next.

Listing 9.11 GridGain nodes are started with a shell script.

$ bin/ggjunit.sh
GridGain Command Line Loader, ver. 3.6.0c.09012012
2012 Copyright (C) GridGain Systems

[01:46:08] _ _
[01:46:08]1 / __/ (). /17 _7 (O __
[01:46:08]1 7/ (_ // _/ 1/ _ 7 (/7 _ 77/ _\
[01:46:08]1 __// / /7 /_, I_ /_, / I/ /] /

[01:46:08]

[01:46:08] ---==++ REAL TIME BIG DATA ++==---
[01:46:08] ver. 3.6.0c-09012012
[01:46:08] 2012 Copyright (C) GridGain Systems
[01:46:08]

[01:46:08] Quiet mode.

[01:46:08] << Community Edition >>

[01:46:08] Daemon mode: off

[01:46:08] Language runtime: Java Platform APl Specification ver. 1.6
[01:46:08] GRIDGAIN_HOME=/usr/local/gridgain

[01:46:09] Node JOINED [nodeld8=c686a6b7, addr=[192.168.0.24], CPUs=2]
[01:46:11] Topology snapshot [nodes=4, CPUs=2, hash=0xDE6BBF3C]
[01:46:11] Topology snapshot [nodes=2, CPUs=2, hash=0x840EB9DO]
[01:46:11] Node JOINED [nodeld8=fc226dc5, addr=[192.168.0.24], CPUs=2]
[01:46:11] [---1

[01:46:11] Local ports used [TCP:47102 UDP:47200 TCP:47302]

[01:46:11] GridGain started OK

[01:46:11] ~-- [grid=junit, ..., CPUs=2, addrs=[192.168.0.24]]
[01:46:11] ZZZzz zz z...

Running the bin/ggjunit.sh startup script on a few servers on your network to set up
some worker nodes, you could now run your test suite from listing 9.10 and see your
tests be executed on several of your grid’s nodes in parallel:

[01:46:19] Node JOINED [nodeld8=fc226dc5, addr=[192.168.0.24], CPUs=2]
[01:46:19] Topology snapshot [nodes=4, CPUs=2, hash=0xAF0C4685]

13 Read more about JUnit-DynamicSuite and how to create a dynamic suite of JUnit Tests from a directory at
https://github.com/cschoell/Junit-DynamicSuite.

https://github.com/cschoell/Junit-DynamicSuite

200

9.4

CHAPTER 9 Speeding up test execution

Distributed test started: equality(ProductTest)

Distributed test finished: equality(ProductTest)

Distributed test started: addingPresentations(ProductTest)

Distributed test finished: addingPresentations(ProductTest)

Distributed test started: removingPresentations(ProductTest)

Distributed test finished: removingPresentations(ProductTest)

You already learned about GridGain’s current limitation regarding the supported JUnit
runner (Suite). Unfortunately, that’s likely not the only limitation you’ll stumble on.
GridGain will likely face challenges in running tests that look for resources from the
class path, for example, not to mention files in the filesystem. For running pure unit
tests in a distributed manner on several computers, GridGain is the bee’s knees.

In summary, GridGain’s system is the leading edge of infrastructure for distributed
test execution. Yet, it has its limitations that you might find prohibitive. That’s not to
say that you should throw away all hope if GridGain doesn’t quite fit the bill. You can
always set up our distributed build farm with your good old shell scripts. After all, if
you’re looking to speed up your build, there are few approaches with as much poten-
tial as using multiple high-powered computers instead of just one!

Summary

This chapter was all about speeding up test execution and getting the feedback on
whether anything is broken as fast as possible.

We started our exploration by looking at how you can quickly pinpoint the slow
bits—the hotspots where the potentially big speed-ups are hiding. The key word here
is profiling and we saw a number of tools for surfacing hard facts about what’s taking
the most time in your build.

As we moved into examining your test code to see if there’s anything on that front
you could optimize, we walked through the most common culprits for slowness:
threads sleeping longer than needed, unnecessary code being executed due to a
bloated inheritance hierarchy, tests that aren’t isolated enough, tests that talk to the
network, and tests that read or write to the filesystem.

We also identified ways of finding speed-ups by changing the way you build. For
example, switching a rotating hard drive to a solid-state drive or a RAM disk might give
your 1/O a boost. As far as the CPU-bound parts of your test execution go, you could
parallelize your test suite to execute the tests concurrently on all of your CPUs. Going
even further, you could distribute your test runs to remote computers.

All of these options represent potential improvements in your build times.
Whether you’ll experience a speed-up or not is context-dependent. The best you can
do is to try it and see. Profile your build to understand it better and then try the most
promising tricks one by one to see how big of an impact they have.

This chapter also concluded the third and last part of the book. Part 1 introduced
the suggested benefits and power of automated unit tests, explored the various aspects
that make a unit test a good unit test, and gave you some pointers to using test doubles
effectively. Part 2 jumped right into a catalog of test smells—patterns that should

Summary 201

tingle your spidey sense because they often suggest a refactoring is due. Part 3 took
you on a real world tour. We started from a discussion of what makes for a testable
design. From there we jetted across the globe to visit the world of alternative JVM lan-
guages, playing with the idea of writing your tests in a language other than Java.
Finally, we took a dive to the deep end of reality: what to do when you realize that your
build is slower than you’d like.

Now it’s time to get to work and start improving the tests you write. Make those
tests better, faster. Make them more meaningful. Make them more useful. It’s not
going to happen overnight, even if you now know much more about tests and what
makes them good. Luckily, even the smallest change for the better can have a big
impact on your happiness at work.

Good luck!

Al

Al1l

appendix A
JUnat primer

In the Java ecosystem, the de facto unit-testing framework today is JUnit. Year after
year, you're less and less likely to meet a Java programmer who hasn’t at least seen
JUnit test code. Nevertheless, there’s always the first time for everybody and some of
you may have been using a different test framework, so we’ve included this short
appendix as a quick start to writing tests with JUnit.

There are two elemental things to understand about JUnit. First, you must under-
stand the structure and lifecycle of JUnit test code. This is where we’ll start. We’ll look
at how to define test methods inside test classes and then familiarize you with these tests’
lifecycle—how and when JUnit instantiates and invokes your test classes and their
methods.

The second elemental thing about JUnit is its Assertion API. The basic and most
frequently used assertion methods are simple and you’ll know how to use them just by
looking at their method signatures. That’s why we’ll only call those methods out by
name and focus your attention on the more “opaque” assertions that aren’t as self-
explanatory.

Opverall, JUnit is a small and simple framework and I have no doubt that you’ll be
running with it quickly. Eventually you’ll stumble on situations where you reach out
for assistance and that’s where dedicated books on JUnit, such as Manning Publica-
tions’ excellent JUnit in Action (2nd edition), come in handy. Until then, I hope that this
appendix is all that you need to get going and keep up with the rest of the book.

A basic JUnit test class

In short, JUnit test classes are plain old Java classes that have one or more fest methods
and zero or more setup and teardown methods. JUnit also defines a simple lifecycle for
executing the tests it finds.

The following sections will walk you through these fundamental elements of JUnit
test classes one by one, starting with declaring test methods.

