THIRD EDITION

Programming

Interviews Exposed
Secrets to Landing Your Next Job

Eric Giguere, John Mongan, Noah Suojanen

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PROGRAMMING INTERVIEWS EXPOSED:
SECRETS TO LANDING YOUR NEXT JOB

PREFACE ittt ittt ittt tat ettt eenneeennaeennnnenns
INTRODUCTION. ..ottt ittt ittt tate i eaneeenenennnnenns
CHAPTER 1 Beforethe Search
CHAPTER2 The Job ApplicationProcess........,
CHAPTER 3 Approaches to Programming Problems................. ...
CHAPTER 4 Linked ListS i e
CHAPTERS5 Treesand Graphs.
CHAPTER 6 Arraysand Stringso i
CHAPTER 7 Recursion. ...
CHAPTER 8 SOrtiNgottt e e e e
CHAPTER 9 CONCUITENCY .« . ettt et ettt e e e e e et et e e e
CHAPTER 10 Object-Oriented Programmingo,
CHAPTER 11 DesignPatterns i
CHAPTER 12 Databases i
CHAPTER 13 Graphics and Bit Manipulation.
CHAPTER 14 Counting, Measuring, and Ordering Puzzles
CHAPTER 15 Graphical and Spatial Puzzles
CHAPTER 16 Knowledge-Based Questions
CHAPTER 17 Nontechnical Questions........
APPENDIX RESUMES ...
CONCLUSION ... e e e e e
INDEX. .ottt it i it ittt ittt teenaeesnnesennssssnsesnnnnas

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interviews Exposed

Third Edition

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interviews Exposed
SECRETS TO LANDING YOUR NEXT JOB
Third Edition

John Mongan
Eric Giguere
Noah Kindler

WILEY
John Wiley & Sons, Inc.

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Interviews Exposed: Secrets to Landing Your Next Job, Third Edition

Published by

John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by John Mongan, Eric Giguére, and Noah Kindler
Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-26136-1

ISBN: 978-1-118-28720-0 (ebk)
ISBN: 978-1-118-28340-0 (ebk)
ISBN: 978-1-118-28466-7 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport .wiley.com. For more information about Wiley products, visit www .wiley.com.

Library of Congress Control Number: 2012941787

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.it-ebooks.info

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
http://www.it-ebooks.info/

For Thuy, the love of my life, who understands me.
—JOoHN MONGAN

To my parents, Jean-Claude and Marie-]Jolle, who
encouraged and supported my love of programming.

—ERric GIGUERE

To Mikey, Alex, and Teddy

—NoaAH KINDLER

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE AUTHORS

JOHN MONGAN is a self-taught programmer with professional experience as a consultant for several
software and pharmaceutical companies. He has three patents on software testing technologies. He
holds a B.S. degree from Stanford and an M.D. and a Ph.D. degree in bioinformatics from UC San
Diego, where he worked on supercomputer simulations of protein dynamics. He currently conducts
research in medical informatics as a resident radiologist at UC San Francisco.

ERIC GIGUERE started programming in BASIC on a Commodore VIC-20 (a long time ago) and was
hooked. He holds BMath and MMath degrees in computer science from the University of Waterloo,
has extensive professional programming experience, and is the author of several programming
books. He currently works as a software engineer at Google.

NOAH KINDLER is VP Technology at the security technology company Avira. He leads software
design and development teams across several products with a user base of over 100 million.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ABOUT THE TECHNICAL EDITORS

MICHAEL GILBERT is a long-time systems programmer for various engineering firms. He got his

start developing games for the Atari ST, and was a frequent contributing editor for STart magazine.
Over the years, he’s developed gaming software on the PC and Mac for clients worldwide. He’s also
an expert Flash Actionscript programmer and has produced a popular internet gaming environment
called HigherGames, you can check it out at www.highergames . com. He now enjoys developing games
for the iPhone and iPad, and currently has four games in the AppStore (Woridgo, Jumpin’ Java, Kings
Battlefield, and Set Pro HD). In his spare time, he enjoys trying to defeat his wife Janeen in a friendly
game of Scrabble. You can follow him on Twitter at mija711.

JUSTIN VOGT is an experienced software development professional with a unique blend of skills
(technical, architectural, design, communication, creative, management, and development leadership).
He has over 15 years of diverse experience in software development and has worked on projects that
include embedded software, mobile development, web development, commercial software develop-
ment, device communications, medical application development, and non-profit organization solution
development.

www.it-ebooks.info

http://www.highergames.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CREDITS

EXECUTIVE EDITOR
Carol Long

PROJECT EDITOR
Maureen Spears

TECHNICAL EDITOR
Justin J. Vogt

PRODUCTION EDITOR
Kathleen Wisor

COPY EDITOR
Apostrophe Editing

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

www.it-ebooks.info

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND
EXECUTIVE GROUP PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

COMPOSITOR
Craig Johnson, Happenstance Type-O-Rama

PROOFREADER
Nancy Carrasco

INDEXER
Jack Lewis

COVER DESIGNER
Ryan Sneed

COVER IMAGE
© Andrew Rich / iStockPhoto

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

ACKNOWLEDGMENTS

THE PREPARATION OF THIS EDITION followed an unusual path, and we appreciate the extensive
efforts of the staff at Wiley to bring it to a timely and successful completion. The contributions of
our editor, Maureen Spears, who can rapidly overcome any obstacle that arises, and the personal
attention of our publisher, Jim Minatel, and our senior acquisitions editor, Carol Long, were espe-
cially key, and we thank them for their time, work, and assistance.

The quality of this edition has been greatly improved by Wayne Heym’s thoughtful comments and
detailed review, and we thank him for his generous contributions.

In addition, John is deeply grateful for Michael J. Mongan’s help in facilitating his participation
with this edition.

No third edition would have been possible without the two that preceded it, however, and the many
people who contributed to them. For this reason, we also thank our original editors, Margaret Hendrey
and Marjorie Spencer, for their patience and helpfulness. We are also grateful to our original reviewers
and advisors, Dan Hill, Elise Lipkowitz, Charity Lu, Rob Maguire, and Tom Mongan. Dan’s contribu-
tions in particular were tremendous—the quality of the first edition was vastly improved by his careful
and meticulous reviews.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

PREFACE XXV
INTRODUCTION XXix
CHAPTER 1: BEFORE THE SEARCH 1
Know Yourself 1
Know the Market 3
Basic Market Information 3
What About Outsourcing? 4
Develop Marketable Skills 5
Get Things Done 6
Manage Your Online Profile 6
Summary 8
CHAPTER 2: THE JOB APPLICATION PROCESS 9
Finding and Contacting Companies 9
Finding Companies 9
Getting Referrals 10
Working with Headhunters 10
Contacting the Company Directly 1

Job Fairs 12

The Interview Process 12
Screening Interviews 12
On-Site Interviews 13
Dress 13

A Recruiter’s Role 14
Offers and Negotiation 15
Dealing with Recruiter Pressures 15
Negotiating Your Salary 15
Accepting and Rejecting Offers 16

17

Summary

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

xviii

CHAPTER 3: APPROACHES TO PROGRAMMING PROBLEMS 19
The Process 19
The Scenario 19
The Problems 20
Which Languages to Use 20
Interactivity Is Key 21
Solving the Problems 22
The Basic Steps 22
When You Get Stuck 23
Analyzing Your Solution 24
Big-O Analysis In Action 25
How Big-O Analysis Works 26
Best, Average, and Worst Cases 27
Optimizations and Big-O Analysis 27
How to Do Big-O Analysis 28
Which Algorithm Is Better? 28
Memory Footprint Analysis 29
Summary 30
CHAPTER 4: LINKED LISTS 31
Why Linked Lists? 31
Kinds of Linked List 32
Singly Linked Lists 32
Doubly Linked Lists 34
Circular Linked Lists 34
Basic Linked List Operations 34
Tracking the Head Element 34
Traversing a List 36
Inserting and Deleting Elements 36
Linked List Problems 38
Stack Implementation 38
Maintain Linked List Tail Pointer 43
Bugs in removeHead 48
Mth-to-Last Element of a Linked List 50
List Flattening 53
List Unflattening 56
Null or Cycle 58
Summary 60

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CHAPTER 5: TREES AND GRAPHS 61
Trees 61
Binary Trees 63
Binary Search Trees 64
Heaps 66
Common Searches 66
Traversals 67
Graphs 68
Tree and Graph Problems 68
Height of a Tree 69
Preorder Traversal 70
Preorder Traversal, No Recursion 71
Lowest Common Ancestor 73
Binary Tree to Heap 75
Unbalanced Binary Search Tree 77
Six Degrees of Kevin Bacon 79
Summary 83
CHAPTER 6: ARRAYS AND STRINGS 85
Arrays 85
C and C++ 86
Java 87
C# 87
JavaScript 88
Strings 88
C 89
C++ 89
Java 90
C# 90
JavaScript 91
Array and String Problems 91
Find the First Nonrepeated Character 91
Remove Specified Characters 94
Reverse Words 97
Integer/String Conversions 101
Summary 105

www.it-ebooks.info

Xix

http://www.it-ebooks.info/

CONTENTS

CHAPTER 7: RECURSION 107
Understanding Recursion 107
Recursion Problems m

Binary Search m
Permutations of a String 13
Combinations of a String 16
Telephone Words 19
Summary 124

CHAPTER 8: SORTING 125

Sorting Algorithms 125
Selection Sort 126
Insertion Sort 127
Quicksort 128
Merge Sort 130

Sorting Problems 131
The Best Sorting Algorithm 132
Stable Selection Sort 134
Multi-Key Sort 137
Make a Sort Stable 138
Optimized Quicksort 139
Pancake Sorting 142

Summary 144

CHAPTER 9: CONCURRENCY 145

Basic Thread Concepts 145
Threads 145
System Threads versus User Threads 146
Monitors and Semaphores 146
Deadlocks 147
A Threading Example 147

Concurrency Problems 150
Busy Waiting 150
Producer/Consumer 152

The Dining Philosophers 155

Summary 158

XX

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CHAPTER 10: OBJECT-ORIENTED PROGRAMMING 159
Fundamentals 159
Classes and Objects 159
Inheritance and Polymorphism 160
Construction and Destruction 162
Object-Oriented Programming Problems 162
Interfaces and Abstract Classes 162
Virtual Methods 164
Multiple Inheritance 165
Summary 166
CHAPTER 11: DESIGN PATTERNS 167
What Are Design Patterns? 167
Why Use Design Patterns? 167
Design Patterns in Interviews 168
Common Design Patterns 168
Creational Patterns 168
Behavioral Patterns 171
Structural Patterns 172
Design Pattern Problems 172
Singleton Implementation 172
Decorator versus Inheritance 175
Efficient Observer Updates 176
Summary 176
CHAPTER 12: DATABASES 177
Database Fundamentals 177
Relational Databases 177
SQL 178
Database Transactions 182
Database Problems 183
Simple SQL 183
Company and Employee Database 184
Max, No Aggregates 186
Three-Valued Logic 188
Summary 189

www.it-ebooks.info

XXi

http://www.it-ebooks.info/

CONTENTS

CHAPTER 13: GRAPHICS AND BIT MANIPULATION 191
Graphics 191
Bit Manipulation 192

Binary Two’'s Complement Notation 192
Bitwise Operators 193
Optimizing with Shifts 194
Graphics Problems 194
Eighth of a Circle 195
Rectangle Overlap 197
Bit Manipulation Problems 200
Big-Endian or Little-Endian 201
Number of Ones 203
Summary 205

CHAPTER 14: COUNTING, MEASURING, AND ORDERING PUZZLES 207

Tackling Brainteasers 207
Solving the Right Problem 208
Don’t Be Intimidated 209
Beware of Simple Problems 210
Estimation Problems 210

Brainteaser Problems 21
Count Open Lockers 21
Three Switches 213
Bridge Crossing 214
Heavy Marble 218
Number of American Gas Stations 222

Summary 223

CHAPTER 15: GRAPHICAL AND SPATIAL PUZZLES 225
Draw It First 225
Graphical and Spatial Problems 226

Boat and Dock 226
Counting Cubes 228
The Fox and the Duck 231
Burning Fuses 234
Escaping the Train 235
Summary 237

xXii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

CHAPTER 16: KNOWLEDGE-BASED QUESTIONS 239
Preparation 239
Problems 240

C++ versus Java 241
Friend Classes 241
Argument Passing 242
Macros and Inline Functions 243
Inheritance 245
Garbage Collection 245
32-Bit versus 64-Bit Applications 247
Network Performance 247
Web Application Security 248
Cryptography 250
Hash Tables versus Binary Search Trees 251
Summary 251

CHAPTER 17: NONTECHNICAL QUESTIONS 253
Why Nontechnical Questions? 253
Questions 254

“What Do You Want to Do?” 254
“What Is Your Favorite Programming Language?” 255
“What Is Your Work Style?” 256
“What Can You Tell Me about Your Experience?” 256
“What Are Your Career Goals?” 256
“Why Are You Looking to Change Jobs?” 256
“What Salary Are You Expecting?” 257
“What Is Your Salary History?” 259
“Why Should We Hire You?” 260
“Why Do You Want to Work for This Company?” 260
“Do You Have Any Questions for Me?” 260
Summary 261

xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

CONTENTS

APPENDIX: RESUMES 263
The Technical Résumé 263

A Poor Example 263

Sell Yourself 267
Keep It Short 267

List the Right Information 268

Be Clear and Concise 269
Relevant Information Only 270

Use Reverse Chronological Ordering 271
Always Proofread 271

The Improved Example 271
Managers and Senior Developers 273
Tailor the Résumé to the Position 279
Sample Résumé 279
CONCLUSION 283
INDEX 285

XXiv

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

THE MOST IMPORTANT THING WE HAVE TO TELL YOU is the same as in the first edition: You will
get as much out of this book as you put into it. If you read this book cover to cover, you will learn
something, but not nearly as much as you would if you take some time trying to work through the
problems before you read the answers.

That said, many of the other things we have to tell you have changed over the period of more than a
decade since the first edition was published, so it was thrilling to have another opportunity to revise
Programming Interviews Exposed.

This edition represents the largest update yet. In addition to revising, expanding, and updating the
material from the previous edition, chapters on the important topics of sorting and design patterns
are added. The non-programming parts of the book were revised to reflect the realities of today’s job
market. Throughout all this, we maintain the approachable style and step-by-step thought process
developed for the original edition.

Code samples are largely in C, C++, or Java, but in most cases the focus is on the data structures
and algorithms, and the language choice is entirely secondary. All the examples should be easily
understandable for an experienced programmer.

One of us (Eric) recently interviewed for and landed his dream job at Google, which has given him
additional perspective on programming interviews, reflected in this revision. We’re pleased that
Google seems to be leading a shift away from the use of trivial puzzles in interviews, something
we’ve complained about since the first edition (see the following original preface).

We hope you enjoy the third edition of Programming Interviews Exposed and that it helps you get
the job you’ve always wanted. We’d love to hear your thoughts on the book and your interview expe-
riences. You can contact us at authors@piexposed.com. Be sure to visit the official Programming
Interviews Exposed site at http: //www.piexposed.com for updates and more information.

PREFACE TO THE FIRST EDITION

If you’re like us, you don’t usually read prefaces. This one has some useful information in it, though,
so we hope you’ll make an exception. If you’re still tempted to skip the preface, here’s what you really
need to know: You’ll get as much out of this book as you put into it. If you read this book cover to
cover, you’ll learn something, but not nearly as much as you would if you take some time trying to
work through the problems on your own before you read the answers.

This book will help prepare you for the interviews you will face when seeking a job in program-
ming, development, technical consulting, or any other field that warrants a programming interview.
Programming interviews bear little resemblance to those described in traditional job-hunting and
interview books. They consist almost entirely of programming problems, puzzles, and technical

www.it-ebooks.info

mailto:authors@piexposed.com
http://www.piexposed.com
http://www.it-ebooks.info/

PREFACE

XXVi

questions about computers. This book discusses each of the kinds of problems you are likely to
encounter and illustrates how they are best approached using questions from real interviews as
examples.

At this point you may be wondering who we are and what gives us the authority to write this book.
We’re both recent graduates who’ve been through a lot of interviews in the past few years. We've
interviewed for jobs ranging from technical consulting with large established companies to writing
device drivers for startups. This book is based on the experiences and observations we’ve taken from
those interviews — what yielded offers and what didn’t. We believe that this is the best possible
basis for a book like this. Rather than give you some HR exec’s idea of how interviewing should be
done or a head hunter’s impression of how it might be done, we will tell you what interviews are
really like at America’s top software and computer companies and what you need to do to get the
job you want.

NOTE For the record, we don’t think that the way interviewing is done today
is necessarily the way it should be done. The current paradigm puts too much
emphasis on the ability to solve puzzles and familiarity with a relatively limited
body of knowledge, and it generally fails to measure a lot of the skills that are
critical to success in industry.

To that end, we haven’t made up any of the questions in this book. Every last one of them has been
lifted from a recent interview. The distributions of problem type and difficulty are similar to what
you should expect to encounter in your interviews. We must emphasize that the problems presented
in this book are a representative sample of the questions asked in interviews, not a comprehensive
compilation. Reading this book straight through and memorizing the answers would completely
miss the point. You may be asked some of the questions that appear in this book, but you should
not expect that. A large and constantly changing body of questions is asked, and any intelligent
interviewer who has seen this book will never again use any of the questions that appear here. On
the other hand, interview questions encompass relatively few topic areas and types of questions,
and these rarely change. If you work on learning to solve not just the specific problems we present,
but the types of problems we present, you’ll be able to handle anything they throw at you in an
interview.

We’ve taken a couple of steps to facilitate the objective of improving your problem-solving skills.
First, where appropriate, we provide reviews of important topics before we present questions on those
topics. Second, instead of merely giving answers to the problems, we illustrate the problem-solving
process from beginning to solution. We’ve found that most textbooks and nearly all puzzle books
take a different approach to examples: They begin with a problem, go immediately to the answer, and
then explain why the answer is correct. In our experience, the result is that the reader may under-
stand the particular answer and why it’s right, but is left with no clue as to how the author came up
with that solution or how a similar problem might be solved. We hope that our step-by-step approach
to solutions will address this issue, helping you to understand not only the answers but also how you
arrive at the answers.

www.it-ebooks.info

http://www.it-ebooks.info/

PREFACE

Learning by watching is never as effective as learning by doing. If you want to get the most out of
this book, you will have to work out the problems yourself. We suggest the following method:

1. After you read a problem, put the book down and try to work out the solution.

2. If you get stuck, start reading the solution. We never blurt out the answer at the beginning,
so you don’t have to worry that we’re going to give away the entire solution.

3. Read just far enough to get the hint you need, and then put down the book and keep
working.

4. Repeat this as necessary.

The more of the solution you work out yourself, the better your understanding will be. In addition,
this method closely resembles the actual interview experience, where you will have to solve the prob-
lems yourself, but the interviewer will give you hints when you get stuck.

Programming is a difficult and technical art. It would be impossible to teach everything you need to
know about computers and programming in one book. Therefore, we’ve had to make some assump-
tions about who you are. We assume that you have a background in computers equivalent to at least
the first year or two of a computer science degree. Specifically, we expect that you are comfortable
with programming in C, that you’ve had some experience with object-oriented programming in C++
or perhaps Java, and that you know the fundamentals of computer architecture and computer science
theory. These are effectively the minimum requirements for a general development job, so most
interviewers will have similar expectations. If you find yourself lacking in any of these areas, you
should seriously consider seeking more education before starting your job search and interviews.

It’s also possible that you have a great deal more computer knowledge and experience than what
we’ve described as the minimum requirements. If so, you may be particularly interested in some of
the more advanced topics included. However, don’t ignore the basic topics and questions, no mat-
ter how much experience you have. Interviewers tend to start with the fundamentals regardless of
what’s on your résumé.

We have made every effort to ensure that all of the information in this book is correct. All of the
code has been compiled and tested. Nevertheless, as you probably know all too well from your own
programs, a few bugs and errors are inevitable. As we become aware of such problems, we will post
corrections at http: //www.piexposed.com.

We’re confident that you’ll find this book useful in getting the job you want. We hope that you may
also find it an entertaining exploration of some clever puzzles in your chosen profession. If you’d like
to tell us about your reaction to our book, share your thoughts on any particular problem or topic,
or provide a problem from one of your recent interviews, we’d love to hear from you. Please e-mail
us at authors@piexposed. com.

Go find a killer job!

XXVii

www.it-ebooks.info

http://www.piexposed.com
mailto:authors@piexposed.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

LANDING A GREAT PROGRAMMING JOB isn’t a matter of luck; it’s a matter of preparation. The program-
ming interview process that most software firms use today is designed to determine whether you can
actually code. It can be a grueling process, especially because the limitations imposed by the interview
format make the process almost completely different from anything you experience in school or on the
job. If you’ve never encountered it before, it can be quite a shock. Even great programmers who are inex-
perienced with programming interviews often struggle if they are unprepared for what they will face.

This book was written to prepare you for the technical interview process so that you have no prob-
lem demonstrating how great a programmer you are. It doesn’t teach you how to program; it shows
you how to use the programming skills you have to shine in a programming interview. As you read
this book, keep in mind that programming interviews (for the most part) are not factual recall tests,
so this book isn’t a cheat sheet of all the facts you need to know for your interview. Instead, it teaches
by example the techniques and thought processes you need to succeed. The best way to internalize
these is to take time to work through and understand the problems. If you do, you’ll approach your
interviews with confidence because you’ll be prepared to solve any problem you’re given, putting you
that much closer to landing the job you want.

WHY PROGRAMMING INTERVIEWS?

Why do software firms use programming interviews? They want to hire great programmers who can
work well with others to successfully produce great products. Unfortunately, bitter experience has
taught employers that a substantial portion of applicants for programming jobs simply cannot code.
You might expect that these applicants could be screened out by careful review of résumés, experi-
ence, course work, and degrees, but in practice this often fails. There are a surprisingly large number
of applicants with sparkling résumés and years of apparently relevant industry experience who cannot
accomplish even the simplest of programming tasks. Many of them have picked up enough terminol-
ogy that they can appear competent in conversations about programming and technology. Hiring one
of these “developers” who can’t code can easily sink a department (or even a small company).

Recognizing that traditional interviews are ineffective to identify applicants who can’t code, employ-
ers took a logical step: Ask applicants to do some coding during the interview. Thus the programming
interview was born. Programming interviews are extremely effective at separating those who can code
from those who can’t, which is why they are a nearly universal part of the technical interview process.

The difficulty with programming interviews is that employers don’t just want to screen out people
who can’t code. Employers want to distinguish the best programmers from those who are merely
competent. This is a more difficult distinction to make. Typically, interviewers try to measure an
applicant’s ability by posing difficult programming challenges and noting how quickly and accu-
rately the applicant solves them.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

The problem with this approach is that due to the time restriction inherent to an interview, the skills
that can be tested in a programming interview only partially overlap the skills that are relevant to
real-world development. By necessity, programming interviews evaluate your ability to solve problems
on the spot, with someone watching you, without the benefit of any of the references you would typi-
cally have available. There isn’t time to write a lot of code, so problems must have short solutions.
Most problems with short solutions would be trivial, so to avoid this many interview problems involve
unusual algorithmic tricks, absurd restrictions, or obscure language features. Because these types of
problems don’t typically arise in real-world development, an excellent programmer who is unprepared
for the peculiarities of the interview experience may appear to be unqualified.

Conversely, there are many skills essential to development in a professional environment that pro-
gramming interviews don’t assess well (or at all). These include communicating and working as part
of a team; architecture, and management of large codebases; time management and discipline to
consistently produce reliable code on schedule; and the ability to tackle a large project, identify all
the component parts, and carry the project through to completion.

Clearly, programming interviews do not provide a perfect measure of an applicant’s worth as a
future employee. But to paraphrase Churchill’s assessment of democracy, it’s the worst form of tech-
nical interview except for all the other forms that have been tried. More to the point, programming
interviews are the way employers choose who they will hire, so you need to perform well in them
regardless of whether they are an ideal form of assessment. This book is devoted to teaching you
how to adapt your programming skills to the peculiarities of interview problems and gives you the
preparation and practice you need to shine in interviews so that you get the job you want.

HOW TO USE THIS BOOK

XXX

Preparation is the key to mastering the programming interview process. The following are some
general guidelines on how to effectively use this book to prepare for programming interviews:

> Give yourself enough time to prepare. Start your preparations as early as possible, ideally
weeks or even months ahead of your interviews. You need that time to practice the concepts
presented here. (If you don’t have the luxury of that much time, try to put aside some blocks
of uninterrupted time to study the material.)

> Practice answering problems. Don’t just read through the solutions. Work through the prob-
lems using the solutions for a hint when you get stuck and to verify your answer. Try to
simulate the interview experience. Most of the time you’ll be writing code on paper or a white-
board; practice this! It sounds silly, but it takes some practice to get the programming part of
your brain engaged through a pen instead of a keyboard.

> Make sure you understand the underlying concepts. Understanding the concepts that under-
lie the problems is the key to your success. Don’t skip or gloss over the material you don’t
understand. This book provides enough of an explanation to refresh your memory of topics
you’ve learned before, but if you encounter something you’ve completely forgotten or never
learned, you may need to read more about it in another reference.

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

> Don’t bother memorizing the answers to the problems. Interviewers are unlikely to present
you with any of the problems in this book. Even if they do, they may change the problem in
any number of small ways. If you answer it by rote, your answer may be incorrect.

>

Keep practicing. Your preparation doesn’t stop after finishing this book. Keep working on
programming problems; they’re easy to find on the Internet. Find additional reference mate-
rial, especially in your areas of expertise, and keep reading.

Your health and well-being is your most important asset; it affects how well you learn and how

well you interview. Remember to get enough sleep — especially close to an interview date — and to
exercise and eat properly. Take regular breaks to help your mind integrate the material. Don’t try to
cram at the last minute — when it’s time for your interview, you’ll be a much more effective problem

solver if you go in relaxed with a clear mind than if you stress yourself by cramming right up until
the interview.

As part of your preparation, be sure to visit http: //www.piexposed.com to sign up for our mailing
list and learn about the special smartphone app we’ve prepared to help you with your interviews.

Now, let’s get started!

XXXi

www.it-ebooks.info

http://www.piexposed.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Before the Search

Before starting your job search, you need to prepare yourself. You shouldn’t apply for jobs
without knowing what kind of job you want. Just being a good coder isn’t enough; you must
understand what the market wants and how you can improve and package your own skills to
make sure that the company with the job you want will want you.

KNOW YOURSELF

Stereotypes to the contrary, all programmers are not alike. Knowing what kind of programmer
you are is crucial to finding the right kind of job. Although you can probably do many different
kinds of programming tasks, you probably don’t find them all equally engaging. Doing some-
thing you don’t enjoy is fine on a short-term basis, but you need to be interested in and excited
by what you’re doing for it to sustain you over the long term. The best programmers are passion-
ate about their work, and you can’t truly be passionate about something that’s only moderately
interesting to you.

If you’re not sure what you like or dislike, ask yourself some questions:

> Are you a systems programmer or an application developer? Systems programmers
work on the code that keeps computer systems running: frameworks, tools, compilers,
drivers, servers, and so on. Other programmers are their primary audience, so little
interaction occurs with non-programmers — and usually the job involves little or no user
interface work. Application developers, on the other hand, work on the pieces that those
non-programmers use to do their own work, and often more interaction occurs with
non-technical people. Many programmers find interacting with non-technical people
about technical topics to be frustrating; on the other hand, you may enjoy creating appli-
cations that are seen and used by an audience that extends beyond other programmers.

> Do you like coding user interfaces? User interface design — also referred to as user
experience (UX) or human computer interaction (HCI) — is a role that draws on a
diverse set of skills, including programming, graphic design, and psychology. This

www.it-ebooks.info

http://www.it-ebooks.info/

2

CHAPTER1 BEFORE THE SEARCH

work is high profile because the user interface is the most visible part of any application.
User interface design is particularly important in mobile application development, where
the restrictions of the device require even greater creativity and innovation. If you have the
necessary skills and enjoy this work, you’re in elite company: Many programmers find it
finicky, hard to do well, and easy to criticize, especially when you take internationalization
and accessibility issues into account.

Are you a good debugger? If you think finding problems in your own code is difficult, imag-
ine what it’s like to fix problems with someone else’s code. It requires strong analytical and
problem-solving skills. Finding and fixing bugs can be extremely rewarding in its own right.
You need to know if you’d be happy doing primarily maintenance work. (Of course, you
should always expect to maintain your own code — all programmers need debugging skills.)
In many cases, particularly in older companies, maintenance programming jobs involve
working primarily with older technologies now considered outdated or no longer in fashion.
Developing your experience and skills with older technologies may narrow the range of jobs
that you’re suited for, but because expertise in older technologies is hard to find, you may be
highly sought after by the smaller number of companies dependent on older programs.

Do you like testing? Testing — also referred to as quality assurance or QA for short — requires
a combination of meticulous attention to detail to ensure that tests cover every conceivable use
of a program and outside-the-box creativity to find bugs in the program by generating com-
binations of inputs that the program’s developers never considered. Skilled testers are hard to
find, and good programming skills are required to write tools and automated test cases.

Are you an architect or a coder? Every coding job includes some kind of design aspect, but
certain jobs lean more one way than the other. If you enjoy designing, particularly design-
ing the large-scale structure of big projects, a position as a software architect might be more
appealing than a coding-focused job. Although you need a good understanding of how
to code to be an effective architect, architecture positions can involve a lot of meetings
and interpersonal interactions and little or no coding. Unless you have formal training in
software architecture, the usual route to becoming an architect is to code first and to then
display an aptitude for designing and fitting together different pieces of a project.

The preceding questions deal with different kinds of programming, but you should also consider
non-programming responsibilities that might interest you and the work environment that you prefer:

>

Does management interest you? Some coders have a long-term goal to become a manager, but
others shiver at the very thought. If management is your goal, you need to develop leadership
skills and demonstrate that you can manage the human parts of the software development
equation as well as the technical pieces. If management is zot your goal, look for companies
with good technical career paths, so you’re not forced to manage people to be promoted. (You
still need leadership skills to get promoted no matter which career path you choose, but
leadership skills are separate from people management skills.)

Do you want to work for a big company? There are advantages and disadvantages to work-
ing at big companies. For example, a large company may offer more job stability (although
layoffs during downturns are common) and some kind of career path. It may also have

a name brand that non-techies recognize. On the other hand, you may feel stifled by the
bureaucracy, rigidness, and intracompany rivalry often found in bigger companies.

www.it-ebooks.info

http://www.it-ebooks.info/

Know the Market | 3

> Do you want to work for a small company? The pay may be less, but getting in on the
ground floor at a new company can create opportunities for future advancement (and
possibly substantial remuneration) as the company grows and succeeds. Also, the work
environment at small companies is often more informal than at larger organizations. The
downside, of course, is that most new ventures fail, and you may be out of a job within a
year or two, most likely without the kind of severance package you might expect from a
large company.

> Do you want to work on open source projects? The vast majority of programming jobs have
historically involved proprietary, closed-source projects, which some programmers don’t
like. A shift has occurred in some companies in favor of more open software development,
which provides opportunities for people to work on open-source projects and still be paid
for that participation. If it’s important to you that your work project is open source, it’s best
to seek out companies already involved in open source. Trying to champion open source in
traditional software companies is often a frustrating and fruitless undertaking.

> Do you want long-term or short-term projects? Some programmers crave change, spending
a few months at most on each project. If you like short-term projects and don’t mind trav-
eling, a gig with a consulting company might make more sense than a more conventional
corporate job.

Realize that there are no universal answers to these questions, and no right or wrong way to answer
them. The more truthful you are in answering them, the more likely you’ll find the kind of program-
ming job you truly enjoy.

KNOW THE MARKET

Knowing what you'd like to do is great, but don’t box yourself in too narrowly. You also need to
understand the current job market and how it constrains your search for the “ideal” job, especially
during an economic downturn like the one that burst the Internet bubble of the late *90s or the
global real estate and banking meltdown of the late 2000s.

Basic Market Information

A number of sources of information exist about what’s hot and what’s not in the developer job mar-
ket, including the following:

> Social networks — The tremendous growth of social networks, such as LinkedIn, Facebook,
and Google+, have transformed social networks into virtual recruiting grounds for all types
and sizes of organizations. LinkedIn is particularly important. The other social networks
can provide an indirect “pulse” of the market and also valuable leads for new and even
unannounced job postings.

> Online job sites — Visit two kinds of job sites as part of your research. Job listing sites such
as Dice (which specializes in technology-related career listings) and Monster (a general job
listing site) enable you to see what kinds of jobs are currently in demand. Review sites such
as Glassdoor and CareerBliss discuss working conditions, salaries, bonuses, perks, and
other information useful for finding the right kind of company for you.

www.it-ebooks.info

http://www.it-ebooks.info/

4 | CHAPTER1 BEFORE THE SEARCH

> Bookstores — Even though more and more programmer documentation is available online,
professionally published books are still important, whether printed or downloadable. The
number of books published on any given topic is a good indication of the level of interest the
programming community has in that topic. Look especially for niche topics that are sud-
denly going mainstream, but beware that in most companies, mainstream use of technolo-
gies lags the interest levels represented in books by a few years.

> Professional development courses — Colleges and universities try to keep abreast of what
companies want and create professional development courses around those needs.

If you’re not in college or university, find out what languages and technologies the local institutions
and your alma mater require of their computer science students; although academic needs don’t
always coincide with what employers want, educational institutions try to graduate students with
practical skills that employers can use.

What About Outsourcing?

Outsourcing and offshoring — contracting tasks to other companies or foreign divisions or com-
panies — is an important part of the technical employment landscape. Outsourcing of ancillary
business activities such as payroll administration and property maintenance has been around for
decades. More recently, this has expanded to programming, driven by the advent of inexpensive
computers, cheap long distance communication provided by the Internet, and the recognition of
technically educated workforces in low-wage developing countries. There was a flurry of outsourc-
ing, particularly offshoring, in the mid-2000s. This has become less topical in the past several years
because most companies that intend to outsource have already outsourced whatever they can. In
addition, the costs of offshoring have risen as wages rise in the developing world, particularly in
India and China. This coupled with recognition of the hidden costs of coordination with workforces
from different cultures on very different schedules have led some companies to insource roles they
previously outsourced. Nevertheless, outsourcing and offshoring remain a possibility for expanding
companies that think they may cut costs, as well as established companies wondering if they’re pay-
ing too much by keeping their work local.

If outsourcing (and offshoring in particular) is something that worries you, consider taking steps to
avoid landing a job that might be outsourced at some point in the future. The following are some
suggestions:

> Work for software development firms — A software firm’s raison d’étre is the intellectual
property it develops. Although medium and large firms may open development centers in
other parts of the world, the smart ones are unlikely to move their entire operations to other
countries or entrust their future to outside firms. That said, some companies outsource all
or substantial parts of a project to other countries for cost or other reasons, so it pays to
research a company’s behaviors and policies.

> Work for an outsourcer — Oddly enough, many outsourcing firms hire personnel in coun-
tries such as the United States.

www.it-ebooks.info

http://www.it-ebooks.info/

Develop Marketable Skills | 5

> Move up the programmer food chain — Design-oriented jobs are less likely to be outsourced.
Coders are relatively cheap and plentiful, but good designers are much harder to find. (This
assumes that your company recognizes that good design skills are separate from good coding
skills.) Another way to make yourself more difficult to replace is to acquire domain specific
knowledge: expertise related to the programs you write but outside of the field of program-
ming. For example, if you develop financial software, it’s much more difficult to outsource
your job if it involves the application of accounting skills in addition to programming than if
you’re purely a coder.

> Take a management job — Management can be a refuge from outsourcing, so a management-
oriented career path is one option to consider.

Of all these options, moving up the food chain is usually the best approach. The more non-program-
ming knowledge your job requires, or the more interaction with customers, the less likely you are to
be outsourced. There’s no guarantee you’ll never be outsourced, of course, or that you’ll always keep
your job. Your company may shutter or downsize the project you’re working on at any point, after
all, and put you back on the street. This is why developing reusable and marketable skills through-
out your career is extremely important.

DEVELOP MARKETABLE SKILLS

In the appendix we discuss your résumé as a marketing tool to get you job interviews. The easiest
thing to sell is something that people want, so it’s important that you have marketable skills to offer
a prospective employer.

To stand out from the crowd both on paper and in the interviews you need to develop skills and
accomplishments, especially if you’re entering the job market for the first time. The following are
some approaches you can take:

> Upgrade your credentials — Companies such as Google are well known for favoring job
applicants with graduate degrees. Getting a master’s or doctorate degree is one way to
upgrade your credentials. You can upgrade your credentials in other ways, such as taking
university or professional development courses or participating in programming contests.

> Get certified — Certification is a contentious issue in the software development profession,
but some jobs either prefer or require candidates to be certified in specific technologies,
especially IT jobs. Consider surveying job listings to see whether certifications are required
for the jobs that interest you before you invest time and money in certifications.

> Work on a side project — A great way to expand your skill set is to work on a project not
directly related to your primary work or study focus. Starting or joining an open-source
development project is one way to go. Or if you work at a company, see if it will let you
spend time on an ancillary project.

> Do well in school — Although grades aren’t everything, they are one measure that companies
use to rank new graduates with little job experience. The better your grades, especially in
computer science and mathematics courses, the more you can impress a potential employer.

www.it-ebooks.info

http://www.it-ebooks.info/

6 | CHAPTER1 BEFORE THE SEARCH

> Keep learning — The end of formal education doesn’t mean you should stop learning, espe-
cially when so much information about programming is available from a wide variety of
sources. Whether it’s books or blogs, there’s always a way to keep current, no matter what
type of programming you do. It’s also a great way to expand your horizons and discover
other areas of interest. This kind of learning doesn’t show up on your résumé, but it’s some-
thing you can highlight in your technical interviews.

> Be an intern — New graduates who manage to secure employment during their non-school
terms — especially those that participate in cooperative education programs — have a huge
advantage over their peers who haven’t yet ventured into the real world. Software develop-
ment in the field is often different from software development in an academic setting, and
potential employers are cognizant of this.

The key is to keep learning, no matter the stage of your career. You can’t develop marketable skills
overnight; they take some effort and initiative on your part but can have long-lasting effects on your
career.

GET THINGS DONE

Companies look for software developers who get things done. You may look great on paper in
terms of skills and education, but credentials and knowledge don’t make products or services that a
company can sell. It’s your ability to accomplish something that truly sets you apart from the other
candidates.

Getting an advanced degree such as a Ph.D., becoming a trusted contributor to a widely used open
source project, or carrying a product through from start to launch are all big accomplishments. But
small accomplishments can be just as important, such as adding a feature to a product, making a mea-
surable improvement to the product’s performance, starting and completing a side project, or creating
a useful application for a class project. These all show that you can get things done.

Recruiters and hiring committees like to see that you have multiple accomplishments — a pattern

of getting things done. This is especially true for more senior and experienced developers. You need
to show those accomplishments on your résumé and your online profile. Whether your accomplish-
ments are big or small, always be ready to talk intelligently and confidently about each one. This is
incredibly important! Make sure you can clearly and succinctly describe the underlying problem and
how your project solved it, even to a non-technical person. Displaying a passion for programming is
always positive; clearly communicating how your passion produces products and services that other
people can use makes you really stand out from the other candidates.

MANAGE YOUR ONLINE PROFILE

Your online profile — everything public about you online — is just as important as your résumé.
Recruiters use online profiles to find desirable candidates. Screeners use them to weed out undesir-
able applicants. Interviewers use them to prepare in-depth interview questions when résumés lack
details.

www.it-ebooks.info

http://www.it-ebooks.info/

Manage Your Online Profile | 7

An online profile consists of any or all these things:

> LinkedIn profile — LinkedIn is a social network for tracking professional connections.
It’s free to join, and you can create a detailed profile about yourself, including your jobs
and your education — essentially an online résumé. Colleagues and customers can publicly
endorse you or your work, which can be quite valuable.

> Other social network profiles — Other social networks such as Facebook or Google+,
depending on your privacy settings.

> Personal website — This is a potential source of more in-depth information about you.

Articles and blog posts — If you write about programming-related topics, this is a good way
for recruiters to assess your experience.

> Comments and forum posts — These provide another way to gain some insight into your
programming skills and your general attitude toward technology and technology companies.

The impression employers get from your online profile can affect your chances of being hired. If
your résumé lists extensive experience with C# but they find a forum posting you made only 6
months ago asking how to open a file in C#, they’ll probably conclude that you’re exaggerating your
experience level, putting your whole résumé into doubt. Or if they see disturbing or inflammatory
material that they think you’ve authored, they may decide to pass you over for an interview, no mat-
ter how well your résumé reads or how long ago you wrote those things. No one’s proud of every-
thing they ever did in high school or college, but those who have grown up in the post-Internet era
see things follow them that they’d rather forget about, something the older generations rarely had to
contend with.

At some point before you apply for a job, take a good look at your online profile. Put yourself in a
company’s shoes to see how much information — good or bad — they can find about you, or link
to you. If your online profile is possibly going to prevent you from being hired, take some steps to sani-
tize your profile. If possible, remove questionable material from the web and from the search engines.

Spend some time developing the positive aspects of your profile. This is particularly important if
there’s unfavorable material about you on the web that you’re unable to remove. You may want to
read a little about search engine optimization (SEO) and apply some of these techniques to get the
positive aspects of your profile to appear before older, less favorable items in search results. If you
don’t have a LinkedIn profile, create one, and make it as detailed as possible; if you already have
one, make sure it’s up to date. Consider creating a profile on Stack Overflow or a similar Q&A site,
and spend some time answering questions relating to your areas of expertise.

WARNING Orne caveat about updating your LinkedIn profile: By default, all
your contacts are notified of your updates. Many people have learned to interpret
these notifications as de facto announcements that someone is looking for a new
job. That might help you get the word out, but if your contacts include people
at your current company and you don’t want them to know you’re looking for a
new job, disable these notifications before you make your updates.

www.it-ebooks.info

http://www.it-ebooks.info/

8 | CHAPTER1 BEFORE THE SEARCH

Develop an online profile that doesn’t throw any red flags in front of the screeners and shows you in
the best possible light. Finding a good job is hard enough — why make it harder?

SUMMARY

What you do before a formal job search is critical to finding the right kind of job. With that in
mind, you should consider the following things:

> Know your likes and dislikes as a programmer and a prospective employee.

> Understand the market to find and apply for the best jobs.

> Develop the marketable skills that employers look for and that can enhance your career.
> Manage your public profile to show you in the best possible light and make sure there are

no surprises to turn off potential employers.

Once you’ve worked through all these points, you’re ready to begin your job search.

www.it-ebooks.info

http://www.it-ebooks.info/

The Job Application Process

Interviewing and recruiting procedures are similar at most tech companies, so the more pre-
pared you are for what you will encounter, the more successful you will be. This chapter
familiarizes you with the entire job-search process, from contacting companies to starting
your new job, so you won’t need to write off your first few application attempts as learning
experiences. Hiring procedures at technical companies are often substantially different from
those followed by more traditional firms, so you may find this information useful even if
you’ve spent some time in the working world.

FINDING AND CONTACTING COMPANIES

The first step to getting a job is to find and make contact with companies you’re interested in
working for. Although referrals are the best way to land a job, you can also work with head-
hunters or contact a company directly.

Finding Companies

You can better target your search if you know which companies you’re most interested in working
for. Big companies are easy to find — you can probably name a dozen national and international
tech companies off the top of your head. You can identify candidate medium-sized (as well as
large) companies through articles in trade and local business press. Many magazines and news-
papers regularly compile lists of successful companies and rankings of the best places to work.
(Take these rankings with a grain of salt: There’s often a lot of variation in quality of work life
across large companies.) Most companies of this size also advertise at least some of their job
openings on online job boards; these postings can help you identify companies to investigate
even if the specific job posted isn’t right for you.

Small companies, especially early-stage startups, can be much more challenging to find. Often
these companies are too small, too new, or too secretive to get much press. They may lack the
resources to advertise their openings beyond their own website, which you can’t find unless

www.it-ebooks.info

http://www.it-ebooks.info/

10 | CHAPTER2 THE JOB APPLICATION PROCESS

you know the name of the company. One good way to find these companies is asking friends and
acquaintances if they know of startups that are hiring. Another technique is to use online social net-
works. You can use some sites, such as LinkedIn, to search for people by profession within a region.
Most people on these sites list the name of their company, so you can build a list of companies in

a particular region by going through the results of this search. This can be laborious, but part of
the payoff is that if you can’t find these companies any other way, neither can anyone else, so you’re
likely to be competing with fewer applicants.

Getting Referrals

Referrals are the best way to find a job. Tell all your friends about what kind of job you’re looking
for. Even if they don’t work for the kinds of companies that might hire you, they may know people
who do. Coming from “Susan’s friend” or “Bill’s neighbor,” your résumé is sure to receive more
careful consideration than the hundreds (or thousands) of anonymous résumés that come flooding in
from online postings, job fairs, and other recruitment activities. Be sure to use your social networks,
both real and virtual, to identify potential job opportunities.

Don’t feel you’re imposing on your friends and acquaintances. Companies often reward employees
with big bonuses — as much as several thousand dollars — for successful referrals of talented software
engineers. Your friends have a financial incentive to submit as many résumés as possible! (This is
why referral bonuses are paid only after the referred person has been hired and has started working
for the company.)

After you have a contact at a company, it’s up to you to make the most of it. Your approach depends
on how well you know the contact.

If the contact is not a close friend, e-mail the person to arrange a time to speak. When you speak
to the person, ask about the company and the work environment. Then ask about any existing job
openings. The person might not know of any — many employees know only about job openings in
their immediate workgroup — but if you know jobs are available, point the person to the job listings.
Explain why you’d be a good match for one of those openings. Then ask the person to submit your
résumé. Before you end your conversation, always thank people for their time.

If the contacts are close friends, you can be more casual and just ask about job openings and if
they’d refer you.

The best referrals are from people who have worked with you before. A current employee who vouches
for your skills and accomplishments is the strongest type of referral. That’s why you need to keep
track of former co-workers — you might want to work with them again one day.

Working with Headhunters

Particularly when labor markets are tight, some firms use outside recruiters known as headhunters
to help them find candidates. In addition, you may find it useful to seek out a headhunter and provide
her with your information.

If you list yourself with a headhunter, she can assist you with your job search and call you when she
learns of an opening that matches your skill set. It may take a while, so don’t be discouraged.

www.it-ebooks.info

http://www.it-ebooks.info/

Finding and Contacting Companies | 11

Some headhunters are more helpful than others, so ask around to see if anyone you know has rec-
ommendations. If you can’t locate a headhunter this way, you can search the web for headhunters,
recruiters, or staffing services. You can check out a prospective headhunter by asking for references,
but be aware that headhunters deal with so many people that even those who frequently do a poor
job probably have 5 or 10 satisfied clients who serve as references.

When you work with headhunters, you must understand their motivation: headhunters are paid only
when an applicant they’ve referred is hired. It is therefore in a headhunter’s interest to put as many
people as possible into as many jobs as possible as quickly as possible. A headhunter has no financial
incentive to find you the best possible job — or to find a company the best possible applicant, for that
matter. If you recognize that a headhunter is in business for the purpose of making a living and not
for the purpose of helping you, you are less likely to be surprised or disappointed by your experi-
ences. This is not to suggest that headhunters are bad people or that as a rule they take advantage of
applicants or companies. Headhunters can be helpful and useful, but you must not expect them to
look out for your interests above their own.

When you get a potential lead from a headhunter, she will usually send you a job description and

a vague description of the type of company but not the name of the company. This is to make sure
that if you apply for the job, you do it through the headhunter so that she gets her commission. It’s
unethical to independently apply for a job that comes to you through a headhunter, but sometimes
you might like to have more information about the job or company before you proceed. For example,
you may determine that it’s a job you’ve already applied for, or at a location that would involve too
long of a commute. The job description that the headhunter sends you is often copied verbatim from
the company’s website so by pasting it into your favorite search engine you can often find the original
job listing.

Some companies don’t work with headhunters in any capacity, so don’t limit yourself by conducting
your entire job search through a headhunter. As a corollary of this, avoid working with any head-
hunter who insists on being your exclusive representative. Finally, be aware that “headhunter” is a
widely used term by people outside of this profession, but considered pejorative by most of the people
who do this work, so it’s best not to use the word “headhunter” when you speak to one of them.

Contacting the Company Directly

You can also try contacting companies directly. The Internet is the best medium for this approach.
Most companies’ web pages have instructions for submitting résumés. If the website lists specific open-
ings, read through them and submit your résumé specifically for the openings that interest you. If you
don’t have a contact within the company, it’s best to look for specific job openings: In many companies,
résumés targeted at a specific job opportunity are forwarded directly to the hiring manager, whereas
those that don’t mention a specific opening languish in the human resources database. A tech-oriented
job site is a good place to start your search if you don’t have a specific company already in mind.

If a site doesn’t provide any directions for submitting your résumé, look for an e-mail address to
which you can send it. Send your résumé as both plain text in the body of the e-mail (so the recipient
can read it without having to do any work) and, unless there are instructions to the contrary, as an
attached file so that the recipient can print a copy. A PDF file is ideal; otherwise, attach a Microsoft
Word file. Do not send a file in any other format unless specifically requested. Be sure to convert the

www.it-ebooks.info

http://www.it-ebooks.info/

12

CHAPTER 2 THE JOB APPLICATION PROCESS

file so that it can be read by older versions of Word, and scan it with an antivirus program (you can
easily do this by mailing the resume to yourself as an attachment) to be absolutely certain that your
résumé isn’t carrying any macro viruses.

Approaching a company directly like this is a bit of a long shot, especially when the résumé is sent
to a generic human resources e-mail address. Many companies use automated screening software
to filter incoming résumés, so if your résumé lacks the right buzzwords, a human probably won’t
even see it. Consult the appendix for tips to get your résumé past automated screeners. With a good
résumé in hand it takes so little time and effort to apply that you have nothing to lose.