Declaring test methods

JUnit tests in their most basic incarnation are regular instance methods marked with a
certain annotation. These methods exercise the code they're testing and make asser-
tions about expected conditions and side effects, making use of APIs provided by JUnit.
The following listing shows an example of what a simple JUnit test class might look like.

202

Al2

A basic JUnit test class 203

Listing A.1 Test methods annotated with @r g. j uni t . Test

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class ExampleTest {
@Test
public void thislsATestMethod() {
assertkEquals(5, 2 + 3);
3

@Test
public void thislsAnotherTestMethod() {
WorldOrder newWorldOrder = new WorldOrder();
assertFalse(newWorldOrder.isComing());
3
T
The listing features a simple JUnit test class with two test methods. If JUnit finds a
method that’s something other than public, it'll ignore it. If it finds a method that
takes arguments, it’ll ignore it. If a method returns something other than void, it'll
ignore it. If a method is declared static, it'll ignore it. If a method doesn’t have a
JUnit @Test annotation, it’ll ignore it.
It’s simple, really: a test method must be public void and take no arguments.’
Now let’s look at the lifecycle these tests will go through once JUnit grabs hold of
our test class.

JUnit test lifecycle

Pointed to a class like the one in listing A.1, JUnit scans for methods with a signature
that matches the preceding constraints and then proceeds to

1 Instantiate a fresh instance of the test class

2 Invoke any setup methods on the test class instance

3 Invoke the test method

4 Invoke any teardown methods on the test class instance

JUnit does this for all of the test methods it finds on the test class, including any test
methods that were inherited from superclasses. Similarly, the setup and teardown
methods may be declared by the test class being run or inherited from its superclasses.

A test is considered to pass if it doesn’t throw an exception. For instance, if their
conditions aren’t fulfilled, the assertEquals() and assertFalse() assertions in list-
ing A.1 will fail the test by raising an exception. Similarly, if one of the setup or tear-
down methods throws an exception, that particular test is considered to have failed
and reported accordingly.

! A test method can declare thrown exceptions. That’s okay.

204 APPENDIX A JUnit primer]>

A.1.3 Test setup and teardown

Speaking of setup and teardown, let’s look at a small example illustrating their use.

Listing A.2 @Bef or e and @\f t er annotations mark setup and teardown methods

public class ExampleTest {
private Locale originallLocale;

@Before

public void setLocaleForTests() { Set known
this.originalLocale = Locale.getDefault(); j locale for
Locale.setDefault(Locale.US); s test run

¥

@After @ Restore

public void restoreOriginalLocale() { original locale
Locale.setDefault(originallLocale); < afterward

}

}

The listing gives an example of a test class ensuring that the active locale @ during
the test execution is Locale.US and making sure that the original locale is restored
afterward @. We're big fans of the Boy Scout Rule? so we want our tests to leave every-
thing in the same condition they were (or better) before the test’s execution.

A test class can have any number of these @Before and @After methods; JUnit will
make sure to invoke each of them, although it doesn’t guarantee any specific order in
which it’ll make those invocations.

There are also annotations called @BeforeClass and @AfterClass, which are
somewhat similar except that they’re run only once per test class rather than once per
test method. These are handy if you want to do something just once before any of the
tests in this class are run or after all the tests in this class are run.?

A.2 JUnit assertions
As you’ve seen in listing A.1, JUnit provides a set of common assertions as public
static methods in the org. junit.Assert class. It’s a common practice to make static
imports for these methods to make their use more concise.

There are assertions for checking whether two objects are equal, checking whether
an object reference is null, whether two object references point to the same object,
whether a condition is true or false, and so forth. The full API of available assertions
can be perused online at www.junit.org but here’s a quick overview:

= assertliquals—Asserts that two objects (or primitives) are equal.

= assertArrayEquals—Asserts that two arrays have the same items.
= assertTrue—Asserts that a statement is true.

2 See “The Boy Scout Rule” at O’Reilly commons, contributed by Uncle Bob, Nov. 24, 2009, http://mng.bz/
Cn2Q.

¥ Personally, I've used them mostly in the context of integration testing to make sure that a server component
is up and running before I start making network connections to it.

http://mng.bz/Cn2Q
http://mng.bz/Cn2Q

A21

JUnit assertions 205

= assertFalse—Asserts that a statement is false.

= assertNull—Asserts that an object reference is null.

= assertNotNull—Asserts that an object reference is not null.

= assertSame—Asserts that two object references point to the same instance.

= assertNotSame—Asserts that two object references do not point to the same
instance.

= assertThat—Asserts that an object matches the given conditions (see section
A.2.5 for a more thorough explanation).

There are a couple of special cases that warrant a special treatment, so let’s take a
quick peek at those. First, let’s check for exceptions you expect to be thrown.

Asserting that an exception is thrown

Sometimes the behavior you want your code to exhibit is to raise an exception under
certain circumstances. For instance, you might want an Il1legalArgumentException
to be thrown upon invalid input. If the behavior you want is an exception and JUnit
interprets exceptions thrown from test methods to suggest test failure, how do you do
test for such expected exceptions?

You could do a try-catch inside your test method to catch the expected exception
(and fail the test if no exception was thrown) but JUnit provides an even more conve-
nient way of doing this, shown here.

Listing A.3 The @est annotation allows us to declare expected exceptions

@Test(expected = lllegalArgumentException.class)
public void ensureThatlnvalidPhoneNumberYieldsProperException() {

FaxMachine fax = new FaxMachine();

fax.connect("+n0t-a-phOn3-Numb3r'); // should throw an exception

}
In the listing we’ve used the expected attribute of the @Test annotation to declare
that we expect an IllegalArgumentException to be thrown when this test method is
executed. If such an exception isn’t thrown (or some other exception is thrown), the
test has failed.

This is a concise way of checking for expected exceptions. But sometimes you want
to be more specific about what kind of an exception is thrown. For instance, aside
from the thrown exception being of a certain type, you might want to check that it car-
ries specific information in its “message” or that it encapsulates a specific “root cause”
exception.

In these situations you need to fall back to the good old try-catch and make
those assertions yourself. The next listing shows a variation of our previous example
that also checks that the thrown exception mentions specifically what the invalid
argument is.

206

Catch
exception

ApPeENDIX A JUnit primer]>

Listing A.4 Using atry- cat ch lets us examine the thrown exception

@Test

public void ensureThatlnval idPhoneNumberYieldsProperException() {
String invalidPhoneNumber = "+nOt-a-valld-phOn3-Numb3r";
FaxMachine fax = new FaxMachine();

try { Fail test if no
fax.connect(inval idPhoneNumber); exception was
fail('should”ve raised an exception by now™); < | thrown

weexpect | . 1 catch (IllegalArgumentException expected) {

A22

assertThat(expected.getMessage(), <—— Make further

containsString(invalidPhoneNumber)); assertions about

3} .

3 exception

This approach gives us the full power of Java and JUnit for asserting whatever it is that
we’re looking to check. It does get more verbose, though, and it’s easy to forget to add
that call to fail() so if you don’t really need to check anything else than that the
right type of exception is thrown, go with the annotation-based approach as it’s much
more clean and concise.