Job Fairs

Job fairs are an easy way to learn about and make contact with a lot of companies without much
effort. Your chances of success with any one particular company at a job fair are low because each
company sees so many applicants. However, given the number of companies at a job fair, your over-
all odds may still be favorable. If you collect business cards at the job fair and follow up with people
afterward, you can separate yourself from the rest of the job fair crowd.

In addition, if they are available to you, college career centers, alumni organizations, and profes-
sional associations can also be helpful in finding jobs.

THE INTERVIEW PROCESS

If someone is sufficiently impressed by your résumé to want to talk to you, the next step is one or
more screening interviews, usually followed by an on-site interview. Here, we prepare you for the
stages of the interview process and help you dress for success.

Screening Interviews

Screening interviews are usually conducted by phone and last anywhere from 15 minutes to an hour.
You should take the interview in a quiet room with no distractions and keep pen and paper handy to
take notes. Screening interviews may also take place on the spot at a job fair or on campus as part
of a college recruiting process.

The initial screening interview is with a company recruiter or human resources representative. The
recruiter wants to make sure that you’re interested in doing the job the company is hiring for, that
you have the skills needed for the position, and that you’re willing to accept any logistical require-
ments of the position, such as relocation or travel.

If you make it past the recruiter, there’s normally a second screening interview in which a technical
person asks you a few knowledge-based questions. These questions are designed to eliminate appli-
cants who have inflated their résumés or are weak in skills that are key to the position. During the
technical interview you may be asked to write some code using some kind of cloud-based document-
sharing tool such as Google Docs. This gives the interviewer a firsthand look at your coding skills.

You should treat the phone interview as seriously as an on-site interview. It 7s an interview.

www.it-ebooks.info

http://www.it-ebooks.info/

The Interview Process | 13

If the feedback from the technical interviewer is positive, the recruiter will get back to you, usually
within a week, to schedule an on-site interview at the company’s office.

On-Site Interviews

Your performance in on-site interviews is the biggest factor in determining whether you get an offer.
These interviews consist mostly of a variety of technical questions: problems requiring you to imple-
ment a simple program or function; questions that test your knowledge of computers, languages,
and programming; and sometimes even mathematics and logic puzzles. The majority of this book
focuses on helping you answer these questions to succeed in your interviews.

Your on-site interviews usually last either a half day or a full day and typically consist of three to
six interviews of 30 to 60 minutes each. Arrive early and well rested at the company’s office, and take
a restroom break if at all possible before any of the interviewing starts. Turn off any phones or pagers
you carry. Under no circumstances should you interrupt your interview to read or answer a text, page,
or call. You’ll likely be greeted by either the recruiter you’ve been dealing with or the hiring manager.
You may get an informal tour before the actual interviewing starts, which is a good way to see what
the working conditions are like at that location.

Your interviewers may be the members of the team you’ll work with if you are hired, or they may
be engineers chosen at random from other groups within the company. Most companies have a rule
that any interviewer can block an applicant from being hired, so all your interviews are important.
Sometimes you may interview with two separate teams on the same day. Usually each group you
interview with makes a separate decision about giving you an offer.

The company usually takes you out for lunch midway through your interview day. A free lunch at a
nice restaurant or even at the company cafeteria is certainly enjoyable, but don’t let your guard down
completely. If you make a negative impression at lunch, you may lose your offer. Be polite, and avoid
alcohol and messy foods. These general guidelines apply to all company outings, including evening
recruiting activities. Moderate drinking is acceptable during evening outings, but show restraint.
Getting drunk isn’t likely to improve your chances to get an offer.

At the end of the day, you may meet with the boss; if he or she spends a lot of time trying to sell you
on working for the company, it’s a pretty strong indication that you’ve done well in your interviews
and an offer will follow.

Dress

Job applicants traditionally wear suits to interviews. Most tech companies, though, are business
casual — or even just casual. The running joke at some of these companies is that the only people
who wear suits are job candidates and salespeople.

This is one area in which it’s critical to do some research. It’s probably not to your advantage to wear
a suit if nobody else at the company is wearing them, not even the salespeople. On the other hand, if
you wear jeans and a T-shirt, interviewers may feel you’re not showing sufficient respect or serious-
ness, even though they may be wearing jeans. Ask around to see what’s appropriate for the company.
Expectations for dress vary by location and nature of business. For example, programmers working

www.it-ebooks.info

http://www.it-ebooks.info/

14 |

CHAPTER 2 THE JOB APPLICATION PROCESS

for a bank or brokerage may be expected to wear suits. You should aim to dress as well as or slightly
more formally than you would be expected to dress for the job you’re interviewing for.

In general, though, a suit or even a jacket and tie is overkill for most technical job interviews. A
standard technical interviewing outfit for men consists of non-denim cotton pants, a collared shirt,
and loafers (no sneakers or sandals). Women can dress similarly to men. No matter what your sex,
go light on the perfume or cologne.

A RECRUITER’S ROLE

Your interviews and offer are usually coordinated by a company recruiter or human resources rep-
resentative. The recruiter is responsible for the scheduling and logistical aspects of your interview,

including reimbursing you for travel or lodging expenses. Recruiters aren’t usually involved in the

hiring decision but may pass on information about you to those who are. They are also usually the
ones who call you back about your offer and handle compensation negotiations.

Recruiters are usually good at what they do. The vast majority of recruiters are honorable people
deserving of your respect and courtesy. Nevertheless, don’t let their friendliness fool you into think-
ing that their job is to help you; their job is to get you to sign with their company as quickly as
possible for as little money as possible. As with headhunters, you need to understand the position
recruiters are in so that you understand how they behave:

> Recruiters may focus on a job’s benefits or perks to draw attention away from negative
aspects of a job offer. They generally tell you to come to them with any questions about
your offer. This is fine for benefit and salary questions, but ill-advised when you have
questions about the job. The recruiter usually doesn’t know much about the job you’re
being hired to do. When you ask a specific question about the job, the recruiter has little
incentive to do the work to find the answer, especially if that answer might cause you to
turn down the offer. Instead, recruiters are likely to give you a vague response along the
lines of what they think you want to hear. When you want straight answers to your ques-
tions, it’s best to go directly to the people you’ll be working for. You can also try going
directly to your potential manager if you feel the recruiter is being unreasonable with you.
This is a somewhat risky strategy — it certainly won’t win you the recruiters’ love — but
often the hiring manager has the authority to overrule decisions or restrictions that a
recruiter makes. Hiring managers are often more willing to be flexible than recruiters.
You’re just another applicant to recruiters, but to the hiring manager, you’re the person
she chose to work with.

> After the decision is made to give you an offer, the recruiter’s job is to do everything neces-
sary to get you to accept the offer at the lowest possible salary. A recruiter’s pay is often tied
to how many candidates he signs. To maneuver you, a recruiter sometimes might try to play
career counselor or advisor by asking you about each of your offers and leading you through
a supposedly objective analysis to determine which is the best offer. Not surprisingly, this
exercise always leads to the conclusion that the offer from the recruiter’s company is clearly
the best choice.

www.it-ebooks.info

http://www.it-ebooks.info/

Offers and Negotiation | 15

> Some recruiters are territorial enough about their candidates that they won’t give you your
prospective team’s contact information. To protect against this possibility, collect business
cards from your interviewers during your interviews, particularly from your prospective
managers. Then you’ll have the necessary information without having to go through the
recruiter.

OFFERS AND NEGOTIATION

When you get an offer, you’ve made it through the hardest part: You now have a job, if you want it.
However, the game isn’t over yet. You’re looking for a job because you need to make money; how
you play the end game largely determines how much you get.

When your recruiter or hiring manager makes you an offer, she may also tell you how much the
company plans to pay you. Perhaps a more common practice, though, is for the recruiter or hiring
manager to tell you that the company would like to hire you and ask you how much you want to
make. Answering this question is covered in detail in Chapter 17.

After you’ve been given a specific offer that includes details about salary, signing bonus, and stock
options, you need to decide whether you’re satisfied with it. This shouldn’t be a snap decision —
never accept an offer on the spot. Always spend at least a day thinking about important decisions
such as this; it’s surprising how much can change in a day.

Dealing with Recruiter Pressures

Recruiters often employ a variety of high-pressure tactics to get you to accept offers quickly. They
may tell you that you must accept the offer within a few days if you want the job, or they may offer
you an exploding signing bonus: a signing bonus that decreases by a fixed amount each day. Don’t
let this bullying rush your decision. If the company wants you (and it probably does if it made you an
offer), these limits and terms are negotiable, even when a recruiter claims they aren’t. You may have
to go over the recruiter’s head and talk to your hiring manager if the recruiter refuses to be flexible. If
these conditions are non-negotiable, you probably don’t want to work for a rigid company full of bul-
lies anyway.

Negotiating Your Salary

If, after careful consideration, the offer meets or exceeds your expectations, you’re all set. On the
other hand, if you’re not completely happy with your offer, you should try to negotiate. All too
often, applicants assume that offers are non-negotiable and reject offers without negotiation or
accept offers they’re not pleased with. Almost every offer is negotiable to some extent.

You should never reject an offer for monetary reasons without trying to negotiate. When you negoti-
ate an offer that you would otherwise reject, you hold the ultimate high card. You’re ready to walk,
so you have nothing to lose.

Even when an offer is in the range you were expecting, it’s often worthwhile to negotiate. As long as
you are respectful and truthful in your negotiations and your requests are reasonable, you’ll almost

www.it-ebooks.info

http://www.it-ebooks.info/

16 | CHAPTER2 THE JOB APPLICATION PROCESS

never lose an offer just because you tried to negotiate it. In the worst case, the company refuses to
change the offer, and you’re no worse off than before you tried to negotiate.

If you decide to negotiate your compensation package, here’s how you do it:

> Figure out exactly what you want. You may want a signing bonus, better pay, or more stock
options.

> Arrange a phone call with the appropriate negotiator, usually the recruiter. Your negotiator
is usually the same person who gave you the terms of your offer. Don’t call the negotiator
blind because you may catch him at an inconvenient time.

> Explain your case. Say you appreciate receiving the offer and explain why you’re not com-
pletely happy with it. For example, you could say, “I’'m pleased to have received the offer,
but I'm having a hard time accepting it because it’s not competitive with my other offers.”
Or you could say, “Thank you again for the offer, but I’'m having trouble accepting it
because I know from discussions with my peers and from talking with other companies that
this offer is below market rates.” If the negotiator asks you to go into greater detail about
which other companies have offered you more money and how much, or where your peers
work, you’re under no obligation to do so. You can easily say, “I keep all my offers confiden-
tial, including yours, and feel that it’s unprofessional to give out that sort of information.”

> Thank the negotiator for his time and help and say that you’ re looking forward to hearing
from him again. Negotiators rarely change an offer on the spot. The company’s negotiator
may ask you what you had in mind or, conversely, tell you that the offer is non-negotiable.
Claiming that the offer is non-negotiable is often merely a hardball negotiation tactic, so
in either case you should respond by politely and respectfully spelling out exactly what you
expect in an offer and giving the negotiator a chance to consider what you’ve said.

Many people find negotiation uncomfortable, especially when dealing with professional recruiters who
do it every day. It’s not uncommon for someone to accept an offer as close enough just to avoid having
to negotiate. If you feel this way about negotiation, try looking at it this way: You rarely have anything
to lose, and even modest success in negotiation can be rewarding. If it takes you a 30-minute phone
call to get your offer increased by $3,000, you’ve made $6,000 per hour. Even lawyers aren’t paid
that much.

Remember that the best time to get more money is before you accept the job. When you’re an employee,
the company holds all the power.

Accepting and Rejecting Offers

At some point, your negotiations will be complete, and you will be ready to accept an offer. After
you inform a company you’re accepting its offer, be sure to keep in touch to coordinate start dates
and paperwork. The company may do a background check on you at this point to verify your iden-
tity and your credentials.

Be professional about declining your other offers. Contacts are important, especially in the computer
business where people change jobs frequently. You’ve no doubt built contacts at all the companies
that made you offers. It’s foolish to squander your contacts at other companies by failing to inform

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 17

them of your decision. If you had a recruiter at the company, you should e-mail her with your deci-
sion. (Don’t expect her to be overjoyed, however.) You should also personally call the hiring manag-
ers who made you an offer to thank them and let them know what you decided. For example, you
can say, “I want to thank you again for extending me the offer. I was impressed with your company,
but Pve decided it’s not the best choice for me right now. Thank you again, and I appreciate your
confidence in me.” Besides simply being classy, this approach can often get a response such as, “I
was pleased to meet you, and I’'m sorry that you won’t be joining us. If things don’t work out at that
company, give me a call, and maybe we can work something out. Best of luck.”

This gives you a great place to start the next time you look for work.

SUMMARY

You can find prospective jobs in various ways, but networking through friends and acquaintances

is usually the best method. If that’s not possible, find and contact companies directly. You may also
engage the services of a headhunter; be aware that the headhunter’s motivations aren’t always aligned
with yours.

The interviews are the most important part of the job application process. There are one or two
screening interviews, usually by phone, to ensure that you’re applying for the right job and that you
are actually qualified. After the screening interviews, there are usually a series of on-site technical
interviews that ultimately determine whether a job offer comes your way. Be sure to dress appropri-
ately for the interviews, and turn off any electronic gadgets you might have with you.

During the interview process you’ll frequently interact with one of the company’s recruiters, especially
if a job offer is made. Be sure to understand the recruiter’s role during this process.

When an offer is made, don’t accept it immediately. Give yourself time to consider it. Look over the
offer, and try to negotiate a better deal because most offers aren’t fixed in stone, no matter what the
recruiter says. After accepting a job offer, be sure to contact anyone else who has made you an offer
to thank them for their interest in you.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Approaches to Programming
Problems

Coding questions are the meat of a programming interview and your opportunity to demon-
strate that you can do the job. These questions are the heart of the process that most computer
and software companies use to decide who to hire. Many companies make offers to less than
10 percent of the people who interview with them. How a candidate performs during the pro-
gramming interviews is the main determinant of whether an offer is made.

The programming questions are generally difficult. If everyone (or even most people) answered
a particular question quickly, the company would stop asking it because it wouldn’t tell them
anything about the applicants. Many of the questions are designed to take up to an hour to
solve, so don’t get frustrated if you don’t see the answer right away. It’s not unusual for each
interview to explore just a single question.

NOTE These problems are hard! Some of the questions are designed to see how
you handle a problem when you don’t immediately see the solution.

THE PROCESS

The point of coding questions is to determine how well you can code. It’s the most important
part of the interview because the code you write and the answers you give to the interviewer
largely determine whether he recommends you for the job.

The Scenario

You usually work one-on-one with your interviewer. He will give you a marker and a white-
board (or pen and paper) and ask you to write some code. The interviewer usually wants you to
talk through the question before you start writing. Generally, you are asked to code a function

www.it-ebooks.info

http://www.it-ebooks.info/

20 | CHAPTER3 APPROACHES TO PROGRAMMING PROBLEMS

or method, but sometimes you need to write a class definition or a sequence of related code modules.
In any case, you write code, either in an actual programming language or in some form of pseudo-
code. (The closer you can get to actual working code, the better.)

The Problems

The problems the interviewers give you have specific requirements. They must be short enough to

be explained and solved reasonably quickly, yet complex enough that not everyone can solve them.
Therefore, it’s unlikely that you’ll be asked any real-world problems. Almost any worthy real-world
problem would take too long to explain, let alone solve. That isn’t an option in an interview. Instead,
many of these problems require algorithmic tricks or uncommonly used features of a language.

The problems often prohibit you from using the most-common way to do something or from using
the ideal data structure. For example, you might be given a problem such as this: “Write a function
that determines whether two integers are equal without using any comparison operators.”

This is an outright silly and contrived problem. Almost every language that ever existed has some
way to compare two integers. However, you’re not off the hook if you respond, “This is a stupid
question; I’d always use the equality operator. I'd never have this problem.” You would flunk if you
answer this way. The interviewer is looking for a different way to compare two integers. (Hint: Try
using bit operators.)

Instead, describe the better way to solve the problem and then solve it as it was asked. For example,
if you are asked to solve a certain problem with a hash table, you might say, “This would be easy
with a binary search tree because it’s much easier to extract the largest element, but let’s see how I
can solve this with a hash table.”

NOTE Many problems involve ridiculous restrictions, use obscure features of
languages, and seem silly and contrived. Play within the rules. Real-world pro-
gramming is rarely done in a vacuum. The ability to work within the particular
constraints of a situation is an important skill to develop.

Problems are generally presented in ascending order of difficulty. This is not a hard-and-fast rule,
but you can expect them to get more difficult as you answer more of them correctly. Often, differ-
ent interviewers communicate with each other about what they asked you, what you could answer,
and what you couldn’t answer. If you solve all the problems in your early interviews but are stumped
by harder problems later, this may indicate that earlier interviewers were impressed with your
responses.

Which Languages to Use

If you apply for a job with specific language requirements, you should know those languages and
expect to use them to solve the problems. If you apply for a general programming or development
position, a thorough knowledge of a mainstream language such as C#, Java, and/or C++ is enough
to get by. Your interviewer may permit you to use other popular languages, such as JavaScript, PHP,

www.it-ebooks.info

http://www.it-ebooks.info/

The Process | 21

or Python. If you are given a choice, select the language you know best, but expect to be required to
solve some problems in a specific language. Interviewers are less likely to be amenable to you using
languages such as Lisp, Tcl, Prolog, Lua, or Fortran, but if you are particularly expert in one of
these, there’s no harm in asking.

Before you go to your interview, make sure you are completely comfortable with the use and syntax
of any language you plan to use. If it has been a few years since you’ve done any C++ programming,
for example, you should at least thumb through a good C++ reference guide and refamiliarize your-
self with the language.

Interactivity Is Key

The code you write in the interview is probably the only example of your code that your interviewer
sees. If you write ugly code, your interviewer will assume you always write ugly code. This is your
chance to shine and show your best code. Take the time to make your code solid and pretty.

NOTE Brush up on the languages you expect to use and always write your best
code!

Programming questions are designed to see both how well you can code and how you solve prob-
lems. If all the interviewer wanted to do were measure your coding ability, she could give you a
piece of paper with problems and come back an hour later to evaluate how you did, as they do in
programming contests. What the interviewer wants is to see your thought processes as you work
through each stage of the programming problem.

The problem-solving process in these interviews is interactive, and if you have difficulty, the inter-
viewer generally guides you to the correct answer via a series of hints. Of course, the less help you
need to solve the problem, the better you look, but showing an intelligent thought process and
responding well to the hints you are given is also important. If you don’t respond well to guidance,
your interviewer might suspect that you won’t work well in a team environment.

Even when you immediately know the answer to a problem, don’t just blurt it out. Break the answer
down into discrete steps and explain the thought processes behind each step. The point is to show the
interviewer that you understand the underlying concepts, not that you’ve managed to memorize the
answer to a programming puzzle.

If you know any additional information pertaining to the problem, you may want to mention it dur-
ing the process to show your general knowledge of programming, even if it’s not directly applicable
to the problem at hand. In answering these problems, show that you’re not just a propeller-head
coder. Demonstrate that you have logical thought processes, are generally knowledgeable about
computers, and can communicate well.

NOTE Keep talking! Always explain what you are doing. Otherwise, the inter-
viewer has no way to know how you tackle complex programming problems.

www.it-ebooks.info

http://www.it-ebooks.info/

22 | CHAPTER3 APPROACHES TO PROGRAMMING PROBLEMS

SOLVING THE PROBLEMS

When you begin solving a problem, don’t start writing code immediately. First, make sure you com-
pletely understand the problem. It may help to work through a simple, concrete example and then
try to generalize the process to an algorithm. When you’re convinced you have the right algorithm,
explain it clearly. Writing the code should be one of your final steps.

The Basic Steps

The best way to solve an interview problem is to approach it methodically.

1.

Make sure you understand the problem. Your initial assumptions about the problem may be
wrong, or the interviewer’s explanation may be brief or difficult to follow. You can’t demon-
strate your skills if you don’t understand the problem. Don’t hesitate to ask your interviewer
questions about the problem. Don’t start solving the problem until you understand it. The inter-
viewer may be deliberately obscuring things to determine whether you can find and understand
the actual problem. In these cases, asking the right clarifying questions is an important part of

the correct solution.

When you understand the question, try a simple example. This example may lead to insights
about how to solve the general problem or bring to light any remaining misunderstandings
that you have. Starting with an example also demonstrates a methodical, logical thought
process. Examples are especially useful if you don’t see the solution right away.

NOTE Make sure you understand the problem before you start solving it, and
then start with an example to solidify your understanding.

Focus on the algorithm and data structures you will use to solve the problem. This can take
a long time and require additional examples. This is to be expected. Interactivity is important
during this process. If you stand quietly staring at the whiteboard, the interviewer has no
way to know whether you’re making productive headway or are simply clueless. Talk to your
interviewer and tell him what you are doing. For example, you might say something like, “I'm
wondering whether I can store the values in an array and then sort them, but I don’t think that
will work because I can’t quickly look up elements in an array by value.” This demonstrates
your skill, which is the point of the interview, and may also lead to hints from the interviewer,
who might respond, “You’re close to the solution. Do you really need to look up elements by
value, or could you....”

It may take a long time to solve the problem, and you may be tempted to begin coding
before you figure out a complete solution. Resist this temptation. Consider who you would
rather work with: someone who thinks about a problem for a long time and then codes it
correctly the first time or someone who hastily jumps into a problem, makes several errors
while coding, and doesn’t have any idea where he is going. Not a difficult decision, is it?

After you figure out your algorithm and how you can implement it, explain your solu-
tion to the interviewer. This gives her an opportunity to evaluate your solution before you

www.it-ebooks.info

http://www.it-ebooks.info/

Solving the Problems | 23

begin coding. Your interviewer may say, “Sounds great, go ahead and code it,” or something
like, “That’s not quite right because you can’t look up elements in a hash table that way.”
Another common response is “That sounds like it will work, but there’s a more efficient
solution.” In any case, you gain valuable information about whether you should move on to
coding or go back to working on the algorithm.

5. While you code, explain what you’re doing. For example, you might say, “Here, ’'m initial-
izing the array to all zeroes.” This narrative enables the interviewer to follow your code
more easily.

NOTE Explain what you are doing to your interviewer before and while coding
the solution. Keep talking!

6. Ask questions when necessary. You generally won’t be penalized for asking factual ques-
tions that you might otherwise look up in a reference. You obviously can’t ask a question
such as, “How do I solve this problem?” but it is acceptable to ask a question such as, “I
can’t remember — what format string do I use to print out a localized date?” Although it’s
better to know these things, it’s okay to ask this sort of question.

7. After you write the code for a problem, immediately verify that the code works by tracing
through it with an example. This step demonstrates clearly that your code is correct in at
least one case. It also illustrates a logical thought process and your intention to check your
work and search for bugs. The example may also help you flush out minor bugs in your
solution.

8. Make sure you check your code for all error and special cases, especially boundary condi-
tions. Programmers might overlook many error and special cases; forgetting these cases in
an interview indicates you might forget them on the job. If time does not allow for extensive
checking, at least explain that you should check for such failures. Covering error and special
cases can impress your interviewer and help you correctly solve the problem.

NOTE Try an example, and check all error and special cases.

After you try an example and feel comfortable that your code is correct, the interviewer may ask
you questions about what you wrote. These questions often focus on running time, alternative
implementations, and complexity. If your interviewer does not ask you these questions, you should
volunteer the information to show that you are cognizant of these issues. For example, you could
say, “This implementation has linear running time, which is the best possible because I need to
check all the input values. The dynamic memory allocation will slow it down a little, as will the
overhead of using recursion.”

When You Get Stuck

Getting stuck on a problem is expected and an important part of the interviewing process. Interviewers
want to see how you respond when you don’t recognize the answer to a question immediately. Giving

www.it-ebooks.info

http://www.it-ebooks.info/

24 | CHAPTER3 APPROACHES TO PROGRAMMING PROBLEMS

up or getting frustrated is the worst thing to do if this happens to you. Instead, show interest in the
problem and keep trying to solve it:

> Go back to an example. Try performing the task and analyzing what you are doing. Try
extending your specific example to the general case. You may have to use detailed examples.
This is okay, because it shows the interviewer your persistence in finding the correct
solution.

NOTE When all else fails, return to a specific example. Try to move from the spe-
cific example to the general case and from there to the solution.

> Try a different data structure. Perhaps a linked list, an array, a hash table, or a binary
search tree can help. If you’re given an unusual data structure, look for similarities between
it and more-familiar data structures. Using the right data structure often makes a problem
much easier.

> Consider the less-commonly used or more-advanced aspects of a language. Sometimes the
key to a problem involves one of these features.

NOTE Sometimes a different data structure or advanced language feature is key
to the solution.

Even when you don’t feel stuck, you may have problems. You may miss an elegant or obvious way
to implement something and write too much code. Almost all interview coding questions have short
answers. You rarely need to write more than 30 lines of code and almost never more than 50. If you
start writing a lot of code, you may be heading in the wrong direction.