Speaking of concise versus powerful assertions, when the built-in assertions of
org.junit.Assert don’t quite do it for you there’s always the option of extending the
power of assertThat() with custom matchers. Let’s take a look at how assertThat()
and Hamcrest matchers do their magic.

assertThat() and Hamcrest matchers

The odd one out among the assertion methods provided by org.junit_Assert is
assertThat(). It’s a hook that allows programmers to extend the available basic asser-
tions with their own or with third-party libraries of matchers.

The basic syntax is this:

assertThat(someObject, [matchesThisCondition]);

In other words, the first parameter is the object or value that’s the context of the asser-
tion you’re making and the second parameter is the matcher which JUnit delegates
the actual work of asserting a condition.

These matchers aren’t just any regular objects, but Hamcrest matchers. Ham-
crest (https://github.com/hamcrest/JavaHamcrest) is an open source API and it
comes with its own standard collection of matcher implementations that you can
use in your tests.

If none of the built-in assertions or Hamcrest matchers are sufficient for what
you’re trying to express, you can create your own matchers by implementing Ham-
crest’s Matcher interface. Say you want to assert that a particular string looks like a
valid international phone number. In this situation, a rudimentary custom Hamcrest
matcher might turn out like the following listing.

https://github.com/hamcrest/JavaHamcrest

JUnit assertions 207

Listing A.5 Using a custom Hamcrest matcher with assert That ()

import static org.hamcrest.CoreMatchers.is;
import static org.hamcrest.CoreMatchers.not;
import static org.junit.Assert.assertThat;

import org.hamcrest._BaseMatcher;
import org.hamcrest._Description;
import org.hamcrest.Matcher;
import org.junit.Test;

public class ExampleTest {

@Test

public void providesPhoneNumberInlnternationalFormat() {
String phoneNumber = widgetUnderTest.getPhoneNumber();
assertThat(phoneNumber, is(internationalPhoneNumber()));

}
public Matcher<String> internationalNumber() { Extend
return new BaseMatcher<String>() { < BaseMatcher
/**
* ITU-T E.123 requires that international phone numbers
* include a leading plus sign, and allows only spaces to
* separate groups of digits.
*/
@override
public boolean matches(Object candidate) { (2] Aa@ptonw
if (!(candidate instanceof String)) { < Strings
return false;
Match against
return ((String) candidate) < regular expression
-matches(""\\+(?:[0-9] ?){6,14}[0-9]1%$"");
}
@Override Describe what
public void describeTo(Description desc) { Wwe expect
desc.appendText("1TU-T E.123 compliant " +
' international phone number™);
}
}:
}

}

When our test invokes assertThat(phoneNumber, is(internationalPhoneNum-
ber())) JUnit uses the BaseMatcher @ our helper method has built to carry out the
assertion.

Our custom matcher’s implementation consists of two methods. The responsibil-
ity of matches() is to figure out whether a given candidate object passes the asser-
tion. In this example our algorithm is almost trivial: check that the object is indeed a
String ® and check that it matches a regular expression © for an international
phone number.

208

ApPeENDIX A JUnit primer]>

The second method in our custom matcher, describeTo(), is responsible for pro-
viding a sensible description of what this matcher is looking for. If the assertion fails,
JUnit prints a message saying something like this:
jJava.lang.AssertionError:

Expected: is ITU-T E.123 compliant international phone number

got: "+1 (234) 567-8900"
This is handy when a test suddenly fails, as it explains what you were looking for and
what you got instead. Well, in this case we’d probably have to look at the matcher imple-
mentation to know what the requirements for a ITU-T E.123 compliant international
phone number is—unless this is an area of the code base we’re actively working on.

We’ve now covered the basic elements of JUnit. With this knowledge you should do
fine for some time. When you eventually do bump into a situation where you need
something more, refer to appendix B, which explains how to extend JUnit beyond
custom matchers.

B.1

appendix B
Extending [Unat

Before JUnit reached its venerable 4.0 version, the API was based on your test class
inheriting from junit.framework.TestCase, and extending JUnit was done by over-
riding parts of the inherited behavior. With the annotation-based approach adopted
by the latest version of JUnit, extensions have a new shape and are hooked up

through—you guessed it—annotations.

The main concepts relevant for extending the builtin JUnit behavior are runners
and rules. Though we’re not going to delve too deeply into writing custom extensions,
you should be aware of what kind of extensions come built-in with JUnit and where to
start when you do want to write a custom extension.

We’ll begin with a brief look at how the runners work. Implementing custom run-
ners isn’t trivial and partly for that reason most of the time we opt for a custom rule
instead. Keeping that in mind, the majority of this appendix focuses on how JUnit’s
rules work and what rules are at your disposal out of the box.

Controlling test execution with runners

As we mentioned, when JUnit can’t see an explicit @RunWith annotation on your test
class, it defaults to a default implementation. But what are these runners and what do
they do?

When somebody tells JUnit to “run tests” in a given class, JUnit pulls out a tiny nap-
kin from its back pocket. The napkin contains a list of known ways to identify and run
the tests in a given class. Those ways are represented by implementations of the
org.junit.runner.Runner interface. One by one, JUnit walks through the list until it
finds a runner capable of handling the class at hand. For example, on top of the list is
a builder that can handle classes with the @lgnore annotation. Further down on the
list there’s a runner that can handle classes with an explicit @unWith annotation. And
at the bottom is the default runner, which is what you mostly end up using. Once
JUnit selects one of these runners, it delegates the actual running of tests to that run-
ner, as shown in figure B.1.

From the perspective of extending JUnit, we’re mostly interested in the second type
of runner, the one that makes use of @RunWith. With the @RunWith annotation you can
dictate how JUnit treats your test class. You could opt for one of the built-in runners
such as Suite or Parameterized (we’ll get to this little beast later) or you could tell
JUnit to use one of your own: a class that implements the abstract Runner class.

209

210

B.2

B.3

Appenpix B Extending JUnit

Figure B.1 Given a test class, JUnit
figures out which runner implementation
to use. One of those runners responds to

the @RunW t h annotation, if present,

and delegates test execution to the

user-defined implementation of

org.junit.runner. Runner.
Though writing your custom runner is the single most powerful way to extend JUnit,
it can also be more than what you bargained for. Luckily, most of the extension needs
for JUnit don’t actually warrant an all-new runner. If you only need to modify how
individual tests are treated rather than dictate how tests are identified in the first
place, perhaps you should first look into using or implementing a rule rather than cre-
ating a custom runner.

Choose
runner

JUnit Core

Test
class

Delegate
test run

Decorating tests with rules

Rules are a recent addition to JUnit. They provide the ability to manipulate the execu-
tion of tests. A rule implementation might, for example, skip the whole execution or
perform some setup or teardown before and after running the test. Rules are applied
at class-level and you can apply multiple rules to a single test class. In the case of multi-
ple rules, they’'re applied one at a time. (JUnit doesn’t make any guarantees about the
order in which these rules are applied.)

When JUnit looks at a test class, it creates an execution plan for running each
testit finds. Rules, which are implementations of org.junit.rules.MethodRule,
essentially wrap or replace the current execution plan. To clarify these mysterious
do-gooders, let’s take a look at some of the built-in rules.

STARTING POINT FOR YOUR OWN RULES When you decide to write your own
JUnit expressions, you’ll likely end up extending org.junit.rules.Test-
Watchman so that’s a good place to start reading the JUnit source code.

Built-in rules

JUnit doesn’t just provide the rules API as an extension point for its users: a number of
essential JUnit features have been implemented using the same API, including a
global timeout for a whole test class, a more sophisticated way of dealing with
expected exceptions, and management of temporary filesystem resources. Let’s start
the tour by looking at how you can configure a global timeout for all tests in a class.

B.3.1

B.3.2

Built-in rules 211

Setting a global timeout

Remember when we talked about setting a timeout for a test method with
@Test(timeout = X)? The rules API gives you the option of defining a timeout just
once for all tests in the class. This listing shows an example of such a global timeout:

Listing B.1 Specifying a global timeout for all test methods in the class

import org.junit.Test;

import org.junit.Rule; Rules are
import org.junit.rules.Timeout; annotated
) B with @Rule.

public class GlobalTimeoutTest {

@Rule <

public MethodRule globalTimeout = new Timeout(20); Rules are

@Test deﬁn.ed as

public void infiniteLoopl() { L public fields.

while (tl’ue) { } < Rules are
} defined as
@Test public fields.

public void infiniteLoop2() {
while (true) { }

}
}

There are three things to note about listing B.1:

= We define a public field @ of type MethodRule.
= The field is annotated with @Rule @.

= The name of the field doesn’t matter to JUnit so you can name your rule how-
ever you want. Essentially the name should describe what the rule is for.

In the listing, JUnit applies the Timeout rule to both test methods, interrupting both
when they exceed the configured timeout of 20 milliseconds.

Expected exceptions

JUnit’s @Test annotation accepts an expected= attribute for failing the test unless it
throws an exception of the specified type. There is another, slightly more sophisti-
cated way of checking for the expected exception’s properties such as the exception
message, root cause, and so forth. (The less sophisticated way is to catch the exception
with a try-catch block and interrogate the exception object right then and there.)
The sophisticated way is the ExpectedException rule.

Let’s look at an example to clarify its usage.

Listing B.2 Example usage of the Expect edExcept i on rule

import org.junit.Test;
import org.junit.Rule;
import org.junit.rules._ExpectedException;

212

ExpectedException
rule is initialized
to "none".

Appenpix B Extending JUnit

public class ExpectedExceptionTest {
@Rule
J'p public ExpectedException thrown = ExpectedException.none();

@Test
public void thisTestPasses() { }

@Test j Expect

public void throwsExceptionAsExpected() { NullPointerException
thrown.expect(Nul IPointerException.class); to be thrown
throw new NullPointerException();

3

@Test

public void throwsExceptionWithCorrectMessage() {
thrown.expect(RuntimeException.class); Expect exception
thrown.expectMessage(‘'boom™) ; containing "boom."
throw new NullPointerException(‘'Ka-boom!'");

3

}

In the listing, we have one rule, ExpectedException, and three tests. In its initial state,
the rule expects no exception @ to be thrown. That’s why the first test passes even
though rules apply to all test methods in the class they're attached to. In other words,
we need to configure the rule and tell it what kind of an exception we expect. And that’s
exactly what we do in the other two tests.

In the second test, we tell the rule to expect a NullPointerException @ to be
thrown from the test. “If you don’t see this type of an exception thrown, please fail this
test.” What we have here is essentially the same functionality provided by
@Test(expected=Nul IPointerException.class) so this isn’t that exciting yet. The
real value of the ExpectedException rule begins to show in the third test.

In the third test, we’re not just telling the rule to expect an exception of a certain
type. With expectMessage("'boom'), we’re also telling it to verify that the exception’s
message contains a specific substring—in our case, the word boom € (case-sensitive).
Note that this time we told ExpectedException to expect a RuntimeException and
the test actually throws a NullPointerException, a subclass of RuntimeException
This test passes because the check performed by the rule is that the thrown exception
walks like a duck, not that it actually is a duck.

CHECKING THE ROOT CAUSE

Now you know how to test for an exception to be thrown, that it’s of the expected
type, and that its message contains the expected bits. Sometimes, you want the
thrown exception to wrap a specific cause. The following listing shows an example of
applying custom logic for determining whether the thrown exception matches our
expectations.

Listing B.3 Testing arbitrary details about an expected exception

import org.hamcrest.BaseMatcher;
import org.hamcrest._Description;
import org.hamcrest._Matcher;

Built-in rules 213

import org.junit.Rule;
import org.junit.Test;
import org.junit.rules.ExpectedException;

public class ExceptionWithExpectedRootCauseTest {
@Rule

public ExpectedException thrown = ExpectedException.none(); Pass custom

@Test Hamcrest
public void throwsExceptionWithCorrectCause() { matcher to
thrown . expect(rootCauseOF(Nul IPointerException.class)); ExpectedException.

throw new RuntimeException(*'Boom!", new NullPointerException());

}

private Matcher<? extends Throwable> rootCauseOf(
final Class<? extends Throwable> expectedCause) {

Create J return new BaseMatcher() {

subclass of @0verride

BaseMatcher. public boolean matches(Object candidate) { Does th
if (!(candidate instanceof Throwable)) { ezilﬁ;:::uchour

X return false; expectations?
Throwable cause = ((Throwable) candidate).getCause();
if (cause == null) {

return false;

}

return expectedCause.isAssignableFrom(cause.getClass());
3
@Override

public void describeTo(Description description) {
description.appendText(""Throwable with cause of type ');
description.appendText(expectedCause.getSimpleName());

In the listing you can see two aspects of JUnit you haven’t seen so far. First of all, we’re
using a different, overloaded version @ of ExpectedException#expect(). Second, by
using this overloaded method we’re using something called Hamcrest matchers.
Hamcrest (http://code.google.com/p/hamcrest) is an open source library that
provides a library of matcher objects or predicates. JUnit uses Hamcrest’s interfaces in its
own API, listing B.3 being just one example of such integration.
Let’s look at the two variants of ExpectedException#expect():
void expect(Class<? extends Throwable> exceptionType)
void expect(org.hamcrest.Matcher<?> matcher)
With the first method variant we’re saying, “Please check that the thrown exception is
of this type.” With the latter method variant we’re saying, “Please use this predicate to
check that the thrown exception is what we expect.” What logic that predicate object
uses to make this distinction is up to the programmer—that’s you.

http://code.google.com/p/hamcrest

214

B.3.3

Create
temporary
folder

Appenpix B Extending JUnit

In our example, we’re creating an anonymous subclass of org.hamcrest.Base-
Matcher @ that determines the correctness of the thrown exception ©. There
are two abstract methods we need to implement: matches(Object) and describe-
To(Description). The former encapsulates the logic. The latter gives JUnit a means
to form a meaningful error message in case the predicate evaluates to false, when
our assertion about the expected exception fails.

BASEMATCHER Write a mental note to yourself about BaseMatcher and the
sample of a custom matcher in listing B.3. Most of the custom matchers
you’re going to write (if you need to write them) are going to extend from
that class and will likely look similar to our example here.

In listing B.3, the logic dictates that we first ensure that the given candidate object is
an exception. Second, we check that it has a cause and, finally, we check that the cause
is of the type we expected. If any of these conditions fails, we return false and the
ExpectedException rule fails the running test.

Temporary folders

Most unit tests should stay away from the filesystem but every now and then you want
to write an automated, repeatable test that works with actual files on the filesystem.
That’s where our last featured rule comes into play. TemporaryFolder is a simple util-
ity with which you can easily create temporary files and folders from your tests and
have them automatically wiped out after the test has run. Let’s look at an example.