ANALYZING YOUR SOLUTION

After you answer the problem, you may be asked about the efficiency of your implementation.
Often, you have to compare trade-offs between your implementation and another possible solution
and identify the conditions that make each option more favorable. Common questions focus on run
time and memory usage.

A good understanding of Big-O analysis is critical to make a good impression with the interviewer.
Big-O analysis is a form of runtime analysis that measures the efficiency of an algorithm in terms
of the time it takes for the algorithm to run as a function of the input size. It’s not a formal bench-
mark, just a simple way to classify algorithms by relative efficiency when dealing with very large
input sizes.

Most coding problem solutions in this book include a runtime analysis to help you solidify your
understanding of the algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Solution | 25

Big-O Analysis In Action

Consider a simple function that returns the maximum value stored in an array of non-negative inte-

gers. The size of the array is n. There are at least two easy ways to implement the function.

In the first alternative, you keep track of the current largest number as the function iterates

through the array and return that value when you are done iterating. This implementation, called

CompareToMax, looks like:

/* Returns the largest value in an array of non-negative integers */
int CompareToMax (int array[], int n)
{

int curMax, 1;

/* Make sure that there is at least one element in the array. */
if (n <= 0)
return -1;

/* Set the largest number so far to the first array value. */
curMax = arrayl[0];

/* Compare every number with the largest number so far. */
for (1 = 1; 1 < n; 1i++) {
if (array[i] > curMax) {
curMax = arrayl[i];

return curMax;

}

The second alternative compares each value to all the other values. If all other values are less than

or equal to a given value, that value must be the maximum value. This implementation, called
CompareToall, looks like:

/* Returns the largest value in an array of non-negative integers */
int CompareToAll (int array[], int n)
{

int 1, j;

bool isMax;

/* Make sure that there is at least one element in the array. */
if (n <= 0)
return -1;

for (1 = n-1; 1 > 0; 1--) {
isMax = true;
for (j = 0; j < n; j++) {
/* See if any value is greater. */

if (array[j] > arrayl[i]) {
isMax = false; /* array[i] is not the largest value. */
break;

www.it-ebooks.info

http://www.it-ebooks.info/

26 | CHAPTER3 APPROACHES TO PROGRAMMING PROBLEMS

/* If isMax is true, no larger value exists; array[i] is max. */
if (isMax) break;

}

return arrayl[il;

}

Both of these functions correctly return the maximum value. Which one is more efficient? You could
try benchmarking them, but this would tie your measure of efficiency to the particular system you
used for benchmarking. It’s more useful to have a means of comparing the performance of differ-
ent algorithms that depends only on the algorithm. Big-O analysis enables you to do exactly that:
Compare the predicted relative performance of different algorithms.

How Big-O Analysis Works

In Big-O analysis, input size is assumed to be an unknown value 7. In this example, # simply repre-
sents the number of elements in an array. In other problems, #» may represent the number of nodes
in a linked list, the number of bits in a data type, or the number of entries in a hash table. After
determining what # means in terms of the input, you must determine how many operations are per-
formed for each of the 7 input items. “Operation” is a fuzzy word because algorithms differ greatly.
Commonly, an operation is something that a real computer can do in a constant amount of time,
like adding an input value to a constant, creating a new input item, or deleting an input value. In
Big-O analysis, the times for these operations are all considered equivalent. In both compareToMax
and CompareToAll, the operation of greatest interest is comparing an array value to another value.

In CompareToMax, each array element was compared once to a maximum value. Thus, the 7 input
items are each examined once, resulting in 7z examinations. This is considered O(n), usually referred
to as linear time: The time required to run the algorithm increases linearly with the number of input
items.

You may notice that in addition to examining each element once, there is a check to ensure that the
array is not empty and a step that initializes the curMax variable. It may seem more accurate to call
this an O(n + 2) function to reflect these extra operations. Big-O analysis, however, is concerned
with the asymptotic running time: the limit of the running time as 7 gets very large. The justification
for this is that when 7 is small, almost any algorithm will be fast. It’s only when 7 become large that
the differences between algorithms are noticeable. As n approaches infinity, the difference between
n and n + 2 is insignificant, so the constant term can be ignored. Similarly, for an algorithm running
in 7 + n? time, the difference between 72 and # + n? is negligible for a very large 7. Thus, in Big-O
analysis you eliminate all but the highest-order term: the term that is largest as n gets very large. In
this case, 7 is the highest-order term. Therefore, the CompareToMax function is O ().

The analysis of CompareToall is a little more difficult. First, you need to make an assumption about
where the largest number occurs in the array. For now, assume that the maximum element is at the
beginning of the array. In this case, this function may compare each of # elements to 7 other elements.
Thus there are 7:n examinations so this is an O(n) algorithm.

The analysis so far has shown that compareToMax is O(n) and compareToall is O(n?). This means
that as the array grows, the number of comparisons in CompareToall becomes much larger than

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Solution | 27

in CompareToMax. Consider an array with 30,000 elements. CompareToMax compares on the order
of 30,000 elements, whereas CompareToall compares on the order of 900,000,000 elements. You
would expect CompareToMax to be much faster because it examines 30,000 times fewer elements.
In fact, one benchmark timed CompareToMax at less than .01 seconds, whereas CompareToall took
23.99 seconds.

Best, Average, and Worst Cases

You may think this comparison was stacked against CompareToall because the maximum value
was at the end. This is true, and it raises the important issues of best-case, average-case, and worst-
case running times. The analysis of CompareToall was a worst-case scenario: The maximum value
was at the end of the array. Consider, the average case, in which the largest value is in the middle.
You end up checking only half the values 7 times because the maximum value is in the middle. This
results in checking n(n/2) = n*/2 times. This would appear to be an O(r?/2) running time. Consider
what the 1/2 factor means. The actual time to check each value is highly dependent on the machine
instructions that the code translates to and then on the speed at which the CPU can execute the
instructions. Therefore, the 1/2 doesn’t mean much. You could even come up with an O(?) algo-
rithm that was faster than an O(»?/2) algorithm. In Big-O analysis, you drop all constant factors, so
the average case for CompareToall is no better than the worst case. It is still O(72).

The best-case running time for CompareToall is better than O(#?). In this case, the maximum value
is at the beginning of the array. The maximum value is compared to all other values only once, so
the result is an O(n) running time.

In compareToMax, the best-case, average-case, and worst-case running times are identical.
Regardless of the arrangement of the values in the array, the algorithm is always O(n).

Ask the interviewer which scenario he is most interested in. Sometimes there are clues to this in the
problem. Some sorting algorithms with terrible worst cases for unsorted data may nonetheless be
well suited for a problem if the input is already sorted. These kinds of trade-offs are discussed in
more detail in Chapter 8, which discusses general sorting algorithms.

Optimizations and Big-O Analysis

Algorithm optimizations do not always yield the expected changes in their overall running times.
Consider the following optimization to CompareToall: Instead of comparing each number to every
other number, compare each number only with the numbers that follow it in the array. In essence,
every number before the current number has already been compared to the current number. Thus,
the algorithm is still correct if you compare only to numbers occurring after the current number.

What’s the worst-case running time for this implementation? The first number is compared to n
numbers, the second number to n - 1 numbers, the third number to n - 2, resulting in a number

of comparisons equalton + (n - 1) + (n-2) + (n-3) + ... + 1. This is a common result, a
mathematical series with a sum of n?/2 + n/2. But because r? is the highest-order term, this version
of the algorithm still has an 0(x?) running time in the average case! For large input values, this opti-
mization of the algorithm has no significant effect on its running time.

www.it-ebooks.info

http://www.it-ebooks.info/

28 | CHAPTER3 APPROACHES TO PROGRAMMING PROBLEMS

How to Do Big-O Analysis
The general procedure for Big-O runtime analysis is as follows:
1. Figure out what the input is and what # represents.
2. Express the number of operations the algorithm performs in terms of 7.
3. Eliminate all but the highest-order terms.
4. Remove all constant factors.
For the algorithms you’ll encounter in interviews, Big-O analysis should be straightforward as long
as you correctly identify the operations that are dependent on the input size.

If youd like to learn more about runtime analysis, you can find a more extensive, mathematically
rigorous discussion in the first chapters of any good algorithms textbook. This book defines Big-O
as it is most commonly used by professional programmers.

Which Algorithm Is Better?

The fastest-possible running time for any runtime analysis is O(1), commonly referred to as constant
running time. An algorithm with constant running time always takes the same amount of time

to execute, regardless of the input size. This is the ideal run time for an algorithm, but it’s rarely
achievable.

The performance of most algorithms depends on 7, the size of the input. The algorithms can be clas-
sified as follows from best-to-worse performance:

> O(log n) — An algorithm is said to be logarithmic if its running time increases logarithmi-
cally in proportion to the input size.

> O(n) — A linear algorithm’s running time increases in direct proportion to the input size.

O(n log n) — A superlinear algorithm is midway between a linear algorithm and a polyno-
mial algorithm.

O(n) — A polynomial algorithm grows quickly based on the size of the input.
O(c") — An exponential algorithm grows even faster than a polynomial algorithm.
> O(n!) — A factorial algorithm grows the fastest and becomes quickly unusable for even
small values of 7.
The run times of different orders of algorithms separate rapidly as n gets larger. Consider the run
time for each of these algorithm classes with 7 = 10:
> log10=1
> 10=10
> 10log 10 = 10

www.it-ebooks.info

http://www.it-ebooks.info/

Analyzing Your Solution | 29

> 10%=100
> 210-1,024
> 10! = 3,628,800

Now double it to n = 20:
> log20=1.30

20=20

20 log 20=26.02

20% =400

220 = 1,048,576

20! =2.43x10"8

Y Y ¥V VY Y

Finding an algorithm that works in superlinear time or better can make a huge difference in how
well an application performs.

Memory Footprint Analysis

Runtime analysis is not the only relevant metric for performance. A common request from interview-
ers is to analyze how much memory a program uses. This is sometimes referred to as the memory
footprint of the application. Memory use is sometimes as important as running time, particularly in
constrained environments such as mobile devices.

In some cases, you will be asked about the memory usage of an algorithm. For this, the approach
is to express the amount of memory required in terms of 7, the size of the input, analogous to the
preceding discussion of Big-O runtime analysis. The difference is that instead of determining how
many operations are required for each item of input, you determine the amount of storage required
for each item.

Other times, you may be asked about the memory footprint of an implementation. This is usually

an exercise in estimation, especially for languages such as Java and C# that run in a virtual machine.
Interviewers don’t expect you to know to the byte exactly how much memory is used, but they like to
see that you understand how the underlying data structures might be implemented. If you’re a C++
expert, though don’t be surprised if you’re asked how much memory a struct or class requires — the
interviewer may want to check that you understand memory alignment and structure packing issues.

There is usually a trade-off between optimal memory use and runtime performance. The classic
example of this is the Unicode string encodings discussed in Chapter 6, which enable more compact
representations of strings while making it more expensive to perform many common string opera-
tions. Be sure to mention any trade-offs to the interviewer when discussing memory footprint issues.

www.it-ebooks.info

http://www.it-ebooks.info/

30 | CHAPTER3 APPROACHES TO PROGRAMMING PROBLEMS

SUMMARY

How you solve programming problems during your interviews can determine whether you get a job
offer, so you need to answer them as correctly and completely as you can. The problems usually get
progressively harder as the day progresses, so don’t be surprised if you need an occasional hint from
the interviewer. You normally code in a mainstream programming language, but the choice of lan-
guage is ultimately dictated by the requirements of the job for which you apply, so be familiar with
the right languages.

Interact with your interviewer as much as possible as you attempt each problem. Let her know
what you’re thinking at each point in your analysis of the problem and your attempts at coding an
answer. Start by making sure you understand the problem, and then try some examples to reinforce
that understanding. Choose the algorithm and make sure it works for those examples. Don’t forget
to test for special cases. If you’re stuck, try more examples or choose a different algorithm. Keep
obscure or advanced language features in mind when looking for alternative answers.

If asked to comment on the performance of a solution, a Big-O run time analysis is usually sufficient.
Algorithms that run in constant, logarithmic, linear or superlinear time are preferred. You should
also be prepared to comment on the memory footprint of an algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Linked Lists

The linked list, a deceptively simple data structure, is the basis for a surprising number of prob-
lems regarding the handling of dynamic data. Questions about efficient list traversal, list sorting,
and the insertion or removal of data from either end of a list are good tests of basic data structure
concepts, which is why an entire chapter is devoted to linked lists.

WHY LINKED LISTS?

The simplicity of linked list questions appeals to interviewers who want to present at least two
or three problems over the course of a 1-hour interview, because they must give you problems
that you can be reasonably expected to answer in only 20 to 30 minutes. You can write a rela-
tively complete implementation of a linked list in less than 10 minutes, leaving you plenty of
time to solve the problem. In contrast, it might take you most of the interview period to imple-
ment a more complex data structure such as a hash table.

Also, little variation exists in linked list implementations, which means that an interviewer can
simply say “linked list” and not waste time discussing and clarifying implementation details.

Perhaps the strongest reason is that linked lists are useful to determine whether a candidate
understands how pointers and references work, particularly in C and C++. If you’re not a C
or C++ programmer, you may find the linked list problems in this chapter challenging. Still,
linked lists are so basic that you need to be familiar with them before moving to more compli-
cated data structures found in the chapters that follow.

NOTE In real-world development, you don’t usually write your own linked lists;
you use the implementation in your language’s standard library. In a program-
ming interview, you're expected to be able to create your own implementation to
demonstrate that you fully understand linked lists.

www.it-ebooks.info

http://www.it-ebooks.info/

32

| CHAPTER4 LINKED LISTS

KINDS OF LINKED LIST

There are three basic kinds of linked list: singly linked lists, doubly linked lists, and circular linked
lists. Singly linked lists are the variety most commonly encountered in interviews.

Singly Linked Lists

When an interviewer says “linked list” he or she generally means a linear singly linked list, where

each data element in the list has a link (a pointer or reference) to the element that follows it in the

list, as shown in Figure 4-1. The first element in a singly linked list is referred to as the head of the
list. The last element in such a list is called the tail of the list and has an empty or null link.

head
pointer 12 3 -8 6
e o o—

FIGURE 4-1

Singly linked lists have a host of special cases and potential programming pitfalls. Because the links
in a singly linked list consist only of next pointers (or references), the list can be traversed only in
the forward direction. Therefore a complete traversal of the list must begin with the first element. In
other words, you need a pointer or reference to the first element of a list to locate all the elements in
the list. It’s common to store that pointer or reference in a separate data structure.

In C, the simplest singly linked list element is a struct with a pointer to a struct of the same type
as its only member:

// The simplest singly linked list element
typedef struct ListElement {

struct ListElement *next;
} ListElement;

Because it has no data, it’s not a particularly useful list element. A more useful struct has at least
one data member in addition to the pointer:

// A more useful singly linked list element
typedef struct IntElement ({

struct IntElement *next;

int data;
} IntElement;

The next pointer can be anywhere in the struct, but placing it at the beginning makes it easier to
write generic list-handling routines that work no matter what data an element holds by casting the
pointer to be of the generic list element type.

In C++ you could define a class for the list element:

// A singly linked list in C++
class IntElement {
public:
IntElement (int value): next(NULL), data(value) {}

www.it-ebooks.info

http://www.it-ebooks.info/

Kinds of Linked List | 33

~tElement () {}

IntElement *getNext () const { return next; }

int value() const { return data; }

void setNext (IntElement *elem) { next = elem; }
void setValue(int value) { data = value; }

private:
IntElement *next;
int data;

Yi
However, it usually makes more sense to define a template for the list element:

// A templated C++ singly linked list
template <class T>
class ListElement {
public:
ListElement (const T &value): next(NULL), data(value) {}
~ListElement () {}

ListElement *getNext () const { return next; }
const T& value() const { return data; }

voild setNext (ListElement *elem) { next = elem; }
void setValue(const T &value) { data = value; }

private:
ListElement *next;
T data;

Y

NOTE When defining classes in C++, particularly in template form, it’s always
best to explicitly add copy constructors and assignment operators so you don’t
depend on the compiler-generated versions. In an interview, however, you'll
generally skip these additional details as we’ve done here, but it doesn’t hurt to
mention them in passing to the interviewer.

A Java implementation using generics is similar, but of course uses references instead of pointers:

// A templated Java singly linked list
public class ListElement<T> {
public ListElement(T value) { data = value; }

public ListElement<T> next () { return next; }

public T value() { return data; }

public void setNext(ListElement<T> elem) { next = elem; }
public void setValue(T value) { data = value; }

private ListElement<T> next;
private T data;

www.it-ebooks.info

http://www.it-ebooks.info/

34 | CHAPTER4 LINKED LISTS

Doubly Linked Lists

A doubly linked list, as shown in Figure 4-2, eliminates many of the difficulties of using a singly
linked list. In a doubly linked list, each element has a link to the previous element in the list as well
as to the next element in the list. This additional link makes it possible to traverse the list in either
direction. The entire list can be traversed starting from any element. A doubly linked list has head
and tail elements just like a singly linked list. The head of the list has an empty or null previous link,
just as the tail of the list has a null or empty next link.

head

pamer | 2 [L2 L2 1 LS

FIGURE 4-2

Doubly linked lists are not frequently seen in interview problems. Many problems involve singly
linked lists specifically because they are more difficult that way; they would be trivial with a dou-
bly linked list. Other problems are difficult whether the list is singly or doubly linked, so there’s no
point in using a doubly linked list, which adds complexity irrelevant to the problem.

Circular Linked Lists

The final variation on the linked list theme is the circular linked list, which comes in singly and dou-
bly linked varieties. Circular linked lists have no ends — no head or tail. Each element in a circular
linked list has non-null next (and previous, if it’s also doubly linked) pointers or references. A list
with one element merely points to itself.

The primary traversal problem for these lists is cycle avoidance — if you don’t track where you start,
you’ll cycle infinitely through the list.

You may encounter circular linked lists from time to time, but they rarely appear in interview
problems.

BASIC LINKED LIST OPERATIONS

Successfully solving linked list problems requires a thorough understanding of how to operate on
linked lists. This includes tracking the head element so that the list doesn’t get lost, traversing the
list, and inserting and deleting list elements. These operations are much more straightforward with a
doubly linked list, so we focus on the pitfalls of implementing these operations for singly linked lists.

Tracking the Head Element

The head element of a singly linked list must always be tracked; otherwise, the list will be lost —
either garbage collected or leaked, depending on the language. This means that the pointer or

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Linked List Operations | 35

reference to the head of the list must be updated when a new element is inserted ahead of the first
element or when the existing first element is removed from the list.

Tracking the head element becomes a problem when you alter the list inside a function or method,
because the caller must be made aware of the new head element. For example, the following Java
code is incorrect because it fails to update the reference to the head of the list:

public void insertInFront(ListElement<Integer> list, int data){
ListElement<Integer> 1 = new ListElement<Integer>(data);
1l.setNext(list);

}

The correct solution is to return the new head element from the method:

public ListElement<Integer> insertInFront(ListElement<Integer> list, int data){
ListElement<Integer> 1 = new ListElement<Integer>(data);
1.setNext(list);
return 1;

}
The caller updates its reference to the head element accordingly:

int data =; // data to insert
ListElement<Integer> head =; // reference to head

head = insertInFront(head, data);

In C or C++ it’s easier to make mistakes with pointer misuse. Consider this C code (that uses C++
features such as the bool datatype that are now available in C as part of the C99 standard) for
inserting an element at the front of a list:

bool insertInFront(IntElement *head, int data){
IntElement *newElem = malloc(sizeof (IntElement));
if(!'nmewElem) return false;

newElem->data = data;

newElem->next = head;

head = newElem; // Incorrect! Updates only the local head pointer
return true;

}

The preceding code is incorrect because it updates only the local copy of the head pointer. The
correct version passes in a pointer to the head pointer:

bool insertInFront(IntElement **head, int data)({
IntElement *newElem = malloc(sizeof (IntElement));
if (!'newElem) return false;

newElem->data data;
newElem->next = *head;
*head = newElem;
return true;

}

This function uses the return value to indicate the success or failure of the memory allocation
(because there are no exceptions in C), so it can’t return the new head pointer as the Java function

www.it-ebooks.info

http://www.it-ebooks.info/

36 | CHAPTER4 LINKED LISTS

did. In C++, the head pointer could also be passed in by reference, or the function could return the
new head pointer.

Traversing a List

Often, you need to work with list elements other than the head element. Operations on any but the
first element of a linked list require traversal of some elements of the list. When traversing, you must
always check that you haven’t reached the end of the list. The following traversal is unsafe:

public ListElement<Integer> find(ListElement<Integer> head, int data){
ListElement<Integer> elem = head;
while(elem.value() != data){
elem = elem.next();

}

return elem;

}

This method works fine as long as the data to find is actually in the list. If it isn’t, an error occurs (a
null reference exception) when you travel past the last element. A simple change to the loop fixes the
problem:

public ListElement<Integer> find(ListElement<Integer> head, int data){
ListElement<Integer> elem = head;
while(elem != null && elem.value() != data){
elem = elem.next () ;

}

return elem;

}

With this implementation, the caller must detect an error condition by checking for a null return
value. (Alternatively, it may make more sense to throw an exception if the end of the list is reached
and the element cannot be found.)

NOTE Always test for the end of a linked list as you traverse it.

Inserting and Deleting Elements

Because links in a singly linked list are maintained exclusively with next pointers or references, any
insertion or deletion of elements in the middle of a list requires modification of the previous element’s
next pointer or reference. If you’re given only the element to delete (or before which to insert), this
requires traversal of the list from the head because there’s no other way to find the preceding ele-
ment. Special care must be taken when the element to be deleted is the head of the list.

This C function deletes an element from a list:

bool deleteElement (IntElement **head, IntElement *deleteMe)
{

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Linked List Operations | 37

IntElement *elem;

if (thead || !*head || !deleteMe) /* Check for null pointers */
return false;

elem = *head;

if(deleteMe == *head){ /* special case for head */
*head = elem->next;
free(deleteMe) ;
return true;

}

while(elem){
if(elem->next == deleteMe) {
/* elem is element preceding deleteMe */
elem->next = deleteMe->next;
free(deleteMe) ;
return true;
}
elem = elem->next;
}
/* deleteMe not found */
return false;

NOTE Deletion and insertion require a pointer or reference to the element imme-
diately preceding the deletion or insertion location.

Performing deletions raises another issue in languages without garbage collection, like C or C++.
Suppose you want to remove all the elements from a linked list. The natural inclination is to use a
single pointer to traverse the list, freeing elements as you go. A problem arises, however, when this
is implemented. Do you advance the pointer first or free the element first? If you advance the pointer
first, then the freeing is impossible because you overwrote the pointer to the element to be freed. If
you free the element first, advancing the pointer is impossible because it involves reading the next
pointer in the element that was just freed. The solution is to use two pointers, as in the following
example:

void deleteList(IntElement **head)

{
IntElement *deleteMe = *head;

while(deleteMe) {
IntElement *next = deleteMe->next;

free(deleteMe) ;
deleteMe = next;

*head = NULL;

www.it-ebooks.info

http://www.it-ebooks.info/

38 | CHAPTER4 LINKED LISTS

NOTE Deletion of an element always requires at least two pointer variables.
Insertion requires two pointer variables as well, but because one of them is used
for an element in the list and the other for the pointer returned by the memory
allocation call, there’s little danger of forgetting this in the insertion case.

LINKED LIST PROBLEMS

The solutions to the linked list problems that follow can be implemented in any language that sup-
ports dynamic memory, but because you rarely implement your own linked lists in languages like
Java and C#, these problems make most sense in C.

Stack Implementation

PROBLEM Discuss the stack data structure. Implement a stack in C using either
a linked list or a dynamic array, and justify your decision. Design the interface to
your stack to be complete, consistent, and easy to use.

This problem is designed to determine three things:
1. Your knowledge of basic data structures
2. Your ability to write routines to manipulate these structures

3. Your ability to design consistent interfaces to a group of routines

A stack is a last-in-first-out (LIFO) data structure: Elements are always removed in the reverse order
in which they were added, much in the same way that you add or remove a dish from a stack of dishes.
The add element and remove element operations are conventionally called push and pop, respectively.
Stacks are useful data structures for tasks that are divided into multiple subtasks. Tracking return
addresses, parameters, and local variables for subroutines is one example of stack use; tracking tokens
when parsing a programming language is another.

One of the ways to implement a stack is by using a dynamic array, an array that changes size as needed
when elements are added. (See Chapter 6, “Arrays and Strings,” for a more complete discussion of
arrays.) The main advantage of dynamic arrays over linked lists is that arrays offer random access
to the array elements — you can immediately access any element in the array if you know its index.
However, operations on a stack always work on one end of the data structure (the top of the stack),
so the random accessibility of a dynamic array gains you little. In addition, as a dynamic array
grows, it must occasionally be resized, which can be a time-consuming operation as elements are
copied from the old array to the new array.

Linked lists usually allocate memory dynamically for each element. Depending on the overhead of
the memory allocator, these allocations are often more time consuming than the copies required by
a dynamic array, so a stack based on a dynamic array is usually faster than one based on a linked

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 39

list. Implementing a linked list is less complicated than implementing a dynamic array, so in an
interview, a linked list is probably the best choice for your solution. Whichever choice you make, be
sure to explain the pros and cons of both approaches to your interviewer.

After explaining your choice, you can design the routines and their interfaces. If you take a moment
to design your code before writing it, you can avoid mistakes and inconsistencies in implementation.
More important, this shows you won’t skip right to coding on a larger project where good planning
is essential to success. As always, talk to the interviewer about what you’re doing.

Your stack will need push and pop routines. What will the prototype for these functions be? Each
function must be passed the stack it operates on. The push operation will be passed the data it is to
push, and pop will return a piece of data from the stack.

The simplest way to pass the stack is to pass a pointer to the stack. Because the stack will be imple-
mented as a linked list, the pointer to the stack will be a pointer to the head of the list. In addition
to the pointer to the stack, you could pass the data as a second parameter to push. The pop function
could take only the pointer to the stack as an argument and return the value of the data it popped
from the stack.

To write the prototypes, you need to know the type of the data that will be stored on the stack. You
should declare a struct for a linked list element with the appropriate data type. If the interviewer
doesn’t make any suggestion, storing void pointers is a good general-purpose solution:

typedef struct Element {
struct Element *next;
void *data;

} Element;

The corresponding prototypes for push and pop follow:

void push(Element *stack, void *data);
void *pop(Element *stack);

Now consider what happens in these routines in terms of proper functionality and error handling.
Both operations change the first element of the list. The calling routine’s stack pointer must be mod-
ified to reflect this change, but any change you make to the pointer that is passed to these functions
won’t be propagated back to the calling routine. You can solve this problem by having both rou-
tines take a pointer to a pointer to the stack. This way, you can change the calling routine’s pointer
so that it continues to point at the first element of the list. Implementing this change results in the
following:

void push(Element **stack, void *data);
void *pop(Element **stack);

What about error handling? The push operation needs to dynamically allocate memory for a new
element. Memory allocation in C is an operation that can fail, so remember to check that the alloca-
tion succeeded when you write this routine. (In C++ an exception is thrown when allocation fails, so
the error handling is somewhat different.)

You also need some way to indicate to the calling routine whether the push succeeded or failed. In
C, it’s generally most convenient to have a routine indicate success or failure by its return value.
This way, the routine can be called from the condition of an if statement with error handling in the

www.it-ebooks.info

http://www.it-ebooks.info/

40

CHAPTER 4 LINKED LISTS

body. Have push return true for success and false for failure. (Throwing an exception is also an
option in C++ and other languages with exception support.)

Can pop fail? It doesn’t have to allocate memory, but what if it’s asked to pop an empty stack? It
should indicate that the operation was unsuccessful, but it still has to return data when it is success-
ful. A C function has a single return value, but pop needs to return two values: the data it popped
and an error code.

This problem has a number of possible solutions, none of which are entirely satisfactory. One
approach is to use the single return value for both purposes. If pop is successful, have it return the
data; if it is unsuccessful, return NULL. As long as your data is a pointer type and you never need

to store null pointers on the stack, this works. If you have to store null pointers, however, there’s
no way to determine whether the null pointer returned by pop represents a legitimate element that
you stored or an empty stack. Another option is to return a special value that can’t represent a valid
piece of data — a pointer to a reserved memory block, for example, or (for stacks dealing with non-
negative numbers only) a negative value. Although restricting the values that can be stored on the
stack might be acceptable in some cases, assume that for this problem it is not.

You must return two distinct values. How else can a function return data? The same way the stack
parameter is handled: by passing a pointer to a variable. The routine can return data by using the
pointer to change the variable’s value, which the caller can access after popping the stack.

There are two possibilities for the interface to pop that use this approach to return two values. You
can have pop take a pointer to an error code variable as an argument and return the data, or you can
have it take a pointer to a data variable and return an error code. Intuitively, most programmers
would expect pop to return data. However, using pop is awkward if the error code is not its return
value: Instead of simply calling pop in the condition of an if or while statement, you must explicitly
declare a variable for the error code and check its value in a separate statement after you call pop.
Furthermore, push would take a data argument and return an error code, whereas pop would take
an error code argument and return data. This may offend your sense of symmetry (it does ours).

Neither alternative is clearly correct; there are problems with either approach. In an interview, it
wouldn’t matter much which alternative you chose as long as you identified the pros and cons of
each and justified your choice. We think error code arguments are particularly irksome, so this
discussion continues by assuming you chose to have pop return an error code. This results in the fol-
lowing prototypes:

bool push(Element **stack, void *data);
bool pop(Element **stack, void **data);

You also want to write createStack and deleteStack functions, even though neither of these is
absolutely necessary in a linked list stack implementation: You could delete the stack by calling pop
until the stack is empty and create a stack by passing push a null pointer as the stack argument.
However, writing these functions provides a complete, implementation-independent interface to the
stack. A stack implemented as a dynamic array would need createstack and deletestack func-
tions to properly manage the underlying array. By including these functions in your implementation,
you create the possibility that someone could change the underlying implementation of the stack
without needing to change the programs that use the stack — always a good thing.

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 41

With the goals of implementation independence and consistency in mind, it’s a good idea to have
these functions return error codes, too. Even though in a linked list implementation neither
createStack nor deleteStack can fail, they might fail under a different implementation, such as
if createstack couldn’t allocate memory for a dynamic array. If you design the interface with no
way for these functions to indicate failure, you severely handicap anyone who might want to change
your implementation.

Again, you face the same problem as with pop: createStack must return both the empty stack and
an error code. You can’t use a null pointer to indicate failure because a null pointer is the empty
stack for a linked list implementation. In keeping with the previous decision, we write an imple-
mentation with an error code as the return value. Because createstack can’t return the stack as its
value, it must take a pointer to a pointer to the stack. Because all the other functions take a pointer
to the stack pointer, it makes sense to have deleteStack take its stack parameter in the same way.
This way you don’t need to remember which functions require only a pointer to a stack and which
take a pointer to a pointer to a stack — they all work the same way. This reasoning gives you the
following prototypes:

bool createStack(Element **stack);
bool deleteStack(Element **stack);

When everything is designed properly, the coding is fairly simple. The createstack routine sets the
stack pointer to NULL and returns success:

bool createStack(Element **stack) {
*stack = NULL;
return true;

}

The push operation allocates the new element, checks for failure, sets the data of the new element,
places it at the top of the stack, and adjusts the stack pointer:

bool push(Element **stack, void *data) {
Element *elem = malloc(sizeof (Element));
if(!'elem) return false;

elem->data = data;
elem->next = *stack;
*stack = elem;
return true;

}

The pop operation checks that the stack isn’t empty, fetches the data from the top element, adjusts
the stack pointer, and frees the element that is no longer on the stack, as follows:

bool pop(Element **stack, void **data) {
Element *elem;
if(!(elem = *stack)) return false;

*data = elem->data;
*stack = elem->next;
free(elem);
return true;

www.it-ebooks.info

http://www.it-ebooks.info/

42 | CHAPTER4 LINKED LISTS

Although deletestack could call pop repeatedly, it’s more efficient to simply traverse the data
structure, freeing as you go. Don’t forget that you need a temporary pointer to hold the address of
the next element while you free the current one:

bool deleteStack(Element **stack) {
Element *next;
while(*stack){
next = (*stack)->next;
free(*stack);
*stack = next;
}
return true;

}

Before the discussion of this problem is complete, it is worth noting (and probably worth mentioning
to the interviewer) that the interface design would be much more straightforward in an object-oriented
language. The createstack and deleteStack operations become the constructor and destructor,
respectively. The push and pop routines are bound to the stack object, so they don’t need to have the
stack explicitly passed to them, and the need for pointers to pointers evaporates. An exception can be
thrown when there’s an attempt to pop an empty stack or a memory allocation fails, which enables
you to use the return value of pop for data instead of an error code. A minimal C++ version looks like
the following:

class Stack
{
public:
Stack() : head(NULL) {};
~Stack() ;
void push(void *data);
void *pop();
protected:
class Element {
public:
Element (Element *n, void *d): next(n), data(d) {}
Element *getNext () const { return next; }
void *value() const { return data; }

private:
Element *next;
void *data;

Y

Element *head;

Y

Stack::~Stack() {
while(head) {
Element *next = head->getNext();
delete head;
head = next;

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 43

void Stack::push(void *data){
//Allocation error will throw exception
Element *element = new Element (head,data);
head = element;

}

void *Stack::pop() {
Element *popElement = head;
void *data;

/* Assume StackError exception class is defined elsewhere */
if(head == NULL)
throw StackError(E_EMPTY);

data = head->value();
head = head->getNext () ;
delete popElement;
return data;

A more complete C++ implementation should include a copy constructor and assignment opera-
tor, because the default versions created by the compiler could lead to multiple deletes of the same
Element due to inadvertent sharing of elements between copies of a Stack.

Maintain Linked List Tail Pointer

PROBLEM head and tail are global pointers to the first and last element, respec-
tively, of a singly linked list of integers. Implement C functions for the following
prototypes:

bool delete(Element *elem);
bool insertAfter(Element *elem, int data);

The argument to delete is the element to be deleted. The two arguments to
insertAfter give the element after which the new element is to be inserted and
the data for the new element. It should be possible to insert at the beginning of the
list by calling insertAfter with NULL as the element argument. These functions
should return a boolean indicating success.

Your functions must keep the head and tail pointers current.

This problem seems relatively straightforward. Deletion and insertion are common operations on
a linked list, and you should be accustomed to using a head pointer for the list. The requirement to
maintain a tail pointer is the only unusual aspect of this problem. This requirement doesn’t seem
to fundamentally change anything about the list or the way you operate on it, so it doesn’t look as

www.it-ebooks.info

http://www.it-ebooks.info/

44

CHAPTER 4 LINKED LISTS

if you need to design any new algorithms. Just be sure to update the head and tail pointers when
necessary.

When do you need to update these pointers? Obviously, operations in the middle of a long list do
not affect either the head or tail. You need to update the pointers only when you change the list such
that a different element appears at the beginning or end. More specifically, when you insert a new
element at either end of the list, that element becomes the new beginning or end of the list. When
you delete an element at the beginning or end of the list, the next-to-first or next-to-last element
becomes the new first or last element.

For each operation you have a general case for operations in the middle of the list and special cases
for operations at either end. When you deal with many special cases, it can be easy to miss some of
them, especially if some of the special cases have more specific special cases of their own. One tech-
nique to identify special cases is to consider what circumstances are likely to lead to special cases
being invoked. Then, you can check whether your proposed implementation works in each of these
circumstances. If you discover a circumstance that creates a problem, you have discovered a new
special case.

The circumstance where you are instructed to operate on the ends of the list has already been dis-
cussed. Another error-prone circumstance is a null pointer argument. The only other thing that can
change is the list on which you are operating — specifically, its length.

What lengths of lists may be problematic? You can expect somewhat different cases for the begin-
ning, middle, and end of the list. Any list that doesn’t have these three distinct classes of elements
could lead to additional special cases. An empty list has no elements, so it obviously has no begin-
ning, middle, or end elements. A one-element list has no middle elements and one element that is
both the beginning and end element. A two-element list has distinct beginning and end elements,
but no middle element. Any list longer than this has all three classes of elements and is effectively
the general case of lists — unlikely to lead to additional special cases. Based on this reasoning, you
should explicitly confirm that your implementation works correctly for lists of length 0, 1, and 2.

At this point in the problem, you can begin writing delete. As mentioned earlier, you need a special
case for deleting the first element of the list. You can compare the element to be deleted to head to
determine whether you need to invoke this case:

bool delete(Element *elem) {
if (elem == head) {
head = elem->next;
free(elem);
return true;

Now write the general middle case. You need an element pointer to keep track of your position in
the list. (Call the pointer curpos.) Recall that to delete an element from a linked list, you need a
pointer to the preceding element so that you can change its next pointer. The easiest way to find the
preceding element is to compare curPos->next to elem, so curPos points to the preceding element
when you find elem.

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems |

45

You also need to construct your loop so you don’t miss any elements. If you initialize curpos to
head, then curPos->next starts as the second element of the list. Starting at the second item is fine
because you treat the first element as a special case, but make your first check before advancing
curPos or you’ll miss the second element. If curPos becomes NULL, you have reached the end of
the list without finding the element you were supposed to delete, so you should return failure. The
middle case yields the following (added code is bolded):

bool delete(Element *elem) {
Element *curPos = head;

if (elem == head) {
head = elem->next;
free(elem);
return true;

while(curPos){
if (curPos->next == elem) {
curPos->next = elem->next;
free(elem);
return true;
}

curPos = curPos->next;

return false;

Next, consider the last element case. The last element’s next pointer is NULL. To remove it from the
list, you need to make the next-to-last element’s next pointer NULL and free the last element. If you
examine the loop constructed for middle elements, you see that it can delete the last element as well
as middle elements. The only difference is that you need to update the tail pointer when you delete
the last element. If you set curPos->next to NULL, you know you changed the end of the list and
must update the tail pointer. Adding this to complete the function, you get the following:

bool delete(Element *elem) {
Element *curPos = head;

if(elem == head) {
head = elem->next;
free(elem);

}

while(curPos){
if (curPos->next == elem) {
curPos->next = elem->next;
free(elem);
if (curPos->next == NULL)
tail = curPos;
return true;

www.it-ebooks.info

http://www.it-ebooks.info/

46 | CHAPTER4 LINKED LISTS

curPos = curPos->next;

return false;

}

This solution covers the three discussed special cases. Before you present the interviewer with this
solution, you should check behavior for null pointer arguments and the three potentially problem-
atic list length circumstances.

What happens if elem is NULL? The while loop traverses the list until curPos->next is NULL (when
curPos is the last element). Then, on the next line, evaluating elem->next dereferences a null pointer.
Because it’s never possible to delete NULL from the list, the easiest way to fix this problem is to return
false if elem is NULL.

If the list has zero elements, then head and tail are both NULL. Because you’ll check that elem isn’t
NULL, elem == head will always be false. Further, because head is NULL, curPos will be NULL, and
the body of the while loop won’t be executed. There doesn’t seem to be any problem with zero-
element lists. The function simply returns false because nothing can be deleted from an empty list.

Now try a one-element list. In this case, head and tail both point to the one element, which is the
only element you can delete. Again, elem == head is true. elem->next is NULL, so you correctly set
head to NULL and free the element; however, tail still points to the element you just freed. As you
can see, you need another special case to set tail to NULL for one-element lists.

What about two-element lists? Deleting the first element causes head to point to the remaining ele-
ment, as it should. Similarly, deleting the last element causes tail to be correctly updated. The lack
of middle elements doesn’t seem to be a problem. You can add the two additional special cases and
then move on to insertAfter:

bool delete(Element *elem) {
Element *curPos = head;

if(lelem)
return false;

if(elem == head){
head = elem->next;
free(elem);

/* special case for 1 element list */
if('head)

tail = NULL;
return true;

}

while(curPos){
1f(curPos->next == elem) {
curPos->next = elem->next;
free(elem);

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 47

if (curPos->next == NULL)
tail = curPos;
return true;
}

curPos = curPos->next;

return false;

}

You can apply similar reasoning to writing insertafter. Because you allocate a new element in this
function, you must take care to check that the allocation is successful and that you don’t leak any
memory. Many of the special cases encountered in delete are relevant in insertAfter, however,
and the code is structurally similar:

bool insertAfter(Element *elem, int data){
Element *newElem, *curPos = head;

newElem = malloc(sizeof (Element));
if(!'newElem)

return false;
newElem->data = data;

/* Insert at beginning of list */
1f(lelem){

newElem->next = head;

head = newElem;

/* Special case for empty list */
1f('tail)

tail = newElem;
return true;

while(curPos) {
1f(curPos == elem){
newElem->next = curPos->next;
curPos->next = newElem;

/* Special case for inserting at end of list */
if(! (newElem->next))
tail = newElem;
return true;
}

curPos = curPos->next;

/* Insert position not found; free element and return failure */
free(newElem);
return false;

www.it-ebooks.info

http://www.it-ebooks.info/

48

CHAPTER 4 LINKED LISTS

This problem turns out to be an exercise in special cases. It’s not particularly interesting or satis-
fying to solve, but it’s good practice. Many interview problems have special cases, so you should
expect to encounter them frequently. In the real world of programming, unhandled special cases
represent bugs that may be difficult to find, reproduce, and fix. Programmers who identify special
cases as they are coding are likely to be more productive than those who find special cases through
debugging. Intelligent interviewers recognize this and pay attention to whether a candidate identifies
special cases as part of the coding process or needs to be prompted to recognize special cases.

Bugs in removeHead

PROBLEM Find and fix the bugs in the following C function that is supposed to
remove the head element from a singly linked list:
void removeHead(ListElement *head) {

free(head); // Line 1
head = head->next; // Line 2

Bug-finding problems occur with some frequency, so it’s worthwhile to discuss a general strategy
that you can apply to this and other problems.

Because you will generally be given only a small amount of code to analyze, your bug-finding strategy
will be a little different from real-world programming. You don’t need to worry about interactions
with other modules or other parts of the program. Instead, you must do a systematic analysis of
every line of the function without the help of a debugger. Consider four common problem areas for
any function you are given:

1. Check that the data comes into the function properly. Make sure you aren’t accessing a vari-
able that you don’t have, you aren’t reading something as an int that should be a 1ong, and
you have all the values you need to perform the task.

2. Check that each line of the function works correctly. The function is intended to perform a
task. Verify that the task is executed correctly at each line and that the desired result is pro-
duced at the end.

3. Check that the data comes out of the function correctly. The return value should be what you
expect. In addition, if the function is expected to update any caller variables, make sure this
occurs.

4. Check the common error conditions. Error conditions vary depending on the specifics of a
problem. They tend to involve unusual argument values. For instance, functions that operate
on data structures may have trouble with empty or nearly empty data structures; functions
that take a pointer as an argument may fail if passed a null pointer.

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 49

Starting with the first step, verify that data comes into the function properly. In a linked list, you
can access every element given only the head. Because you are passed the list head, you have access
to all the data you require — no bugs so far.

Now do a line-by-line analysis of the function. The first line frees head — okay so far. Line 2 then
assigns a new value to head but uses the old value of head to do this. That’s a problem. You have
already freed head, and you are now dereferencing freed memory. You could try reversing the lines,
but this would cause the element after head to be freed. You need to free head, but you also need its
next value after it has been freed. You can solve this problem by using a temporary variable to store
head’s next value. Then you can free head and use the temporary variable to update head. These
steps make the function look like the following:

void removeHead(ListElement *head) {
ListElement *temp = head->next; // Line 1
free(head); // Line 2
head = temp; // Line 3
}

Now, move to step 3 of the strategy to make sure the function returns values properly. Though there
is no explicit return value, there is an implicit one. This function is supposed to update the caller’s
head value. In C, all function parameters are passed by value, so functions get a local copy of each
argument, and any changes made to that local copy are not reflected outside the function. Any new
value you assign to head on line 3 has no effect — another bug. To correct this, you need a way to
change the value of head in the calling code. Variables cannot be passed by reference in C, so the
solution is to pass a pointer to the variable you want to change — in this case, a pointer to the head
pointer. After the change, the function should look like this:

void removeHead(ListElement **head) {

ListElement *temp = (*head)->next; // Line 1
free(*head); // Line 2
*head = temp; // Line 3

}

Now you can move on to the fourth step and check error conditions. Check a one-element and a
zero-element list. In a one-element list, this function works properly. It removes the one element and
sets the head to NULL, indicating that the head was removed. Now take a look at the zero-element
case. A zero-element list is simply a null pointer. If head is a null pointer, you would dereference a
null pointer on line 1. To correct this, check whether head is a null pointer and be sure not to deref-
erence it in this case. This check makes the function look like the following:

void removeHead(ListElement **head) {
ListElement *temp;
1f(head && *head){
temp = (*head)->next;
free(*head);
*head = temp;

www.it-ebooks.info

http://www.it-ebooks.info/

50 | CHAPTER4 LINKED LISTS

You have checked that the body of the function works properly, that the function is called cor-
rectly and returns values correctly, and that you have dealt with the error cases. You can declare
your debugging effort complete and present this version of removeHead to the interviewer as your
solution.

Mth-to-Last Element of a Linked List

PROBLEM Given a singly linked list, devise a time- and space-efficient algorithm
to find the mth-to-last element of the list. Implement your algorithm, taking care
to handle relevant error conditions. Define mth to last such that when m = 0 the
last element of the list is returned.

Why is this a difficult problem? Finding the mth element from the beginning of a linked list would
be an extremely trivial task. Singly linked lists can be traversed only in the forward direction. For
this problem you are asked to find a given element based on its position relative to the end of the list.
While you traverse the list, however, you don’t know where the end is, and when you find the end,
there is no easy way to backtrack the required number of elements.

You may want to tell your interviewer that a singly linked list is a particularly poor choice for a data
structure when you frequently need to find the mth-to-last element. If you were to encounter such

a problem while implementing a real program, the correct and most efficient solution would prob-
ably be to substitute a more suitable data structure (such as a doubly linked list) to replace the singly
linked list. Although this comment shows that you understand good design, the interviewer still
wants you to solve the problem as it was originally phrased.

How, then, can you get around the problem that there is no way to traverse backward through this
data structure? You know that the element you want is 72 elements from the end of the list. Therefore,
if you traverse m elements forward from an element and that places you exactly at the end of the list,
you have found the element you were searching for. One approach is to simply test each element in
this manner until you find the one you’re searching for. Intuitively, this feels like an inefficient solu-
tion because you will traverse over the same elements many times. If you analyze this potential solution
more closely, you can see that you would be traversing 7 elements for most of the elements in the list.
If the length of the list is 7, the algorithm would be approximately O(m7). You need to find a solution
more efficient than O(mn).

What if you store some of the elements (or, more likely, pointers or references to the elements) as
you traverse the list? Then, when you reach the end of the list, you can look back 7 elements in your
storage data structure to find the appropriate element. If you use an appropriate temporary storage
data structure, this algorithm is O(n) because it requires only one traversal through the list. Yet this
approach is far from perfect. As m becomes large, the temporary data structure would become large
as well. In the worst-case scenario, this approach might require almost as much storage space as the
list itself — not a particularly space-efficient algorithm.

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 51

Perhaps working back from the end of the list is not the best approach. Because counting from the
beginning of the list is trivial, is there any way to count from the beginning to find the desired ele-
ment? The desired element is 72 from the end of the list, and you know the value of 7. It must also be
[elements from the beginning of the list, although you don’t know I. However, [+ m = n, the length
of the list. It’s easy to count all the elements in the list. Then you can calculate / = # — m, and traverse
[elements from the beginning of the list.

Although this process involves two passes through the list, it’s still O(#). It requires only a few vari-
ables’ worth of storage, so this method is a significant improvement over the previous attempt. If
you could change the functions that modify the list such that they would increment a count variable
for every element added and decrement it for every element removed, you could eliminate the count
pass, making this a relatively efficient algorithm. Again, though this point is worth mentioning to
the interviewer, he or she is probably looking for a solution that doesn’t modify the data structure
or place any restrictions on the methods used to access it.

Assuming you must explicitly count the elements in the current algorithm, you must make almost
two complete traversals of the linked list. A large list on a memory-constrained system might exist
mostly in paged-out virtual memory (on disk). In such a case, each complete traversal of the list
would require a large amount of disk access to swap the relevant portions of the list in and out of
memory. Under these conditions, an algorithm that made only one complete traversal of the list might
be significantly faster than an algorithm that made two traversals, even though they would both be
O(n). Is there a way to find the target element with a single traversal?

The counting-from-the-beginning algorithm obviously demands that you know the length of the list.
If you can’t track the length so that you know it ahead of time, you can determine the length only by
a full-list traversal. There doesn’t seem to be much hope for getting this algorithm down to a single
traversal.

Try reconsidering the previous linear time algorithm, which required only one traversal but was
rejected for requiring too much storage. Can you reduce the storage requirements of this approach?

When you reach the end of the list, you are actually interested in only one of the 7 elements you’ve
been tracking — the element that is 7 elements behind your current position. You are tracking the
rest of the 7 elements merely because the element 72 behind your current position changes every
time your position advances. Keeping a queue 7 elements long, where you add the current element to
the head and remove an element from the end every time you advance your current position, ensures
that the last element in the queue is always 7 elements behind your current position.

In effect, you are using this 72 element data structure to make it easy to implicitly advance an m-behind
pointer in lock step with your current position pointer. However, this data structure is unneces-

sary — you can explicitly advance the #-behind pointer by following each element’s next pointer just as
you do for your current position pointer. This is as easy as (or perhaps easier than) implicitly advancing
by shifting through a queue, and it eliminates the need to track all the elements between your current
position pointer and your m-behind pointer. This algorithm seems to be the one you’ve been looking
for: linear time, a single traversal, and negligible storage requirements. Now you just need to work out
the details.

www.it-ebooks.info

http://www.it-ebooks.info/

52

CHAPTER 4 LINKED LISTS

You need to use two pointers: a current position pointer and an m-behind pointer. You must ensure
that the two pointers are actually spaced 7 elements apart; then you can advance them at the same
rate. When your current position is the end of the list, 7-behind points to the mth-to-last element.
How can you get the pointers spaced properly? If you count elements as you traverse the list, you
can move the current position pointer to the mth element of the list. If you then start the m-behind
pointer at the beginning of the list, they will be spaced m elements apart.