Listing B.4 JUnit has a built-in @Rul e for using temporary folders

import java.io.File;

import org.junit.Rule;

import org.junit.Test;

import org.junit.rules.TemporaryFolder;

public class TemporaryFolderTest {
@Rule
public TemporaryFolder folder = new TemporaryFolder();

@Test
public void thisTempFilelsSquashedAfterTheTest() throws Exception {
File tempFile = folder.newFile('myTempFile.txt"); < Create
assertTrue(tempFile.exists()); temporary
T file
@Test

public void allJunkWillBeGoneAfterTheTestHasRun() {
File tempDir = folder._newFolder("'myTempDir');
createRandomJunkIn(new File(tempDir, "mah-junk.txt'™));
createRandomJunkIn(new File(tempDir, "moar-junk.txt™));

private void createRandomJunkin(File file) {
// omitted for brevity
¥
3

Built-in rules 215

Again, we declare a rule—this time a TemporaryFolder. Inside a test that needs a tem-
porary file (the first test), we ask the rule for a new file @ and we get just that. After
the test, our rule takes care that the file is deleted. In the second test, we create a new
temporary folder ®, add a couple of files inside that folder, and again Temporary-
Folder takes care of cleaning them up afterward. Neat!

mdex

Symbols

@After 179, 181, 204

@AfterClass 179, 204

@Before 61, 73,92, 179, 181,
204

@BeforeClass 73,179, 181,
204

@BeforeClass method 22

@Ignore 126, 209

@Parameters 104

@Rule 211, 215

@RunWith 198, 209

@Test 117,122, 205, 211

<junitreport/> 175

>> operator 167

Numerics

1K competitions 16

A

ability

of a test to fail 53

to configure objects’
behavior 44
See also testability

to develop software 102
See also productivity

to express intent 121
See also intent

to find root cause 108

to get repeatable results 31

to keep design simple 11

to maim oneself 181

to manage information 65
See also readability
to manipulate test
execution 210
to omit keywords 168
to recognize patterns 21
to rely on tests 9, 20, 23, 85,
115
to test 26, 32, 43, 142-143,
154
to verify behavior 47
aborting test execution 131,
134
absolute path 88
abstract
class 111-112, 180, 209
method 112, 214
abstraction 19, 30, 142-143,
185
amissing 154
level of 56-57, 59-60,
73-76, 102, 108, 129
missing 32
abuse
of comments 135
of inheritance 179
acceptance test 13-14
access
concurrent 88, 94
global 148, 150
restricted 143, 151, 160
to a database 171
to dependencies 43
to fields 10, 32
to file system 88, 90, 171,
184-186, 189
to hidden information
27-28, 32, 44, 122

217

to network resources 85,
171, 184-185
accidental complexity 12, 69,
113
accuracy. See correctness
activation profile 174
algorithm 30-31,98,101-102,
128, 197, 207
allocation
of tests to worker
threads 190
of virtual servers 195-196
alternative
implementation 36, 185
JVM languages 157, 160,
164, 168
to JUnit 164
to writing tests in Java 157
Amazon Web Services. See AWS
analogy 139
analysis 9, 13, 26, 114, 172—
174
of build dependencies 191,
197
annotation 117,122,202, 206,
209
anonymous 105-107, 114, 214
answer 13, 33,79, 139, 165
Ant. See Apache Ant
Ant-Contrib 173
See also Apache Ant
anti-pattern 45, 97
See also code smells
Apache Ant
<junitreport/> 175
Ant-Contrib 173
custom programming 193

218

Apache Ant (continued)
parallelizing tests 191
ProfileLogger 172
profiling builds 172
slicing up builds 197

Apache Maven
activation profile 174
maven-build-utils

extension 173
maven-surefire-

plugin 175
multi-module builds 191
parallelizing tests 190
profiling builds 173
slicing up builds 197
Surefire 190

API 32, 35, 37, 49, 159

changing 42, 82-83, 133,
152, 159
File API 86, 89-90, 92
Hamcrest 206
Java Persistence API 185
JUnit Assertion API 202
JUnit assertions 204
Mockito vs. J]Mock 42
Reflection API 22, 43, 145,
147
time-related 25
time-related issues 86
archetype 126
architecture 10, 21, 35, 116,
185
arguments 32, 37,75, 133-134,
144, 168, 203, 205

arrange-act-assert 40, 61
See also given-when-then

article 5,13, 143, 151

assertArrayEquals 204

assertEquals 51, 53, 76, 204

assertFalse 51, 205

assertion 47-48
about exception 122, 214
bitwise 56
custom 84, 98, 179
duplication in 80
exceptions 205
failing 84-85, 106-108, 129,

133-134
Hamcrest matchers 206
hyperassertion 51
missing 24, 76, 121, 124,
126-127
one per test 60-62, 128
primitive assertion 48, 58
redundant 76

INDEX

starting with an 126

See also arrange-act-assert

See also bitwise assertion

See also hyperassertion

See also primitive assertion
assertNotNull 76, 205
assertNotSame 205
assertNull 205
assertSame 205
assertThat 49-50, 205-206
assertTrue 49, 204
assignment 43, 65-67, 70-71,

161

assumeTrue 131
assumptions

failed 134

flawed 85
asynchronous 23, 25
automation 4

See also test automation
awareness 6,9, 95, 132, 209
AWS 195-197

BDD 41, 163
Dan North 13
easyb 164
outside-in development 13
Spock Framework 165
behavior 42
behavior-driven development.
See BDD
bit operators 56
bitwise assertion 77
how to fix 56
bugs, cost of fixing 9
build automation 26, 172
builds
Apache Ant 172
Apache Maven 173
distributing 196
GridGain 197
multi-module 191
offloading to more powerful
CPU 194
parallelizing 189
profiling 172
slicing up for
distributing 196
speeding up 187
ByteArrayOutputStream 89
ByteArraylnputStream 89

Cc

carriage returns 131
chunking 65
classes
abstract 111, 180
bloated base classes 179
JUnit test class 202
that can’t be instantiated 144
class-invariant tests 64
Clojure 157
See also JVM languages
code
altering 122
dead 117
formatting 107-108, 117
making sense through
structure 18
structure 18
under test 28
code smells 21
bitwise assertion 56
commented-out tests 116,
123
conditional logic 82
conditional tests 133
crippling file paths 88
duplication 79
flaky tests 85
hyperassertion 51
incidental details 57
lack of cohesion in
methods 108
lowered expectations 127
magic number 66, 70
misleading comments 118
never-failing tests 121
overprotective tests 75
parameterized mess 102
persistent temp files 91
pixel perfection 97
platform prejudice 129
primitive assertion 48, 58,
68
setup sermon 72
shallow promises 123
sleeping snail 94
split logic 64
split personality 60
collaborators, that can’t be
substituted 145
commented-out tests 116, 123
how to fix 117
commenting, what versus

how 120

comments
commented-out tests 116,
123
delete code, don’t comment
itout 125
good commenting
practice 120
misleading 118
complex designs, problem
with 12
complexity, accidental 12
composition, instead of
inheritance 151
conditional logic 82
eliminating 83
conditional tests 133
how to fix 134
Configuration 61
constructors, logic in 149
contains 50
continuous integration
servers 177
CountDownLatch 96
createTempFile 92
crippling file paths 88
how to fix 89
custom assertions 98
cyclomatic complexity 128