Are there any error conditions you need to watch for? If the list is less than 7 elements long, then
there is no mth-to-last element. In such a case, you would run off the end of the list as you tried to
advance the current position pointer to the mth element, possibly dereferencing a null pointer in the
process. Therefore, check that you don’t hit the end of the list while doing this initial advance.

With this caveat in mind, you can implement the algorithm. It’s easy to introduce off-by-one errors
in any code that spaces any two things mz items apart or counts 7 items from a given point. You
may want to refer to the exact definition of “mth to last” given in the problem and try a simple
example on paper to make sure you get your counts right, particularly in the initial advancement
of the current pointer.

ListElement *findMToLastElement (ListElement *head, int m) {
ListElement *current, *mBehind;
int 1i;
if ('head)
return NULL;
/* Advance current m elements from beginning,
* checking for the end of the list

*/
current = head;
for(1 = 0; 1 <m; i++) {

if(current->next){

current = current->next;
} else {

return NULL;

/* Start mBehind at beginning and advance pointers
* together until current hits last element
*/
mBehind = head;
while(current->next){
current = current->next;
mBehind = mBehind->next;

/* mBehind now points to the element we were
* searching for, so return it
*/

return mBehind;

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 53

List Flattening

ture, as shown in Figure 4-3.

PROBLEM Start with a standard doubly linked list. Now imagine that in addi-
tion to the next and previous pointers, each element has a child pointer, which
may or may not point to a separate doubly linked list. These child lists may have
one or more children of their own, and so on, to produce a multilevel data struc-

head pointer

tail pointer

5<-|->33 17 2
6<-|->25 6 2
; 9 12

7 21

FIGURE 4-3

with the following definition:

typedef struct Node {
struct Node *next;
struct Node *prev;
struct Node *child;
int value;
} Node;

Flatten the list so that all the nodes appear in a single-level, doubly linked list. You
are given the head and tail of the first level of the list. Each node is a C struct

www.it-ebooks.info

http://www.it-ebooks.info/

54 | CHAPTER4 LINKEDLISTS

This list-flattening problem gives you plenty of freedom. You have simply been asked to flatten the
list. There are many ways to accomplish this task. Each way results in a one-level list with a dif-
ferent node ordering. Start by considering several options for algorithms and the node orders they
would yield. Then implement the algorithm that looks easiest and most efficient.

Begin by looking at the data structure. This data structure is a little unusual for a list. It has levels
and children — somewhat like a tree. A tree also has levels and children, as you’ll see in the next
chapter, but trees don’t have links between nodes on the same level. You might try to use a common
tree traversal algorithm and copy each node into a new list as you visit it as a simple way to flatten
the structure.

The data structure is not exactly a normal tree, so any traversal algorithm you use must be modified.
From the perspective of a tree, each separate child list in the data structure forms a single extended
tree node. This may not seem too bad: Where a standard traversal algorithm checks the child point-
ers of each tree node directly, you just need to do a linked list traversal to check all the child pointers.
Every time you check a node, you can copy it to a duplicate list. This duplicate list will be your flat-
tened list.

Before you work out the details of this solution, consider its efficiency. Every node is examined once,
so this is an O(n) solution. There is likely to be some overhead for the recursion or data structure
required for the traversal. In addition, you make a duplicate copy of each node to create the new list.
This copying is inefficient, especially if the structure is large. See if you can identify a more efficient
solution that doesn’t require so much copying.

So far, the proposed solution has concentrated on an algorithm, letting the ordering follow. Instead,
try focusing on an ordering and then try to deduce an algorithm. You can focus on the data struc-
ture’s levels as a source of ordering. It helps to define the parts of a level as child lists. Just as rooms
in a hotel are ordered by level, you can order nodes by the level in which they occur. Every node is
in a level and appears in an ordering within that level (arranging the child lists from left to right).
Therefore, you have a logical ordering just like hotel rooms. You can order by starting with all the
first-level nodes, followed by all the second-level nodes, followed by all the third-level nodes, and

so on. Applying these rules to the example data structure, you should get the ordering shown in

Figure 4-4.
head tail
pointer pointer

NRIEILC]

FIGURE 4-4

Now try to discover an algorithm that yields this ordering. One property of this ordering is that
you never rearrange the order of the nodes in their respective levels, so you could connect all the
nodes on each level into a list and then join all the connected levels. However, to find all the nodes

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 55

on a given level so that you can join them, you would need to do a breadth-first search of that level.
Breadth-first searching is inefficient, so you should continue to look for a better solution.

In Figure 4-3, the second level is composed of two child lists. Each child list starts with a different
child of a first-level node. You could try to append the child lists one at a time to the end of the first
level instead of combining the child lists.

To append the child lists one at a time, traverse the first level from the start, following the next
pointers. Every time you encounter a node with a child, append the child (and thus the child list) to
the end of the first level and update the tail pointer. Eventually, you append the entire second level
to the end of the first level. You can continue traversing the first level and arrive at the start of the
old second level. If you continue this process of appending children to the end of the first level, you
eventually append every child list to the end and have a flattened list in the required order. More for-
mally, this algorithm is as follows:

Start at the beginning of the first level
While you are not at the end of the first level
If the current node has a child
Append the child to the end of the first level
Update the tail pointer
Advance to next node

This algorithm is easy to implement because it’s so simple. In terms of efficiency, every node after
the first level is examined twice. Each node is examined once when you update the tail pointer for
each child list and once when you examine the node to see if it has a child. The nodes in the first
level are examined only once when you examine them for children because you had a first-level

tail pointer when you began. Therefore, there are no more than 27 comparisons in this algorithm,
and it is an O(n) solution. This is the best time order you can achieve because every node must be
examined. Although this solution has the same time order as the tree traversal approach considered
earlier, it is more efficient because it requires no recursion or additional memory. (There are other
equally efficient solutions to this problem. One such solution involves inserting child lists after their
parents, rather than at the end of the list.)

The code for this algorithm is as follows. Note that the function takes a pointer to the tail pointer so
that changes to the tail pointer are retained when the function returns:

void flattenList(Node *head, Node **tail){
Node *curNode = head;
while(curNode) {
/* The current node has a child */
if (curNode->child){
append(curNode->child, tail);
}

curNode = curNode->next;

}
/* Appends the child list to the end of the tail and updates ;

* the tail.
*/

www.it-ebooks.info

http://www.it-ebooks.info/

56 | CHAPTER4 LINKED LISTS

void append(Node *child, Node **tail){
Node *curNode;

/* Append the child child list to the end */
(*tail)->next = child;
child->prev = *tail;

/* Find the new tail, which is the end of the child list. */
for(curNode = child; curNode->next; curNode = curNode->next)

; /* Body intentionally empty */

/* Update the tail pointer now that curNode is the new tail. */
*tail = curNode;

List Unflattening

PROBLEM Unflatten the list created by the previous problem and restore the
data structure to its original condition.

This problem is the reverse of the previous problem, so you already know a lot about this data struc-
ture. One important insight is that you created the flattened list by combining all the child lists into
one long level. To get back the original list, you must separate the long flattened list back into its
original child lists.

Try doing the exact opposite of what you did to create the list. When flattening the list, you tra-
versed down the list from the start and added child lists to the end. To reverse this, you go backward
from the tail and break off parts of the first level. You could break off a part when you encounter a
node that was the beginning of a child list in the unflattened list. Unfortunately, this is more diffi-
cult than it might seem because you can’t easily determine whether a particular node is a child (indi-
cating that it started a child list) in the original data structure. The only way to determine whether

a node is a child is to scan through the child pointers of all the previous nodes. All this scanning
would be inefficient, so you should examine some additional possibilities to find a better solution.

One way to get around the child node problem is to go through the list from start to end, storing
pointers to all the child nodes in a separate data structure. Then you could go backward through the
list and separate every child node. Looking up nodes in this way frees you from repeated scans to
determine whether a node is a child. This is a good solution, but it still requires an extra data struc-
ture. Try looking for a solution without an extra data structure.

It seems you have exhausted all the possibilities for going backward through the list, so try an algo-
rithm that traverses the list from the start to the end. You still can’t immediately determine whether
a node is a child. One advantage of going forward, however, is that you can find all the child nodes
in the same order that you appended them to the first level. You also know that every child node
began a child list in the original list. If you separate each child node from the node before it, you get
the unflattened list back.

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 57

You can’t simply traverse the list from the start, find each node with a child, and separate the child
from its previous node. You would get to the end of your list at the break between the first and sec-
ond level, leaving the rest of the data structure untraversed. This approach seems promising, though.
You can traverse every child list, starting with the first level (which is a child list itself). When you
find a child, continue traversing the original child list and also traverse the newly found child list.
You can’t traverse both at the same time, however. You could save one of these locations in a data
structure and traverse it later. However, rather than design and implement this data structure, you
can use recursion. Specifically, every time you find a node with a child, separate the child from its
previous node, start traversing the new child list, and then continue traversing the original child list.

This is an efficient algorithm because each node is checked at most twice, resulting in an O(z) running
time. Again, an O(n) running time is the best you can do because you must check each node at least
once to see if it is a child. In the average case, the number of function calls is small in relation to the
number of nodes, so the recursive overhead is not too bad. In the worst case, the number of function
calls is no more than the number of nodes. This solution is approximately as efficient as the earlier pro-
posal that required an extra data structure, but somewhat simpler and easier to code. Therefore, this
recursive solution would probably be the best choice in an interview. In outline form, the algorithm
looks like the following:

Explore path:
While not at the end
If current node has a child
Separate the child from its previous node
Explore path beginning with the child
Go onto the next node

It can be implemented in C as:

/* unflattenList wraps the recursive function and updates the tail pointer. */
void unflattenList(Node *start, Node **tail){
Node *curNode;

exploreAndSeparate(start);

/* Update the tail pointer */
for(curNode = start; curNode->next; curNode = curNode->next)
; /* Body intentionally empty */

*tail = curNode;

}

/* exploreAndSeparate actually does the recursion and separation */
void exploreAndSeparate(Node *childListStart){
Node *curNode = childListStart;

while(curNode) {
1f(curNode->child) {
/* terminates the child list before the child */
curNode->child->prev->next = NULL;
/* starts the child list beginning with the child */
curNode->child->prev = NULL;

www.it-ebooks.info

http://www.it-ebooks.info/

58 | CHAPTER4 LINKED LISTS

exploreAndSeparate(curNode->child);

}

curNode = curNode->next;

Null or Cycle

PROBLEM You are given a linked list with at least one node that is either null-
terminated (acyclic), as shown in Figure 4-5, or ends in a cycle (cyclic), as shown
in Figure 4-6.

head pointer

i=tly=tl =il

FIGURE 4-5
head pointer {
—* 3 j 2 j 4 j 6 j 2
*o— *o— *o— *o— °
FIGURE 4-6

Write a function that takes a pointer to the head of a list and determines whether
the list is cyclic or acyclic. Your function should return false if the list is acyclic
and true if it is cyclic. You may not modify the list in any way.

Start by looking at the pictures to see if you can determine an intuitive way to differentiate a cyclic
list from an acyclic list.

The difference between the two lists appears at their ends. In the cyclic list, there is an end node
that points back to one of the earlier nodes. In the acyclic list, there is an end node that is null termi-
nated. Thus, if you can find this end node, you can test whether the list is cyclic or acyclic.

In the acyclic list, it is easy to find the end node. You traverse the list until you reach a null termi-
nated node.

In the cyclic list, though, it is more difficult. If you just traverse the list, you go in a circle and
won’t know whether you’re in a cyclic list or just a long acyclic list. You need a more sophisticated
approach.

Try looking at the end node a bit more. The end node points to a node that has another node point-
ing at it. This means that there are two pointers pointing at the same node. This node is the only

www.it-ebooks.info

http://www.it-ebooks.info/

Linked List Problems | 59

node with two elements pointing at it. You can design an algorithm around this property. You can
traverse the list and check every node to determine whether two other nodes are pointing at it. If
you find such a node, the list must be cyclic. Otherwise, the list is acyclic, and you will eventually
encounter a null pointer.

Unfortunately, it is difficult to check the number of nodes pointing at each element. See if you can
find another special property of the end node in a cyclic list. When you traverse the list, the end
node’s next node is a node that you have previously encountered. Instead of checking for a node
with two pointers pointing at it, you can check whether you have already encountered a node. If
you find a previously encountered node, you have a cyclic list. If you encounter a null pointer, you
have an acyclic list. This is only part of the algorithm. You still need to figure out how to determine
whether you have previously encountered a node.

The easiest way to do this would be to mark each element as you visit it, but you’ve been told you’re
not allowed to modify the list. You could keep track of the nodes you’ve encountered by putting
them in a separate list. Then you would compare the current node to all the nodes in the already-
encountered list. If the current node ever points to a node in the already-encountered list, you have
a cycle. Otherwise, you’ll get to the end of the list and see that it’s null terminated and thus acyclic.
This would work, but in the worst case the already-encountered list would require as much memory
as the original list. See if you can reduce this memory requirement.

What are you storing in the already-encountered list? The already-encountered list’s first node
points to the original list’s first node, its second node points to the original list’s second node, its
third node points to the original list’s third node, and so on. You’re creating a list that mirrors the
original list. This is unnecessary — you can just use the original list.

Try this approach: Because you know your current node in the list and the start of the list, you can
compare your current node’s next pointer to all its previous nodes directly. For the ith node, com-
pare its next pointer to see if it points to any of nodes 1 to i — 1. If any are equal, you have a cycle.

What’s the time order of this algorithm? For the first node, 0 previous nodes are examined; for the
second node, one previous node is examined; for the third node, two previous nodes are examined,
and so on. Thus, the algorithm examines 0 + 1 + 2 + 3 +...+ 7 nodes. As discussed in Chapter 3, such
an algorithm is O(n?).

That’s about as far as you can go with this approach. Although it’s difficult to discover without
some sort of hint, there is a better solution involving two pointers. What can you do with two point-
ers that you couldn’t do with one? You can advance them on top of each other, but then you might
as well have one pointer. You could advance them with a fixed interval between them, but this
doesn’t seem to gain anything. What happens if you advance the pointers at different speeds?

In the acyclic list, the faster pointer reaches the end. In the cyclic list, they both loop endlessly. The
faster pointer eventually catches up with and passes the slower pointer. If the fast pointer is ever
behind or equal to the slower pointer, you have a cyclic list. If it encounters a null pointer, you have
an acyclic list. You’ll need to start the fast pointer one node ahead of the slow pointer so they’re not
equal to begin with. In outline form, this algorithm looks like this:

Start slow pointer at the head of the list
Start fast pointer at second node
Loop infinitely

www.it-ebooks.info

http://www.it-ebooks.info/

60 | CHAPTER4 LINKED LISTS

If the fast pointer reaches a null pointer
Return that the list is null terminated

If the fast pointer moves onto or over the slow pointer
Return that there is a cycle

Advance the slow pointer one node

Advance the fast pointer two nodes

You can now implement this solution:

/* Takes a pointer to the head of a linked list and determines if
* the list ends in a cycle or is NULL terminated
*/
bool determineTermination(Node *head) {
Node *fast, *slow;
slow = head;

fast = head->next;
while(true){
if(!fast || !fast->next)
return false;
else if(fast == slow || fast->next == slow)
return true;
else {
slow = slow->next;
fast = fast->next->next;
}
}

Is this algorithm faster than the earlier solution? If this list is acyclic, the faster pointer comes to the
end after examining 7 nodes, while the slower pointer traverses 1/2 7 nodes. Thus, you examine
3/2n nodes, which is an O(n) algorithm.

What about a cyclic list? The slower pointer never goes around any loop more than once. When
the slower pointer has examined 7 nodes, the faster pointer will have examined 27 nodes and have
“passed” the slower pointer, regardless of the loop’s size. Therefore, in the worst case you examine
31 nodes, which is still O(n). Regardless of whether the list is cyclic or acyclic, this two-pointer
approach is much better than the single-pointer approach to the problem.

SUMMARY

Although they are simple data structures, problems with linked lists often arise in interviews focusing
on C or C++ experience as a way to determine whether a candidate understands basic pointer manipu-
lation. Each element in a singly linked list contains a pointer to the next element in the list, whereas
each element in a doubly linked list points to both the previous and the next elements. The first ele-
ment in both list types is referred to as the head, whereas the last element is referred to as the tail.
Circular linked lists have no head or tail; instead, the elements are linked together to form a cycle.

List operations are much simpler to perform on doubly linked lists, so most interview problems use
singly linked lists. Typical operations include updating the head of the list, traversing the list to find
a specific element from the end of the list, and inserting or removing list elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Trees and Graphs

Trees and graphs are common data structures, so both are fair game in a programming inter-
view. Tree problems are more common, however, because they are simple enough to implement
within the time constraints of an interview and enable an interviewer to test your understanding
of recursion and runtime analysis. Graph problems are interesting but often more complicated,
so you won’t see them as frequently.

Unlike the previous chapter’s focus on implementations in C, this and subsequent chapters
focus on implementations in more modern object-oriented languages.

TREES

A tree is made up of nodes (data elements) with zero, one, or several references (or pointers) to
other nodes. Each node has only one other node referencing it. The result is a data structure
that looks like Figure 5-1.

As in a linked list, a node is represented by a structure
or class, and trees can be implemented in any language
that includes pointers or references. In object-oriented /\
languages you usually define a class for the common parts

of a node and one or more subclasses for the data held by B c

a node. For example, the following are the C# classes you \
might use for a tree of integers:

public class Node ({

public Node[] children; /\
}

public class IntNode : Node { H l J
public int value;

}

FIGURE 5-1

www.it-ebooks.info

http://www.it-ebooks.info/

62

CHAPTER 5 TREES AND GRAPHS

In this definition, children is an array that keeps track of all the nodes that this node references.
For simplicity, these classes expose the children as public data members, but this isn’t good coding
practice. A proper class definition would make them private and instead expose public methods to
manipulate them. A somewhat more complete Java equivalent (with methods and constructors) to the
preceding classes is:

public abstract class Node {
private Node[] children;

public Node(Node[] children) {
this.children = children;

}

public int getNumChildren/() {
return children.length;

}

public Node getChild(int index) {
return children[index];
}
}

public class IntNode extends Node {
private int value;

public IntNode(Node[] children, int value){
super (children);
this.value = value;

}

public int getValue() {
return value;
}
}

This example still lacks error handling and methods to add or remove nodes from a tree. During an
interview you may want to save time and keep things simple by using public data members, folding
classes together, and sketching out the methods needed to manage the tree rather than fully imple-
menting them. Ask the interviewer how much detail she wants and write your code accordingly. Any
time you take shortcuts that violate good object-oriented design principles, be sure to mention the
more correct design to the interviewer and be prepared to implement it that way if asked. This way
you avoid getting bogged down in implementation details, but don’t give the impression that you’re
a sloppy coder who can’t properly design classes.

Referring to the tree shown in Figure 5-1, you can see there is only one top-level node. From this node,
you can follow links and reach every other node. This top-level node is called the root. The root is the
only node from which you have a path to every other node. The root node is inherently the start of any
tree. Therefore, people often say “tree” when talking about the root node of the tree.

www.it-ebooks.info

http://www.it-ebooks.info/

Trees | 63

Some additional tree-related terms to know are:

>

Parent — A node that points to other nodes is the parent of those nodes. Every node except
the root has one parent. In Figure 5-1, B is the parent of D, E, and F.

Child — A node is the child of any node that points to it. In Figure 5-1, each of the nodes D,
E, and F is a child of B.

Descendant — All the nodes that can be reached by following a path of child nodes from a
particular node are the descendants of that node. In Figure 5-1, D, E, F, H, I, J, and K are
the descendants of B.

Ancestor — An ancestor of a node is any other node for which the node is a descendant. For
example, A, B, and D are the ancestors of 1.

Leaves — The leaves are nodes that do not have any children. G, H, I, and K are leaves.

Binary Trees

So far, we’ve used the most general definition of a tree. Most tree problems involve a special type of
tree called a binary tree. In a binary tree, each node has no more than two children, referred to as
left and right. Figure 5-2 shows an example of a binary tree.

The following is an implementation of a binary tree. For simplicity,
everything is combined into a single class:

A

public class Node { ;/////\\\\\\

}

private Node left;
private Node right; B C

private int value; %//\\\

public Node(Node left, Node right, int value){
this.left = left;

D E
this.right = right;
this.value = value;
F G H

public Node getLeft() { return left; }
public Node getRight() { return right; }
public int getValue() { return value; }

}

FIGURE 5-2

When an element has no left or right child, the corresponding reference is null.

Binary tree problems can often be solved more quickly than equivalent generic tree problems, but

they are no less challenging. Because time is at a premium in an interview, most tree problems will

be binary tree problems. If an interviewer says “tree,” it’s a good idea to clarify whether she is refer-
ring to a generic tree or a binary tree.

NOTE When interviewers say “tree,” they often mean a binary tree.

www.it-ebooks.info

http://www.it-ebooks.info/

64 | CHAPTERS5 TREES AND GRAPHS

Binary Search Trees

Trees are often used to store sorted or ordered data. The most com-

mon way to store ordered data in a tree is to use a special tree called a

binary search tree (BST). In a BST, the value held by a node’s left child /\

is less than or equal to its own value, and the value held by a node’s

right child is greater than or equal to its value. In effect, the data in 3

a BST is sorted by value: All the descendants to the left of a node are
less than or equal to the node, and all the descendants to the right of

the node are greater than or equal to the node. Figure 5-3 shows an 1 4

12

example of a BST.
FIGURE 5-3

BSTs are so common that many people mean a BST when they say
“tree.” Again, ask for clarification before proceeding.

NOTE When interviewers say “tree,” they often mean a binary search tree.

One advantage of a binary search tree is that the lookup operation (locating a particular node in the
tree) is fast and simple. This is particularly useful for data storage. In outline form, the algorithm to

perform a lookup in a BST is as follows:

Start at the root node
Loop while current node is non-null
If the current node's value is equal to the search value
Return the current node
If the current node's value is less than the search value
Make the right node the current node
If the current node's value is greater than the search value
Make the left node the current node
End loop

If you fall out of the loop, the node wasn’t in the tree.

Here’s an implementation of the search in C# or Java:

Node findNode(Node root, int value){

while(root != null){
int currval = root.getValue();
if(currval == value) break;

if(currval < value){
root = root.getRight();
} else { // currval > value
root = root.getLeft();

return root;

www.it-ebooks.info

http://www.it-ebooks.info/

Trees | 65

This lookup is fast because you eliminate half the remaining nodes from your search on each iteration
by choosing to follow the left subtree or the right subtree. In the worst case, you will know whether
the lookup was successful by the time there is only one node left to search. Therefore, the running
time of the lookup is equal to the number of times that you can halve # nodes before you get to 1.

This number, x, is the same as the number of times you can double 1 before reaching 7, and it can
be expressed as 2* = n. You can find x using a logarithm.

For example, log, 8 = 3 because 2° = 8, so the running time of the lookup operation is O(log,(n)).
Because logarithms with different bases differ only by a constant factor, it’s common to omit the
base 2 and call this O(log(r)). log(#) is very fast. For an example, log,(1,000,000,000) = 30.

NOTE Lookup is an O(log(n)) operation in a balanced binary search tree.

One important caveat exists in saying that lookup is O(log(n)) in a BST: Lookup is only O(log(n))
if you can guarantee that the number of nodes remaining to be searched will be halved or nearly
halved on each iteration. Why? Because in the worst case, each node has only one child, in which
case you end up with a linked list and lookup becomes an O(n) operation. This worst case may be
encountered more commonly than you might expect, such as when a tree is created by adding data
already in sorted order.

NOTE Deletion and insertion are O(log(n)) operations in binary search trees.

Binary search trees have other important properties. For example, you can obtain the smallest ele-
ment by following all the left children and the largest element by following all the right children.
The nodes can also be printed out, in order, in O(n) time. Given a node, you can even find the next
highest node in O(log(#)) time.

Tree problems are often designed to test your ability to think recursively. Each node in a tree is the
root of a subtree beginning at that node. This subtree property is conducive to recursion because
recursion generally involves solving a problem in terms of similar subproblems and a base case. In
tree recursion you start with a root, perform an action, and then move to the left or right subtree (or
both, one after the other). This process continues until you reach a null reference, which is the end
of a tree (and a good base case). For example, the preceding lookup operation can be reimplemented
recursively as follows:

Node findNode(Node root, int value) {

if(root == null) return null;
int currval = root.getValue();
if(currval == value) return root;

1f(currval < value){

return findNode(root.getRight (), value);
} else { // currval > value

return findNode(root.getLeft(), value);

}

www.it-ebooks.info

http://www.it-ebooks.info/

66 | CHAPTERS5 TREES AND GRAPHS

Most problems with trees have this recursive form. A good way to start thinking about any problem
involving a tree is to start thinking recursively.