D

DAO 184-185
data
external data files 69
inline 68
data access objects. See DAO
databases
faster replacements 185
speed 184
debugging 3, 8, 84
null check in code 76
defects 9
defensive programming 75
delayed feedback 171
deleteOnExit 92
demo parties 16
dependency injection 43
in tests 180
Dependency Inversion
Principle 142
design
activity 11, 13
altering 44
refactoring 11

INDEX

design principles 45, 143
abiding to 154
Dependency Inversion

Principle 142
Interface Segregation
Principle 142
Liskov Substitution
Principle 142
Open-Closed Principle 142
Single Responsibility
Principle 141
SOLID 141, 154
distributing builds
GridGain 197
slicing up 196

duplication 79
eliminating 80
literal 80
semantic 81
structural 80

E

easyb, scenario outlines 164
else 84
exceptions 122, 205

that you expect 211

with a specific cause 212
expected attribute 123
expected= attribute 211
ExpectedException 211
external data files 69

F

fail() 84, 122
fake objects 35
fakes 25
See also test doubles
feature methods 166
feedback cycle 8
File API
createTempkFile 92
deleteOnExit 92
file I/O
avoiding direct file
access 186
disabling logging 187
intercepting file access 186
FileInputStream 89
FileOutputStream 89
files
persistent temp files 91
replacing with streams 89
fixture 73

219

flaky tests 85
eliminating 86

flawed assumptions 85

for 84

forkmode 192

G

getProperties 89
given-when-then 41
and easyb 164
See also arrange-act-assert
global timeout 211
grep 48
GridGain 197
Groovy
and Easyb 164
and java.lang.Runnable 162
and JavaBeans-style
interfaces 161
and Spock Framework 165
creating complex
objects 161
declaring variables with
def 160
field values for objects 161
optional semicolons, paren-
theses, and return
keyword 160
public by default 160
rewriting JUnit 4 tests 163
string interpolation 161
test setup 161
unit tests 160
See also JVM languages
guard classes 75

H

Hamcrest 49
Hamcrest matchers 206
and JRuby 50, 213
and JUnit 50
happy path tests 124
Hellesgy, Aslak 13
Hoare, Sir Tony 79
hyperassertion 51, 76, 114
how to fix 54

IDE 3,76
code comments 117
if 84

220

incidental details 57
how to fix 58
independent tests 21
indexOf 50
IndexOutOfBoundsException
75
inheritance 112
use composition instead 151
inline data 68
inline logic 68
InputStream 89
integrated development envi-
ronment. See IDE
intent, expressing 50
Interface Segregation
Principle 142

J

Java Persistence API. See JPA
java.util.concurrent 95
JavaBeans, and Groovy 161
JavaServer Pages. See JSP
JMock 39, 42
vs. Mockito 42-43
JPA 185
JRuby 57, 65, 157
See also JVM languages
JSP 18
JUnit 4
@After annotation 166, 181,
204
@AfterClass annotation 182,
204
@Before annotation 61,
73-74, 179, 181, 204
@BeforeClass
annotation 73-74, 179,
181, 204
@Ignore annotation 126,
209
@Parameters annotation 104
@Rule annotation 212,
214-215
@RunWith annotation 198,
209
@Test annotation 117,
122-123, 203, 205, 211
asserting that exception will
be thrown 205
Assertion API 202
assertions 204
assertThat 49
assumptions 134
built-in rules 210

INDEX

expected exceptions 211-
212

extending 209

global timeout 211

Hamcrest matchers 50, 213

Parameterized 104

parameterized mess 102

persistent temp files 92

rewriting JUnit tests in
Groovy 163

rules 210

runners 209

temporary folders 214

test class 202

test lifecycle 203

test methods 202

test setup and teardown 204

JVM languages 156

benefits of mixing
languages 157

Groovy 160

mixing 157

picking the best one 160

readability 159

writing tests in 159

K

Knuth, Donald 79

L

lack of cohesion in
methods 108
how to fix 110
Langr, Jeff 70
languages, mixing 157
Law of Two Plateaus 7, 10
legacy code 17
libraries, external 152
line feeds 131
listeners in Ant-Contrib 173
literal duplication 80
logging
disabling 187
ProfileLogger 172
logic
conditional 82
inline 68
look 165
lowered expectations 127
how to fix 128

M

magic numbers 70-72
maintainability 78
Maven. See Apache Maven
maven-surefire-plugin 175
methods
lack of cohesion 108
static 148
that can’t be invoked 144
that can’t be overridden 145
misleading comments 118
how to fix 119
mock objects 38
JMock 39, 42
libraries 42
Mockito 42
Mockito 38
separation of stubbing and
verification 42
vs. JMock 42-43
mocks. See test doubles
modular programming 140
and test-driven
development 143
multithreading 87

N

never-failing tests 121
how to fix 122

new keyword 148

newline characters 131

North, Dan 13

Now 191

NullPointerException 75

o

ObjectSpace 57

Open-Closed Principle 142

org.junit.rules.MethodRule
210

org.junit.rules. TestWatchman
210

org.junit.runner.Runner 209

OutputStream 89

overprotective tests 75

how to fix 76

P

parallelizing builds 189
with Ant 191
with Maven 190

Parameterized 104
parameterized mess 102
how to fix 106
parameterized test 102, 105,
107, 114, 166
performance hit 159, 179
persistent temp files 91
eliminating 92
pixel perfection 97
how to fix 98
place 82
Platform 131
platform prejudice 129
how to fix 130
Platform.current() 131
polyglot programming. SeeJVM
languages
primitive assertion 48, 58, 68,
76, 97-98, 101
how to fix 49
principle
of good tests 53
of test doubles 30
SOLID 53, 73
Process 133
Process#runAndWait 133
productivity
accidental complexity 12
curve of design potential 10
debugging 8
feedback cycle 8
ProfileLogger 172
profiling tests 175

R

Rainsberger,].B. 43
RAM disk 188
random number generators 87
readability 16, 55, 159
versus performance 50
refactoring 11
reliable tests 23
Ruby 157
See also JVM languages
rules
built-in 210
expected exceptions 211-
212
global timeout 211
Hamcrest matchers 213
org.junit.rules. TestWatchman
210
temporary folders 214
runners 209

INDEX

S

Scala 157
pattern matching 158
See also JVM languages
scenario outlines 164
Schwarz, Philip 70
semantic duplication 81
service lookups 152
setLastModified 87
setup 67
setup sermon 72, 77
how to fix 73
See also test setup
shallow promises 123
how to fix 125
Singleton design pattern 150
sleep()
reasons to avoid 178
sleeping snail 94
how to fix 95
SOLID 141
Dependency Inversion
Principle 142
Interface Segregation
Principle 142
Liskov Substitution
Principle 142
Open-Closed Principle 142
Single Responsibility
Principle 53, 73, 141
special conditions 32
specs 165
speed 170
Amazon Web Services 195
analysis 172
Apache Ant 172
Apache Maven 173
avoiding direct file
access 186
avoiding sleep() 178
bloated base classes 179
continuous integration
servers 177
DAOs 184
database access 184
delayed feedback 171
disabling logging 187
file I/O 186
forking 192
GridGain 197
intercepting file access 186
irrelevant collaborators 182
offloading to more powerful
CPU 194