NOTE Many tree operations can be implemented recursively. The recursive
implementation may not be the most efficient, but it’s usually the best place
to start.

Heaps

Another common tree is a heap. Heaps are trees (usually binary trees) where (in a max-heap) each
child of a node has a value less than or equal to the node’s own value. (In a min-heap, each child is
greater than or equal to its parent.) Consequently, the root node always has the largest value in the
tree, which means that you can find the maximum value in constant time: Simply return the root
value. Insertion and deletion are still O(log(7)), but lookup becomes O(n). You cannot find the next
higher node to a given node in O(log(n)) time or print out the nodes in sorted order in O(n) time as
in a BST. Although conceptually heaps are trees, the underlying data implementation of a heap often
differs from the trees in the preceding discussion.

You could model the patients waiting in a hospital emergency room with a heap. As patients enter,
they are assigned a priority and put into the heap. A heart attack patient would get a higher prior-
ity than a patient with a stubbed toe. When a doctor becomes available, the doctor would want to
examine the patient with the highest priority. The doctor can determine the patient with the highest
priority by extracting the max value from the heap, which is a constant time operation.

NOTE If extracting the max value needs to be fast, use a heap.

Common Searches

It’s convenient when you have a tree with ordering properties such as a BST or a heap. Often you’re
given a tree that isn’t a BST or a heap. For example, you may have a tree that is a representation of a
family tree or a company organization chart. You must use different techniques to retrieve data from
this kind of tree. One common class of problems involves searching for a particular node. When you
search a tree without the benefit of ordering, the time to find a node is O(n), so this type of search is
best avoided for large trees. You can use two common search algorithms to accomplish this task.

Breadth-First Search

One way to search a tree is to do a breadih-first search (BES). In a BFS you start with the root,
move left to right across the second level, then move left to right across the third level, and so forth.
You continue the search until either you have examined all the nodes or you find the node you are
searching for. A BFS uses additional memory because it is necessary to track the child nodes for all
nodes on a given level while searching that level.

www.it-ebooks.info

http://www.it-ebooks.info/

Trees | 67

Depth-First Search

Another common way to search for a node is by using a depth-first search (DFS). A depth-first search
follows one branch of the tree down as many levels as possible until the target node is found or the
end is reached. When the search can’t go down any farther, it is continued at the nearest ancestor with
unexplored children.

DFS has much lower memory requirements than BFS because it is not necessary to store all the child
pointers at each level. If you have additional information on the likely location of your target node,
one or the other of these algorithms may be more efficient. For instance, if your node is likely to

be in the upper levels of the tree, BFS is most efficient. If the target node is likely to be in the lower
levels of the tree, DFS has the advantage that it doesn’t examine any single level last. (BFS always
examines the lowest level last.)

For example, if you were searching a job hierarchy tree looking for an employee who started less
than 3 months ago, you would suspect that lower-level employees are more likely to have started
recently. In this case, if the assumption were true, a DFS would usually find the target node more
quickly than a BFS.

There are other types of searches, but these are the two most common that you will encounter in an
interview.

Traversals

Another common type of tree problem is called a traversal. A traversal is just like a search, except
that instead of stopping when you find a particular target node, you visit every node in the tree.
Often this is used to perform some operation on each node in the tree. There are many types of tra-
versals, each of which visits nodes in a different order, but you’re most likely to be asked about the
three most common types of depth-first traversals for binary trees:

> Preorder — Performs the operation first on the node itself, then on its left descendants, and
finally on its right descendants. In other words, a node is always visited before any of its

children.

> Inorder — Performs the operation first on the node’s left descendants, then on the node
itself, and finally on its right descendants. In other words, the left subtree is visited first,
then the node itself, and then the node’s right subtree.

> Postorder — Performs the operation first on the node’s left descendants, then on the node’s
right descendants, and finally on the node itself. In other words, a node is always visited
after all its children.

These classes of traversals can also apply to nonbinary trees as long as you have a way to classify
whether a child is “less than” (on the left of) or “greater than” (on the right of) its parent node.

Recursion is usually the simplest way to implement a depth-first traversal.

NOTE If you’re asked to implement a traversal, recursion is a good way to start
thinking about the problem.

www.it-ebooks.info

http://www.it-ebooks.info/

68 | CHAPTERS5 TREES AND GRAPHS

GRAPHS

Graphs are more general and more complex than trees. Like trees, they consist of nodes with chil-
dren — a tree is actually a special case of a graph. But unlike tree nodes, graph nodes (or vertices)
can have multiple “parents,” possibly creating a loop (a cycle). In addition, the links between nodes,
as well as the nodes themselves, may have values or weights. These links are called edges because
they may contain more information than just a pointer. In a graph, edges can be one-way or two-
way. A graph with one-way edges is called a directed graph. A graph with only two-way pointers is
called an undirected graph. Figure 5-4 shows a directed graph, and Figure 5-5 shows an undirected

graph.

Graphs are commonly used to model real-world problems that c

are difficult to model with other data structures. For example, Vad N

a directed graph could represent the aqueducts connecting cities A3 B c L
because water flows only one way. You might use such a graph

to help you find the fastest way to get water from city A to city 6
D. An undirected graph can represent something such as a
series of relays in signal transmission.

FIGURE 5-4
There are several common ways to represent graph data

structures. The best representation is often determined by the
algorithm being implemented. One common representation

has the data structure for each node include an adjacency 4 5
list: a list of references to other nodes with which the node

shares edges. This list is analogous to the child references of A C D

the tree node data structure, but the adjacency list is usually 5
a dynamic data structure since the number of edges at each ! 2

node can vary over a wide range. Another graph representa-

tion is an adjacency matrix, which is a square matrix with

dimension equal to the number of nodes. The matrix element FIGURES5-5
at position ,j represents the number of edges extending from

node i to node ;.

All the types of searches possible in trees have analogs in graphs. The graph equivalents are usually
slightly more complex due to the possibility of cycles.

Graphs are often used in real-world programming, but they are less frequently encountered
in interviews, in part because graph problems can be difficult to solve in the time allotted for
an interview.

TREE AND GRAPH PROBLEMS

Most tree problems involve binary trees. You may occasionally encounter a graph problem, espe-
cially if the interviewer thinks you’re doing particularly well with easier problems.

www.it-ebooks.info

http://www.it-ebooks.info/

Tree and Graph Problems | 69

Height of a Tree

PROBLEM The height of a tree (binary or not) is defined to be the maximum
distance from the root node to any leaf node. The tree in Figure 5-2, for example,
has a height of 4 because the path from A to F, G, or H involves four nodes.
Write a function to calculate the height of an arbitrary binary tree.

Start by looking at some simple trees to see if there’s a way to think recursively about the problem.
Each node in the tree corresponds to another subtree rooted at that node. For the tree in Figure 5-2,
the heights of each subtree are:

> A: height 4
B: height 1
C: height 3
D: height 2
E: height 2
F: height 1
G: height 1
H: height 1

Y Y Y Y Y Y Y

Your initial guess might be that the height of a node is the sum of the height of its children because
height A = 4 = height B + height C, but a quick test shows that this assumption is incorrect because
height C = 3, but the heights of D and E add up to 4, not 3.

Look at the two subtrees on either side of a node. If you remove one of the subtrees, does the height
of the tree change? Yes, but only if you remove the taller subtree. This is the key insight you need:
The height of a tree equals the height of its tallest subtree plus one. This is a recursive definition that
is easy to translate to code:

public static int treeHeight(Node n) {
if(n == null) return 0;
return 1 + Math.max(treeHeight(n.getLeft()),
treeHeight (n.getRight()));
}

What’s the running time for this function? The function is recursively called for each child of each
node, so the function will be called once for each node in the tree. Since the operations on each node
are constant time, the overall running time is O(n).

www.it-ebooks.info

http://www.it-ebooks.info/

70 | CHAPTERS5 TREES AND GRAPHS

Preorder Traversal

PROBLEM Informally, a preorder traversal involves walking around the tree in

a counter-clockwise manner starting at the root, sticking close to the edges, and
printing out the nodes as you encounter them. For the tree shown in Figure 5-6,
the result is 100, 50, 25, 75, 150, 125, 110, and 175. Perform a preorder traversal
of a binary search tree, printing the value of each node.

To design an algorithm for printing out the nodes in the correct
order, you should examine what happens as you print out the nodes.

Go to the left as far as possible, come up the tree, go one node to /\
the right, and then go to the left as far as possible, come up the tree

again, and so on. The key is to think in terms of subtrees. 50 150

The two largest subtrees are rooted at 50 and 150. All the nodes in /\ /\
the subtree rooted at 50 are printed out before any of the nodes in the

100

subtree rooted at 150. In addition, the root node for each subtree is 25 | | 75 125| 1175
printed out before the rest of the subtree.

Generally, for any node in a preorder traversal, you would print the /
node itself, followed by the left subtree and then the right subtree.

If you begin the printing process at the root node, you would have a

recursive definition as follows: FIGURE 5-6

110

1. Print out the root (or the subtree’s root) value.
2. Do a preorder traversal on the left subtree.

3. Do a preorder traversal on the right subtree.

Assume you have a binary tree Node class with a printvalue method. (Your interviewer probably
wouldn’t ask you to write out the definition for this class, but if she did, an appropriate defini-
tion would be the same as the Node class in the introduction to this chapter, with the addition of a
printvalue method.) The preceding pseudocode algorithm is easily coded using recursion:
void preorderTraversal(Node root) {

if(root == null) return;

root.printvValue() ;

preorderTraversal (root.getLeft());

(

preorderTraversal (root.getRight ());
}

What’s the running time on this algorithm? Every node is examined once, so it’s O ().

The inorder and postorder traversals are almost identical; all you vary is the order in which the
node and subtrees are visited:

void inorderTraversal(Node root) {
if(root == null) return;

www.it-ebooks.info

http://www.it-ebooks.info/

Tree and Graph Problems | 71

inorderTraversal (root.getLeft());
root.printValue() ;
inorderTraversal (root.getRight());

void postorderTraversal (Node root) {
if(root == null) return;
postorderTraversal (root.getLeft());
postorderTraversal (root.getRight());
root.printValue() ;

}

Just as with the preorder traversal, these traversals examine each node once, so the running time is
always O(n).

Preorder Traversal, No Recursion

PROBLEM Perform a preorder traversal of a binary search tree, printing the
value of each node, but this time you may not use recursion.

Sometimes recursive algorithms can be replaced with iterative algorithms that accomplish the same
task in a fundamentally different manner using different data structures. Consider the data struc-
tures you know and think about how they could be helpful. For example, you might try using a list,
an array, or another binary tree.

Because recursion is so intrinsic to the definition of a preorder traversal, you may have trouble find-
ing an entirely different iterative algorithm to use in place of the recursive algorithm. In such a case,
the best course of action is to understand what is happening in the recursion and try to emulate the
process iteratively.

Recursion implicitly uses a stack data structure by placing data on the call stack. That means there
should be an equivalent solution that avoids recursion by explicitly using a stack.

Assume you have a stack class that can store nodes. (Implementing the stack is a separate problem.)
The following is a skeleton class definition for the stack. (If you’re not sure what these methods do,
revisit the stack implementation problem in Chapter 4.)

public class NodeStack {
public void push(Node n){ }
public Node pop() { }

}

Now consider the recursive preorder algorithm, paying close attention to the data that are implic-
itly stored on the call stack so you can explicitly store the same data on a stack in your iterative
implementation:

Print out the root (or subtree's root) value.
Do a preorder traversal on the left subtree.
Do a preorder traversal on the right subtree.

www.it-ebooks.info

http://www.it-ebooks.info/

72

| CHAPTERS5 TREES AND GRAPHS

When you first enter the procedure, you print the root node’s value. Next, you recursively call the
procedure to traverse the left subtree. When you make this recursive call, the calling procedure’s

state is saved on the stack. When the recursive call returns, the calling procedure can pick up where
it left off.

What’s happening here? Effectively, the recursive call serves to implicitly store the address of the
right subtree on the stack, so it can be traversed after the left subtree traversal is complete. Each
time you print a node and move to its left child, the right child is first stored on an implicit stack.
Whenever there is no child, you return from a recursive call, effectively popping a right child node
off the implicit stack, so you can continue traversing.

To summarize, the algorithm prints the value of the current node, pushes the right child onto an
implicit stack, and moves to the left child. The algorithm pops the stack to obtain a new current
node when there are no more children (when it reaches a leaf). This continues until the entire tree
has been traversed and the stack is empty.

Before implementing this algorithm, first remove any unnecessary special cases that would make
the algorithm more difficult to implement. Instead of coding separate cases for the left and right
children, why not push pointers to both nodes onto the stack? Then all that matters is the order in
which the nodes are pushed onto the stack: You need to find an order that enables you to push both
nodes onto the stack so that the left node is always popped before the right node.

Because a stack is a last-in-first-out data structure, push the right node onto the stack first, followed
by the left node. Instead of examining the left child explicitly, simply pop the first node from the
stack, print its value, and push both of its children onto the stack in the correct order. If you start
the procedure by pushing the root node onto the stack and then pop, print, and push as described,
you can emulate the recursive preorder traversal. To summarize:

Create the stack
Push the root node on the stack
While the stack is not empty
Pop a node
Print its value
If right child exists, push the node's right child
If left child exists, push the node's left child

The code (with no error checking) for this algorithm is as follows:

void preorderTraversal (Node root) {
NodeStack stack = new NodeStack() ;
stack.push(root);
while(stack.size() > 0){
Node curr = stack.pop();
curr.printValue() ;
Node n = curr.getRight();

if(n != null) stack.push(n);
n = curr.getLeft();
if(n != null) stack.push(n);

www.it-ebooks.info

http://www.it-ebooks.info/

Tree and Graph Problems | 73

What’s the running time for this algorithm? Each node is examined only once and pushed on the
stack only once. Therefore, this is still an O(#n) algorithm. You don’t have the overhead of many
recursive function calls in this implementation. On the other hand, the stack used in this implemen-
tation probably requires dynamic memory allocation, so it’s unclear whether the iterative imple-
mentation would be more or less efficient than the recursive solution. The point of the problem,
however, is to demonstrate your understanding of recursion.

Lowest Common Ancestor

PROBLEM Given the value of two nodes in a binary search tree, find the lowest
(nearest) common ancestor. You may assume that both values already exist in
the tree.

For example, using the tree shown in Figure 5-7, assume 4 and 14 are the two
given nodes. The lowest common ancestor would be 8 because it’s an ancestor to
both 4 and 14, and there is no node lower on the tree that is an ancestor to both 4
and 14.

Figure 5-7 suggests an intuitive algorithm: Follow the lines up from each
of the nodes until they converge. To implement this algorithm, make lists 20
of all the ancestors of both nodes, and then search through these two /\
lists to find the first node where they differ. The node immediately above

this divergence is the lowest common ancestor. This is a good solution, 8 22
but there is a more efficient one.

The first algorithm works for any type of tree but doesn’t use any of /\
the special properties of a binary search tree. Try to use some of those 4 12
special properties to help you find the lowest common ancestor more

efficiently. / \

Consider the two special properties of binary search trees. The first o 14
property is that every node has zero, one, or two children. This fact 1
doesn’t seem to help find a new algorithm. FIGURE 5-7

The second property is that the left child’s value is less than or equal to the value of the current
node, and the right child’s value is greater than or equal to the value of the current node. This prop-
erty looks more promising.

Looking at the example tree, the lowest common ancestor to 4 and 14, the node with value 8, is dif-
ferent from the other ancestors to 4 and 14 in an important way. All the other ancestors are either
greater than both 4 and 14 or less than both 4 and 14. Only 8 is between 4 and 14. You can use this
insight to design a better algorithm.

The root node is an ancestor to all nodes because there is a path from it to all other nodes. Therefore,
you can start at the root node and follow a path through the common ancestors of both nodes. When

www.it-ebooks.info

http://www.it-ebooks.info/

74 |

CHAPTER 5 TREES AND GRAPHS

your target values are both less than the current node, you go left. When they are both greater,
you go right. The first node you encounter that is between your target values is the lowest common
ancestor.

Based on this description, and referring to the values of the two nodes as valuel and value2, you
can derive the following algorithm:

Examine the current node

If valuel and value2 are both less than the current node's value
Examine the left child

If valuel and value2 are both greater than the current node's value
Examine the right child

Otherwise
The current node is the lowest common ancestor

This solution may seem to suggest using recursion because it is a tree and the algorithm has a
recursive structure to it, but recursion is not necessary here. Recursion is most useful when moving
through multiple branches of a tree or examining some special pattern of nodes. Here you are only
traveling down the tree. It’s easy to implement this kind of search iteratively:

Node findLowestCommonAncestor (Node root, int valuel, int value2){
while(root != null){
int value = root.getValue();

if(value > valuel && value > value2){
root = root.getLeft();

} else if(value < valuel && value < value2)({
root = root.getRight();

} else {
return root;

return null; // only if empty tree
}

What’s the running time of this algorithm? You travel down a path to the lowest common ancestor.
Recall that traveling a path to any one node takes O(log(n)). Therefore, this is an O(log(n)) algo-
rithm. In addition, this is slightly more efficient than a similar recursive solution because you don’t
have the overhead of repeated function calls.

The problem states that you’ll be given the value of two nodes in the tree, but it’s trivial to write an
overloaded wrapper for the function you just implemented that would cover the case where you’re
given references to the two nodes:

Node findLowestCommonAncestor (Node root, Node childl, Node child2){
if(root == null || childl == null || child2 == null){
return null;

}

return findLowestCommonAncestor (root, childl.getValue(),
child2.getValue());

www.it-ebooks.info

http://www.it-ebooks.info/

Tree and Graph Problems | 75

Binary Tree to Heap

PROBLEM You are given a set of integers in an unordered binary tree. Use an
array sorting routine to transform the tree into a heap that uses a balanced binary
tree as its underlying data structure.

To use an array sorting routine, as the problem requires, you must convert the tree you start with
into an array. Because you both start and end with binary tree data structures, transforming into an
array probably isn’t the most efficient way to accomplish the end goal. You might comment to your
interviewer that if not for the requirement to use an array sorting routine, it would be more efficient
to simply heapify the nodes of the starting tree: that is, reorder them such that they meet the criteria
of a heap. You can heapify the tree in O(n) time, while just the array sort is at least O(n log(n)). But,
as is often the case, this problem includes an arbitrary restriction to force you to demonstrate certain
skills — here, it’s the ability to transform between tree and array data structures.

Your first task is to convert the tree into an array. You need to visit each node to insert its associated
value into your array. You can accomplish this with a tree traversal. One wrinkle (assuming you’re
working with static arrays) is that you have to allocate the array before you can put anything in it,
but you don’t know how many values there are in the tree before you traverse it, so you don’t know
how big to make the array. This is solved by traversing the tree twice: once to count the nodes and a
second time to insert the values in the array. After the array has been filled, a simple call to the sort-
ing routine yields a sorted array. The major challenge of this problem is to construct the heap from
the sorted array.

The essential property of a heap is the relationship between the value of each node and the values of
its children: less than or equal to the children for a min-heap and greater than or equal for a max-
heap. The problem doesn’t specify a min-heap or max-heap; we’ll arbitrarily choose to construct a
min-heap. Because each value in the sorted array is less than or equal to all the values that follow

it, you need to construct a tree where the children of each node come from further down the array
(closer to the end) than their parent.

If you made each node the parent of the node to the right of it in the array, you would satisfy the
heap property, but your tree would be completely unbalanced. (It would effectively be a linked list.)
You need a better way to select children for each node that leaves you with a balanced tree. If you
don’t immediately see a way to do this, you might try working in reverse: Draw a balanced binary
tree, and then put the nodes into a linear ordering (as in an array) such that parents always come
before children. If you can reverse this process, you’ll have the procedure you’re looking for.

One simple way to linearly arrange the nodes while keeping parents ahead of children is by level:
first the root (the first level of the tree), then both of its children (the second level), then all their
children (the third level), and so on. This is the same order in which you would encounter the nodes
in a breadth-first traversal. Think about how you can use the relationship you’ve established between
this array and the balanced tree that it came from.

The key to constructing the balanced heap from the array is identifying the location of a node’s chil-
dren relative to the node itself. If you arrange the nodes of a binary tree in an array by level, the root

www.it-ebooks.info

http://www.it-ebooks.info/

76

CHAPTER 5 TREES AND GRAPHS

node (at index 0) has children at indexes 1 and 2. The node at index 1 has children at 3 and 4, and
the node at 2 has children at 5 and 6. Expand this as far as you need to identify the pattern: It looks
like each node’s children have indexes just past two times the parent’s index. Specifically, the chil-
dren of the node at index i are located at 27 + 1 and 2i + 2. Verify that this works with an example
you can draw out, and then consider whether this makes sense. In a complete binary tree, there are
2" nodes at each level of the tree, where 7 is the level. Therefore, each level has one more node than
the sum of the nodes in all the preceding levels. So, it makes sense that the indexes of the children of
the first node in a level would be 2i + 1 and 27 + 2. As you move further along the level, since there
are two children for each parent, the index of the child must increase by two for every increase in
the index of the parent, so the formula you’ve derived continues to make sense.

At this point, it’s worth stopping to consider where you are with this solution. You’ve ordered the
elements in an array such that they satisfy the heap property. (Beyond just satisfying the heap prop-
erty, they are fully ordered because you were required to perform a full sort: This additional degree
of ordering is why this step was O(n log(n)) instead of just the O(n) that it would have been to
merely satisfy the heap property.) You’ve also determined how to find the children of each node (and
by extension, the parent of each node) within this array without needing the overhead of explicit
references or pointers between them. Although a binary heap is conceptually a tree data structure,
there’s no reason why you can’t represent it using an array. In fact, arrays using implicit links based
on position are the most common underlying data representation used for binary heaps. They are
more compact than explicit trees, and the operations used to maintain ordering within the heap
involve exchanging the locations of parents and children, which is easily accomplished with an array
representation.

Although the array representation of your heap is probably a more useful data structure, this prob-
lem explicitly requires that you unpack your array into a tree data structure. Now that you know
how to calculate the position of the children of each node, that’s a fairly trivial process.

Because you’re both starting and ending with a binary tree data structure, you can take a shortcut
in implementation by creating an array of node objects and sorting that, rather than extracting the
integer from each node into an array. Then you can simply adjust the child references on these nodes
instead of having to build the tree from scratch. A Java implementation looks like:

public static Node heapifyBinaryTree(Node root) {

int size = traverse(root, 0, null); // Count nodes
Node[] nodeArray = new Node[size];
traverse(root, 0, nodeArray); // Load nodes into array

// Sort array of nodes based on their values, using Comparator object
Arrays.sort(nodeArray, new Comparator<Node> () {
@Override public int compare (Node m, Node n) {
int mv = m.getValue(), nv = n.getValue();
return (mv < nv ? -1 : (mv ==nv ?2 0 : 1));

}) i
// Reassign children for each node

for(int 1 = 0; 1 < size; 1++){
int left = 2*1 + 1;

www.it-ebooks.info

http://www.it-ebooks.info/

Tree and Graph Problems | 77

int right = left + 1;
nodeArray[i] .setLeft(left >= size ? null : nodeArray[left]);
nodeArray[i] .setRight(right >= size ? null : nodeArrayl[right]);
}
return nodeArray[0]; // Return new root node

}

public static int traverse(Node node, int count, Node[] arr){

1f(node == null)
return count;
if(arr != null)
arr[count] = node;
count++;
count = traverse(node.getLeft (), count, arr);
count = traverse(node.getRight(), count, arr);

return count;

Unbalanced Binary Search Tree

PROBLEM Given an unbalanced binary search tree with more nodes in the left
subtree than the right, reorganize the tree to improve its balance while maintain-
ing the properties of a binary search tree

This would be a trivial problem with a binary tree, but the require-
ment to maintain the ordering of a BST makes it more complex.

If you start by thinking of a large BST and all the possible ways it
could be arranged, it’s easy to get overwhelmed by the problem.
Instead, it may be helpful to start by drawing a simple example of
an unbalanced binary search tree, such as the one in Figure 5-8.

What are your options for rearranging this tree? Since there are
too many nodes on the left and not enough on the right, you need
to move some nodes from the left subtree of the root to the right FIGURE 5-8

subtree. For the tree to remain a BST, all of the nodes in the left

subtree of the root must be less than or equal to the root, and all the nodes in the right subtree
greater than or equal to the root. There’s only one node (7) that is greater than the root, so you
won’t be able to move any nodes to the right subtree if 6 remains the root. Clearly, a different node
will have to become the root in the rearranged BST.

In a balanced BST, half of the nodes are less than or equal to the root
and half are greater or equal. This suggests that 4 would be a good
choice for the new root. Try drawing a BST with the same set of nodes,
but with 4 as the root, as seen in Figure 5-9. Much better! For this
example, the tree ends up perfectly balanced. Now look at how you
need to change the child links on the first tree to get to the second one.