221

parallelizing builds 189
parallelizing tests with
Ant 191
parallelizing tests with
Maven 190
profiling builds 172
profiling tests 175
RAM disk 188
reasons to speed up tests 171
speeding up builds 187
speeding up test code 178
staying local 183
stubs 183
tmpfs 189
split logic 64
how to fix 66
split personality 60
how to fix 61
Spock Framework 165
>> operator 167
feature methods 166
specifying number of
invocations 168
specs 165
test doubles 167
static analysis 126, 128
streams, replacing files with 89
string interpolation 161
structural duplication 80
structure, useful 18
stubs 25, 183
See also test doubles
Surefire 190
switch 84
System.currentTimeMillis() 25

T

TDD 6, 11
and modular
programming 143
benefits 11
cyclical process 12
desirable consequences 11
how it begins 11
recommended reading 12
temporary folders 214
test automation 4-6, 10-11,
19-20, 55, 82, 187, 214
learning a new language 159
manage brittleness 79
protect against defects 17
test doubles 23, 25, 27
accessing hidden
information 32

222

test doubles (continued)
arrange-act-assert 40
behavior versus
implementation 42
dependency injection 43
deterministic execution 31
fake objects 35
given-when-then 41
in Spock Framework 167
isolating code under test 28
mock objects 38
picking the right type 40
reasons to use 28
special conditions 32
speed 30
test spies 36
test stubs 34
types of 33
when to use 39
test fixture, lack of cohesion in
methods 108
test lists 125
test order 22
test results 105, 193, 197
accuracy of 9
aggregated report of 196—
197

test setup 59-60, 73-74, 92-93,

161-162, 179-181, 202—
203, 210
JUnit 204
level of abstraction in 73
moving code into 72
redundant 181
See also setup sermon
test smell. See code smells
test spies 36
test stubs 34
test teardown 166, 179-181,
202-203, 210
JUnit 204
test, alerted by 22, 85, 121
testable design 139
avoid complex private
methods 146
avoid final methods 147
avoid logic in
constructors 149
avoid service lookups 152
avoid Singleton pattern 150
avoid static methods 148
classes that can’t be
instantiated 144
collaborators that can’t be
substituted 145

INDEX

defined 140
favor composition over
inheritance 151
guidelines 146
methods that can’t be
invoked 144
methods that can’t be
overridden 145
modular programming 140
SOLID 141
unobservable outcomes 145
use new with care 148
wrapping external
libraries 152
test-code-refactor 11
test-driven development. See
TDD
test-first programming. See TDD
test-infected 120, 142, 185
and mock object libraries 38
and test doubles 25
becoming 5
remedies for duplication 82
testing
100% coverage 5
aborting test execution 131
as design tool 10
asynchronously 23
avoiding sleep() 178
BDD 13
benefits of mixing
languages 157
bloated base classes 179
classes that can’t be
instantiated 144
code readability 16
code structure 18
code under test 28
collaborators that can’t be
substituted 145
commented-out tests 116
conditional tests 133
cyclomatic complexity 128
database access 184
delayed feedback 171
dependencies 22
Dependency Inversion
Principle 142
deterministic execution 31
diminishing returns 6
distributing builds 196
feedback cycle 8
file I/O 186
fixture 73
flaky tests 85

guidelines for testable
design 146

happy path tests 124

hidden information 32

independent tests 21

Interface Segregation
Principle 142

irrelevant collaborators 182

JVM languages 156

legacy code 17

lengthy tests 19

Liskov Substitution
Principle 142

long methods 19

maintainability 78

methods that can’t be
invoked 144

methods that can’t be
overridden 145

mixing languages 157

modular programming 140

multiple test classes 62

newline characters 131

offloading to more powerful
CPU 194

only one reason to fail 53

Open-Closed Principle 142

parallelizing tests with
Maven 190

parallelizing with Ant 191

parameterized tests 166

picking the right
language 160

productivity 8

profiling 172, 175

quality 10, 16

readability 8, 159

reasons to speed up 171

redundant setup and
teardown 181

reliability 8, 20, 23

repeatability 31

setup 161

setup and teardown 179

Single Responsibility
Principle 141

SOLID 141

special conditions 32

speed 9, 30, 178, 187

splitting into multiple
tests 54

staying local 183

TDD 6

test lists 125

test order 22

testing (continued)
testability issues 143
testable design 139
the right things 20
to catch mistakes 5
trustworthiness 8, 115
unobservable outcomes 145
value of 5
with Java 4
with JUnit 202
writing 159

tests
as a design tool 10-14
independent 21-23
making faster 30
names are important 20
productivity influences 8

INDEX

reliable 23-25
that always fail 53
that do nothing 123
that fail constantly 85
that never fail 121
that rarely fail 24
value of 5-10
what is good 15
write with care 23
Thread#sleep 86, 94
timestamps 85
tmpfs 189
trustworthiness 115

223

u

unit tests
best value 55
suggested reading 4
See also testing
why write 5

Vv

varargs method 107

w

while 84
Wynne, Matt 13

JAVA/TESTING

Effective Unit Testing

Lasse Koskela

est the components before you assemble them into a full

application, and you'll get better software. For Java devel-

opers, there’s now a decade of experience with well-crafted
tests that anticipate problems, identify known and unknown
dependencies in the code, and allow you to test components
both in isolation and in the context of a full application.

Effective Unit Testing teaches Java developers how to write unit
tests that are concise, expressive, useful, and maintainable.
Offering crisp explanations and easy-to-absorb examples, it
introduces emerging techniques like behavior-driven
development and specification by example.

What's Inside

A thorough introduction to unit testing
Choosing best-of-breed tools
Writing tests using dynamic languages

Efficient test automation

Programmers who are already unit testing will learn the current
state of the art. Those who are new to the game will learn
practices that will serve them well for the rest of their career.

Lasse Koskela is a coach, trainer, consultant, and programmer.
He hacks on open source projects, helps companies improve
their productivity, and speaks frequently at conferences
around the world. Lasse is the author of Zest Driven, also

published by Manning.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/EffectiveUnitTesting

/“ MANNING $39.99/Can $41.99 [INCLUDING eBOOK]

gsee eBog,

SEE INSERT

CCA fantastic, definitive guide.
It will boost your
productivity and deployment
effectiveness.)9
—Roger Cornejo, GlaxoSmithKline

€CChanged the way I look at

the Java development process.
Highly recommended. 33
—Phil Hanna, SAS Institute, Inc.

CCA common sense approach
to writing high quality code.??
—Frank Crow
Sr. Progeny Systems Corp.

CCExtremely useful, even if
you write .NET code.??
—]J. Bourgeois, Freshly Coded

CCIf unit tests are a nightmare
for you, read this book!3

—Franco Lombardo
Molteni Informatica

ISBN 13: 978-1-935182-57-3
ISBN 10: 1-935182-57-9

53999

MN781935W1182573

	Effective Unit Testing
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Audience
	Roadmap
	Code conventions
	Code downloads
	What’s next?
	Author Online

	about the cover illustration
	Part 1 Foundations
	1 The promise of good tests
	1.1 State of the union: writing better tests
	1.2 The value of having tests
	1.2.1 Factors of productivity
	1.2.2 The curve of design potential

	1.3 Tests as a design tool
	1.3.1 Test-driven development
	1.3.2 Behavior-driven development

	1.4 Summary

	2 In search of good
	2.1 Readable code is maintainable code
	2.2 Structure helps make sense of things
	2.3 It’s not good if it’s testing the wrong things
	2.4 Independent tests run easily in solitude
	2.5 Reliable tests are reliable
	2.6 Every trade has its tools and tests are no exception
	2.7 Summary

	3 Test doubles
	3.1 The power of a test double
	3.1.1 Isolating the code under test
	3.1.2 Speeding up test execution
	3.1.3 Making execution deterministic
	3.1.4 Simulating special conditions
	3.1.5 Exposing hidden information

	3.2 Types of test doubles
	3.2.1 Test stubs are unusually short things
	3.2.2 Fake objects do it without side effects
	3.2.3 Test spies steal your secrets
	3.2.4 Mock objects object to surprises

	3.3 Guidelines for using test doubles
	3.3.1 Pick the right double for the test
	3.3.2 Arrange, act, assert
	3.3.3 Check for behavior, not implementation
	3.3.4 Choose your tools
	3.3.5 Inject your dependencies

	3.4 Summary

	Part 2 Catalog
	4 Readability
	4.1 Primitive assertions
	4.1.1 Example
	4.1.2 What to do about it?
	4.1.3 Summary

	4.2 Hyperassertions
	4.2.1 Example
	4.2.2 What to do about it?
	4.2.3 Summary

	4.3 Bitwise assertions
	4.3.1 Example
	4.3.2 What to do about it?
	4.3.3 Summary

	4.4 Incidental details
	4.4.1 Example
	4.4.2 What to do about it?
	4.4.3 Summary

	4.5 Split personality
	4.5.1 Example
	4.5.2 What to do about it?
	4.5.3 Summary

	4.6 Split logic
	4.6.1 Example
	4.6.2 What to do about it?
	4.6.3 Summary

	4.7 Magic numbers
	4.7.1 Example
	4.7.2 What to do about it?
	4.7.3 Summary

	4.8 Setup sermon
	4.8.1 Example
	4.8.2 What to do about it?
	4.8.3 Summary

	4.9 Overprotective tests
	4.9.1 Example
	4.9.2 What to do about it?
	4.9.3 Summary

	4.10 Summary

	5 Maintainability
	5.1 Duplication
	5.1.1 Example
	5.1.2 What to do about it?
	5.1.3 Summary

	5.2 Conditional logic
	5.2.1 Example
	5.2.2 What to do about it?
	5.2.3 Summary

	5.3 Flaky test
	5.3.1 Example
	5.3.2 What to do about it?
	5.3.3 Summary

	5.4 Crippling file path
	5.4.1 Example
	5.4.2 What to do about it?
	5.4.3 Summary

	5.5 Persistent temp files
	5.5.1 Example
	5.5.2 What to do about it?
	5.5.3 Summary

	5.6 Sleeping snail
	5.6.1 Example
	5.6.2 What to do about it?
	5.6.3 Summary

	5.7 Pixel perfection
	5.7.1 Example
	5.7.2 What to do about it?
	5.7.3 Summary

	5.8 Parameterized mess
	5.8.1 Example
	5.8.2 What to do about it?
	5.8.3 Summary

	5.9 Lack of cohesion in methods
	5.9.1 Example
	5.9.2 What to do about it?
	5.9.3 Summary

	5.10 Summary

	6 Trustworthiness
	6.1 Commented-out tests
	6.1.1 Example
	6.1.2 What to do about it?
	6.1.3 Summary

	6.2 Misleading comments
	6.2.1 Example
	6.2.2 What to do about it?
	6.2.3 Summary

	6.3 Never-failing tests
	6.3.1 Example
	6.3.2 What to do about it?
	6.3.3 Summary

	6.4 Shallow promises
	6.4.1 Example(s)
	6.4.2 What to do about it?
	6.4.3 Summary

	6.5 Lowered expectations
	6.5.1 Example
	6.5.2 What to do about it?
	6.5.3 Summary

	6.6 Platform prejudice
	6.6.1 Example
	6.6.2 What to do about it?
	6.6.3 Summary

	6.7 Conditional tests
	6.7.1 Example
	6.7.2 What to do about it?
	6.7.3 Summary

	6.8 Summary

	Part 3 Diversions
	7 Testable design
	7.1 What’s testable design?
	7.1.1 Modular design
	7.1.2 SOLID design principles
	7.1.3 Modular design in context
	7.1.4 Test-driving toward modular design

	7.2 Testability issues
	7.2.1 Can’t instantiate a class
	7.2.2 Can’t invoke a method
	7.2.3 Can’t observe the outcome
	7.2.4 Can’t substitute a collaborator
	7.2.5 Can’t override a method

	7.3 Guidelines for testable design
	7.3.1 Avoid complex private methods
	7.3.2 Avoid final methods
	7.3.3 Avoid static methods
	7.3.4 Use new with care
	7.3.5 Avoid logic in constructors
	7.3.6 Avoid the Singleton
	7.3.7 Favor composition over inheritance
	7.3.8 Wrap external libraries
	7.3.9 Avoid service lookups

	7.4 Summary

	8 Writing tests in other JVM languages
	8.1 The premise of mixing JVM languages
	8.1.1 General benefits
	8.1.2 Writing tests

	8.2 Writing unit tests with Groovy
	8.2.1 Simplified setup for tests
	8.2.2 Groovier JUnit 4 tests

	8.3 Expressive power with BDD tools
	8.3.1 Groovy specs with easyb
	8.3.2 Spock Framework: steroids for writing more expressive tests
	8.3.3 Spock Framework’s test doubles are on steroids, too

	8.4 Summary

	9 Speeding up test execution
	9.1 Looking for a speed-up
	9.1.1 The need for speed
	9.1.2 Approaching the situation
	9.1.3 Profiling a build
	9.1.4 Profiling tests

	9.2 Speeding up test code
	9.2.1 Don’t sleep unless you’re tired
	9.2.2 Beware the bloated base class
	9.2.3 Watch out for redundant setup and teardown
	9.2.4 Be picky about who you invite to your test
	9.2.5 Stay local, stay fast
	9.2.6 Resist the temptation to hit the database
	9.2.7 There’s no slower I/O than file I/O

	9.3 Speeding up the build
	9.3.1 Faster I/O with a RAM disk
	9.3.2 Parallelizing the build
	9.3.3 Offload to a higher-powered CPU
	9.3.4 Distribute the build

	9.4 Summary

	Appendix A JUnit primer
	A.1 A basic JUnit test class
	A.1.1 Declaring test methods
	A.1.2 JUnit test lifecycle
	A.1.3 Test setup and teardown

	A.2 JUnit assertions
	A.2.1 Asserting that an exception is thrown
	A.2.2 assertThat() and Hamcrest matchers

	Appendix B Extending JUnit
	B.1 Controlling test execution with runners
	B.2 Decorating tests with rules
	B.3 Built-in rules
	B.3.1 Setting a global timeout
	B.3.2 Expected exceptions
	B.3.3 Temporary folders

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Back Cover