At

FIGURE 5-9

www.it-ebooks.info

http://www.it-ebooks.info/

78 | CHAPTERS5 TREES AND GRAPHS

The new root is 4 and 6 becomes its right child, so you need to

set the right child of the new root to be the original root. You’ve
changed the right child of the new root, so you need to reattach its
original right child (5) to the tree. Based on the second diagram,

it becomes the left child of the old root. Comparing the previous
two figures, the left subtree of 4 and the right subtree of 6 remain
unchanged, so these two modifications, illustrated in Figure 5-10,
are all you need to do.

Will this approach work for larger, more complex trees, or is it FIGURE 5-10

limited to this simple example? There are two cases to consider:

first where the “root” in this example is actually a child of a larger tree and second where the
“leaves” in this example are actually parents and have additional nodes beneath them.

In the first case, the larger tree was a BST to begin with, so we won’t violate the BST properties of
the larger tree by rearranging the nodes in a subtree — just remember to update the parent node
with the new root of the subtree.

In the second case, consider the properties of the subtrees rooted at the two nodes that get new par-
ents. We must make sure that the properties of a BST won’t be violated. The new root was the old
root’s left child, so the new root and all of its original children are less than or equal to the old root.
Therefore there’s no problem with one of the new root’s child subtrees becoming the left subtree of
the old root. Conversely, the old root and its right subtree are all greater than or equal to the new
root, so there’s no problem with these nodes being in the right subtree of the new root.

Since there’s no case in which the properties of a BST will be violated by the transformation you’ve
devised, this algorithm can be applied to any BST. Moreover, it can be applied to any subtree within
a BST. You can imagine that a badly unbalanced tree could be balanced by applying this procedure
repeatedly; a tree unbalanced to the right could be improved by applying the procedure with the
sides reversed.

At some point during this problem, you may recognize that the algorithm you’re deriving is a tree
rotation (specifically, a right rotation). Tree rotations are the basic operations of many self-balancing
trees, including AVL trees and red-black trees.

Right rotation can be implemented as:

public static Node rotateRight(Node oldRoot) {
Node newRoot = oldRoot.getLeft();
oldRoot.setLeft (newRoot.getRight ());
newRoot.setRight (oldRoot);
return newRoot;

}

An equivalent implementation as a non-static method of the Node class is better object-oriented
design:

public Node rotateRight () {
Node newRoot = left;
left = newRoot.right;
newRoot.right = this;
return newRoot;

www.it-ebooks.info

http://www.it-ebooks.info/

Tree and Graph Problems | 79

rotateRight performs a fixed number of operations regardless of the size of the tree, so its run time
is O(1).

Six Degrees of Kevin Bacon

PROBLEM The game “Six Degrees of Kevin Bacon™ involves trying to find the
shortest connection between an arbitrarily selected actor and Kevin Bacon. Two
actors are linked if they appeared in the same movie. The goal of the game is to
connect the given actor to Kevin Bacon using the fewest possible links.

Given a list of all major movies in history and their casts (assume that the names
of movies and actors are unique identifiers), describe a data structure that could
be constructed to efficiently solve Kevin Bacon problems. Write a routine that
uses your data structure to determine the Bacon number (the minimum number
of links needed to connect to Kevin Bacon) for any actor.

The data structure you need to devise seems to involve nodes (actors) and links (movies), but it’s a
little more complicated than the tree structures you’ve been working with up to this point. For one
thing, each node may be linked to an arbitrarily large number of other nodes. There’s no restriction
on which nodes may have links to each other, so it’s expected that some sets of links will form cycles
(circular connections). Finally, there’s no hierarchical relationship between the nodes on either side
of a link. (At least in your data structure; how the politics play out in Hollywood is a different mat-
ter.) These requirements point toward using a very general data structure: an undirected graph.

Your graph needs a node for each actor. Representing movies is trickier: Each movie has a cast of
many actors. You might consider also creating nodes for each movie, but this makes the data struc-
ture considerably more complicated: There would be two classes of nodes, with edges allowed only
between nodes of different classes. Because you only care about movies for their ability to link two
actors, you can represent the movies with edges. An edge connects only two nodes, so each single
movie will be represented by enough edges to connect all pairs of actor nodes in the cast. This has
the disadvantage of substantially increasing the total number of edges in the graph and making it
difficult to extract information about movies from the graph, but it simplifies the graph and the
algorithms that operate on it.

One logical approach is to use an object to represent each node. Again, because you only care about
movies for establishing links, if two actors have appeared in more than one movie together, you
need to maintain only a single edge between them. Edges are often implemented using references (or
pointers), which are inherently unidirectional: There’s generally no way for an object to determine
what is referencing it. The simplest way to implement the undirected edges you need here is to have
each node object reference the other. An implementation of the node class in Java might look like:

public class ActorGraphNode{
private String name;
private Set<ActorGraphNode> linkedActors;
public ActorGraphNode(String name) {
this.name = name;
linkedActors = new HashSet<ActorGraphNode> () ;

www.it-ebooks.info

http://www.it-ebooks.info/

80 | CHAPTERS5 TREES AND GRAPHS

public void linkCostar (ActorGraphNode costar) {
linkedActors.add(costar);
costar.linkedActors.add(this);

}

The use of a set to hold the references to other nodes allows for an unlimited number of edges and
prevents duplicates. The graph is constructed by creating an ActorGraphNode object for each actor
and calling 1inkcostar for each pair of actors in each movie.

Using a graph constructed from these objects, the process to determine the Bacon number for
any actor is reduced to finding the length of the shortest path between the given node and the
“Kevin Bacon” node. Finding this path involves searching across the graph. Consider how you
might do this.

Depth-first searches have simple recursive implementations — would that approach work here? In

a depth-first search, you repeatedly follow the first edge of each node you encounter until you can
go no further, then backtrack until you find a node with an untraversed second edge, follow that
path as far as you can, and so on. One challenge you face immediately is that unlike in a tree, where
every path eventually terminates in a leaf node, forming an obvious base case for recursion, in a
graph there may be cycles, so you need to be careful to avoid endless recursion. (In this graph, where
edges are implemented with pairs of references, each edge effectively forms a cycle between the two
nodes it connects, so there are a large number of cycles.)

How can you avoid endlessly circling through cycles? If a node has already been visited, you shouldn’t
visit it again. One way to keep track of whether a node has been visited is to change a variable on
the node object to mark it as visited; another is to use a separate data structure to track all the nodes
that have been visited. Then the recursive base case is a node with no adjacent (directly connected by
an edge) unvisited nodes. This provides a means to search through all the (connected) nodes of the
graph, but does it help solve the problem?

It’s not difficult to track the number of edges traversed from the starting node — this is just the recur-
sion level. When you find the target node (the node for the actor whose Bacon number you’re deter-
mining), your current recursion level gives you the number of edges traversed along the path you
traveled to this node. But you need the number of edges (links) along the shortest path, not just any
path. Will this approach find the shortest path? Depth-first search goes as far into the network as
possible before backtracking. This means that if you have a network where a node could be reached
by either a longer path passing through the starting node’s first edge, or a shorter path passing
through the second edge, you will encounter it by the longer path rather than the shorter. So there
are at least some cases where this approach will fail to find the shortest path; in fact, if you try a few
more examples, you’ll find that in most cases the path you traverse is not the shortest. You might
consider trying to fix this by revisiting previously visited nodes if you encounter them by a shorter
path, but this seems overly complicated. Put this idea on hold and see if you can come up with a
better algorithm.

Ideally, you want a search algorithm that encounters each node along the shortest path from the
starting node. If you extend your search outward from the starting node in all directions, extending
each search path one edge at a time, then each time you encounter a node, it will be via the short-
est path to that node. This is a description of a breadth-first search. You can prove that this search

www.it-ebooks.info

http://www.it-ebooks.info/

Tree and Graph Problems | 81

will always find nodes along the shortest path: When you encounter an unvisited node while you are
searching at # edges from the start node, all the nodes that are 7 — 1 or fewer edges from the start
have already been visited, so the shortest path to this node must involve 7 edges. (If you’re think-
ing that this seems simpler than what you remember for the algorithm for finding the shortest path
between two nodes in a graph, you may be thinking of Dijkstra’s algorithm. Dijkstra’s algorithm,
which is somewhat more complex, finds the shortest path when each edge is assigned a weight, or
length, so the shortest path is not necessarily the path with the fewest edges. Breadth-first search

is sufficient for finding the shortest path when the edges have no [or equal] weights, such as in this
problem.)

You may remember how to implement a breadth-first search for a graph, but we’ll assume you don’t
and work through the details of the implementation. Just as with the depth-first search, you have

to make sure you don’t follow cycles endlessly. You can use the same strategy you developed for the
depth-first search to address this problem.

Your search starts by visiting each of the nodes adjacent to the starting node. You need to visit all
the unvisited nodes adjacent to each of these nodes as well, but not until after you visit all the nodes
adjacent to the start node. You need some kind of data structure to keep track of unvisited nodes

as you discover them so that you can come back to them when it is their turn. Each unvisited node
that you discover should be visited, but only after you’ve already visited all the previously discovered
unvisited nodes. A queue is a data structure that organizes tasks to be completed in the order that
they’re discovered or added: You can add unvisited nodes to the end of the queue as you discover
them and remove them from the front of the queue when you’re ready to visit them.

A recursive implementation is natural for a depth-first search where you want to immediately visit
each unvisited node as soon as you discover it and then return to where you left off, but an iterative
approach is simpler here because the nodes you need to visit are queued. Prepare the queue by add-
ing the start node. On each iterative cycle, remove a node from the front of the queue, and add each
unvisited adjacent node to the end of the queue. You’re done when you find your target node or the
queue is empty (meaning you’ve searched all the graph reachable from the start node).

The final remaining piece of the puzzle is determining the length of the path after you find the target
node. You could try to determine what the path that you followed was and measure its length, but
with this algorithm there’s no easy way to identify that path. One way around this is to constantly
keep track of how many edges you are away from the start; that way when you find the target, you
know the length of the path. The easiest way to do this is to mark each node with its Bacon number
as you discover it. The Bacon number of a newly discovered unvisited node is the Bacon number of
the current node plus one. This also provides a convenient means for distinguishing visited from
unvisited nodes: If you initialize each node with an invalid Bacon number (for example, —1), then
any node with a non-negative Bacon number has been visited and any node with a Bacon number of
-1 has not.

In pseudo-code, your current algorithm is:

Create a queue and initialize it with the start node
While the queue is not empty
Remove the first node from the queue
If it is the target node, return its Bacon number
For each node adjacent to the current node

www.it-ebooks.info

http://www.it-ebooks.info/

82

CHAPTER 5 TREES AND GRAPHS

If the node is unvisited (Bacon number is -1)
Set the Bacon number to current node's Bacon number + 1
Add the adjacent node to the end of the queue
Return failure because the loop terminated without finding the target

Before you code this, consider whether you can optimize it for the likely case where you need to
determine the Bacon number for several actors. The search is the same each time you run it; the only
difference is the target node at which you terminate. So you’re recomputing the Bacon numbers for
many of the actors each time you run the search, even though these numbers never change. What

if instead of terminating the search at a target node, you use this routine once to do a breadth-first
traversal of the entire graph (or at least the entire graph reachable from Kevin Bacon) to precompute
the Bacon numbers for all of the actors? Then finding the Bacon number for an individual actor

is reduced to returning a single precomputed value. Adding to the preceding class definition for
ActorGrathode,thecodeforthmis

private int baconNumber = -1;
public int getBaconNumber () { return baconNumber; }

// To be called only on the Kevin Bacon node
public void setBaconNumbers () {
baconNumber = 0;
Queue<ActorGraphNode> queue = new LinkedList<ActorGraphNode> () ;
queue.add(this);
ActorGraphNode current;

while((current = queue.poll()) != null){
for(ActorGraphNode n : current.linkedActors) {
if(-1 == n.baconNumber){ //if node is unvisited

n.baconNumber = current.baconNumber + 1;
queue.add(n);

What’s the run time of this algorithm? The function to compute the Bacon numbers evaluates every
(reachable) node once and every edge twice, so in a graph with 7 nodes and n edges, it is O(m + n).
In this graph, you would expect that 7 > m, so this reduces to O(n). This is the same run time you
would have to determine the Bacon number for an individual actor if you did not precompute them.
With precomputation, the Bacon number for an individual actor is just a single look up, which is
O(1). Of course, this assumes that you have a reference to the relevant actor node. If all you have is
the actor’s name, a graph traversal to find the node would be O(m + 7), so to maintain O(1) perfor-
mance you need a constant time means of finding the node representing that actor, such as a hash
table mapping names to nodes.

For additional practice with graphs, try extending this algorithm to print out the names of the
actors forming the connection between the target actor and Kevin Bacon. Alternatively, write a
method that adds edges to an existing graph when a new movie is released, and efficiently updates
only the Bacon numbers that have changed.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary | 83

SUMMARY

Trees and graphs are common data structures, and trees are common in interview questions. Both
data structures consist of nodes that reference other nodes in the structure. A tree is a special case of
a graph where each node (except the root) has exactly one parent and there are no cycles.

Three important kinds of trees are binary trees, binary search trees, and heaps. A binary tree has
two children, called left and right. A binary search tree is an ordered binary tree where all the nodes
to the left of a node have values less than or equal to the node’s own value and all nodes to the right
of a node have values greater than or equal to the node’s value. A heap is a tree in which each node
is less than or equal to its children (in a min-heap) or greater than or equal to its children (in a max
heap) which means the maximum (max-heap) or minimum (min-heap) value is the root and can be
accessed in constant time. Many tree problems can be solved with recursive algorithms.

Both tree and graph problems often involve traversals, which progress through each node of the data
structure, or searches, which are traversals that terminate when a target node is found. Two funda-
mental orderings for these are depth-first and breadth-first. Graphs may have cycles, so when these
algorithms are applied to graphs, some mechanism is needed to avoid retraversing parts of the graph
that have already been visited.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays and Strings

Arrays and strings are closely related. In the abstract sense, a string is just a (possibly read-
only) array of characters. Most of the string-manipulation problems you encounter are based
on your understanding of array data types, particularly in C where strings and character
arrays are essentially identical. Other languages consider strings and character arrays as dis-
tinct data types, but there’s always a way to convert a string to an array and vice versa. When
the two are different, it’s important to understand how and why they diverge. In addition, not
all array problems involve strings, so understanding how arrays work in the abstract and how
they’re implemented by the language you use is crucial to answering array-focused problems.

ARRAYS

An array is a sequence of variables of the same type arranged contiguously in a block of
memory. Because arrays play an important role in every major language used in commercial
development, we assume you’re at least somewhat familiar with their syntax and usage. With
that in mind, this discussion focuses on the theory and application of arrays.

Like a linked list, an array provides an essentially linear form of storage, but its properties

are significantly different. (Multidimensional arrays are not exactly linear, but they are imple-
mented as linear arrays of linear arrays.) In a linked list, lookup is always an O(n) operation,
but array lookup is O(1) as long as you know the index of the element you want. The provision
regarding the index is important — if you know only the value, lookup is still O(#n) in the aver-
age case. For example, suppose you have an array of characters. Locating the sixth character is
O(1), but locating the character with value 'w' is O(n).

The price for this improved lookup is significantly decreased efficiency for insertion and dele-
tion of data in the middle of the array. Because an array is essentially a block of contiguous
memory, it’s not possible to create or eliminate storage between any two elements as it is with
a linked list. Instead, you must physically move data within the array to make room for an
insertion or to close the gap left by a deletion; this is an O(n) operation.

www.it-ebooks.info

http://www.it-ebooks.info/

86

CHAPTER 6 ARRAYS AND STRINGS

Arrays are not dynamic data structures: They have a finite, fixed number of elements. Memory must be
allocated for every element in an array, even if only part of the array is used. Arrays are best used when
you know how many elements you need to store before the program executes. When the program needs
a variable amount of storage, the size of the array imposes an arbitrary limit on the amount of data
that can be stored. Making the array large enough so that the program always operates below the limit
doesn’t solve the problem: Either you waste memory or you won’t have enough memory to handle the
largest data sizes possible.

Most modern languages also have library support for dynamic arrays: arrays that can change size
to store as much or as little data as necessary. (Some languages, typically scripting languages, use
dynamic arrays as their fundamental array type and have no static array type.) This discussion won’t
go into the details of implementing a dynamic array, but you should know that most dynamic array
implementations use static arrays internally. A static array cannot be resized, so dynamic arrays are
resized by allocating a new array of the appropriate size, copying every element from the old array
into the new array, and freeing the old array. This is an expensive operation that should be done as
infrequently as possible.

Each language handles arrays somewhat differently, giving each language a different set of array
programming pitfalls.

C and C++

Despite the differences between C and C++, they are similar in their treatment of arrays. In most
cases, an array name is equivalent to a pointer constant to the first element of the array. This means
that you can’t initialize the elements of one array with another array using a simple assignment.

NOTE Pointers and constants can be confusing concepts separately; they are
often nearly incomprehensible in combination. When we say pointer constant we
mean a pointer declared like char *const chrptr that cannot be altered to point
at a different place in memory, but that can be used to change the contents of the
memory it points at. This is not the same as the more commonly seen constant
pointer, declared like const char *chrPtr, which can be changed to point at a
different memory location but cannot be used to change the contents of a mem-
ory location. If you find this confusing, you're certainly not the only one.

For example,

arrayA = arrayB; /* Compile error: arrayA is not an lvalue */

is interpreted as an attempt to make arraya refer to the same area of memory as arrayB. If arraya
has been declared as an array, this causes a compile error because you can’t change the memory
location to which arraya refers. To copy arrayB into arraya, you must write a loop that does an
element-by-element assignment or use a library function such as memcpy that does the copying for
you (usually much more efficiently).

In C and C++, the compiler tracks only the location of arrays, not their size. The programmer is respon-
sible for tracking array sizes, and there is no bounds checking on array accesses — the language won’t

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

complain if you store something in the 20th element of a 10-element array. As you can imagine, writing
outside the bounds of an array usually overwrites some other data structure, leading to all manner of
curious and difficult-to-find bugs. Development tools are available to help programmers identify out-of-
bounds array accesses and other memory-related problems in their C and C++ programs.

Java

Unlike a C array, a Java array is an object in and of itself, separate from the data type it holds. A
reference to an array is therefore not interchangeable with a reference to an element of the array.
Java arrays are static, and the language tracks the size of each array, which you can access via the
implicit 1length data member. As in C, you cannot copy arrays with a simple assignment: If two
array references have the same type, assignment of one to the other is allowed, but it results in both
symbols referring to the same array, as shown in the following example:

byte[] arrayA = new byte[1l0];

byte[] arrayB = new byte[l0];
arrayA = arrayB; // arrayA now refers to the same array as arrayB

If you want to copy the contents of one array to another, you must do it element by element in a loop
or call a system function:

if (arrayA.length <= arrayB.length) {
System.arraycopy(arrayA, 0, arrayB, 0, array.length);
}

Each access to an array index is checked against the current size of the array, and an exception is
thrown if the index is out of bounds. This can make array access a relatively expensive operation
when compared to C or C++ arrays; although, in cases in which the JVM can prove that the bounds
check is unnecessary, it is skipped to improve performance.

When arrays are allocated, the elements are initialized to their default values. Because the default
value for object types is null for object types, no objects are constructed when you create an array
of objects. You must construct the objects and assign them to the elements of the array

Button myButtons[] = new Button[3]; // Buttons not yet constructed
for (int 1 = 0; 1 < 3; i++) {
myButtons[i] = new Button(); // Constructing Buttons

}
// All Buttons constructed

or use array initialization syntax (which is allowed only where the array is declared):

Button myButtons[] = {new Button(), new Button(), new Button()};

C#

C# arrays are similar to Java arrays, but there are some differences. The Java concept of a multi-
dimensional array — an array of array objects such as int [2] [3] — is called a jagged array in C#,
and multidimensional arrays are specified using comma-separated arguments, as in int [2,3]. Arrays
can be declared to be read-only. All arrays also derive from the System.array abstract base class,
which defines a number of useful methods for array manipulation.

www.it-ebooks.info

http://www.it-ebooks.info/

88 | CHAPTER6 ARRAYS AND STRINGS

JavaScript

Arrays in JavaScript are instances of the Array object. JavaScript arrays are dynamic and resize
themselves automatically:

Array cities = new Array(); // zero length array
cities[0] = "New York";
cities[1l] = "Los Angeles"; // now array is length 2

You can change the size of an array simply by modifying its 1ength property:

cities.length = 1; // drop Los Angeles...
cities[cities.length] = "San Francisco"; // new cities[1l] value

You can use methods on the array object to split, combine, and sort arrays.

STRINGS

Strings are sequences of characters. However, what constitutes a character depends greatly on the
language used and the settings of the operating system on which the application runs. Gone are the
days when you could assume each character in a string is represented by a single byte. Multibyte
encodings (either fixed length or variable length) of Unicode are needed to accurately store text in
today’s global economy.

More recently designed languages, such as Java and C#, have a multibyte fundamental character type,
whereas a char in C and C++ is always a single byte. (Recent versions of C and C++ also define a char-
acter type wchar_t, which is usually multibyte.) Even with built-in multibyte character types, properly
handling all cases of Unicode can be tricky: There are more than 100,000 code points (representation-
independent character definitions) defined in Unicode, so they can’t all be represented with a single,
2-byte Java or C# char. This problem is typically solved using variable length encodings, which use
sequences of more than one fundamental character type to represent some code points.

One such encoding is UTF-16, used to encode strings in Java and C#. UTF-16 represents most of
the commonly used Unicode code points in a single 16-bit char and uses two 16-bit chars to repre-
sent the remainder. UTF-8, another common encoding, is frequently used for text stored in files or
transmitted across networks. UTF-8 uses one to four 8-bit chars to encode all Unicode code points
and has the advantage that all ASCII codes are represented by a single byte, so ASCII encoded text
is a subset of UTF-8 encoded text.

Variable length encodings make string manipulation considerably more complicated: There may be
fewer characters in a string than the number of chars required to store it, and you must take care to
avoid interpreting a part of a multi-char encoded code point as a complete character. For simplicity,
most programming problems involving strings focus on string manipulation algorithms using the
language’s natural character type and neglect issues of variable length encoding.

If you have specific expertise in internationalization and localization, string problems give you a great
opportunity to highlight this valuable experience. Although your interviewer may tell you to assume
that your input string has a fixed-length character encoding such as ASCII, you can explain what you

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

would do differently to handle a variable-length character encoding, even as you code the requested
fixed-length encoded solution.

No matter how they’re encoded, most languages store strings internally as arrays, even if they differ
greatly in how they treat arrays and strings. Many string problems involve operations that require
accessing the string as an array. In languages where strings and arrays are distinct types, it may be
helpful to convert the string to an array and then back to a string after processing.

A C string is contained in a char array. Because C doesn’t track the size of arrays, it can’t track the
size of strings either. Instead, the end of the string is marked with a null character, represented in the
language as '\0'. The null character is sometimes referred to as NUL. (Don’t confuse NUL, which is a
char type with value 0 to NULL, which is a pointer to memory address 0.) The character array must
have room for the terminator: A 10-character string requires an 11-character array. This scheme makes
finding the length of the string an O(n) operation instead of O(1) as you might expect: strlen() (the
library function that returns the length of a string) must scan through the string until it finds the end.

For the same reason that you can’t assign one C array to another, you cannot copy C strings using
the = operator. Instead, you generally use the strlcpy () function. (Use of the older strcpy () is
deprecated in most cases because it’s a common source of buffer overrun security holes.)

It is often convenient to read or alter a string by addressing individual characters of the array. If you
change the length of a string in this manner, make sure you write a null character after the new last
character in the string, and that the character array you work in is large enough to accommodate
the new string and terminator. It’s easy to truncate a C string (although the array that contains the
string remains the same size): Just place a null character immediately after the new end of the string.

Modern C compilers also define a wide character type wchar_t and extend the standard library
functions to operate on strings represented as wchar_t arrays. (C doesn’t support overloading, so
these functions have similar names to their char counterparts, replacing str with wcs.) One caveat
to using wchar_t is that its size is implementation-dependent and in unusual cases may even be the
same as char. This makes C code that uses wchar_t even less portable than usual.

C++

C-style strings can be used with C++, but the preferred approach is to use the string or wstring
(when you need multibyte characters) class from the Standard Template Library whenever possible.
Both of these classes are specializations of the same basic_string template class using the char
and wchar_t data types, respectively.

The string classes are well integrated with the C++ Standard Template Library. You can use them

with streams and iterators. In addition, C++ strings are not null-terminated, so they can store null
bytes, unlike C strings. Multiple copies of the same string share the same underlying buffer when-
ever possible, but because a string is mutable (the string can be changed), new buffers are created

as necessary. For compatibility with older code, it is possible to derive a C-style string from a C++
string, and vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

88 | CHAPTER6 ARRAYS AND STRINGS

Java

Java strings are objects of the string class, a special system class. Although strings can be readily
converted to and from character and byte arrays — internally, the class holds the string using a char
array — they are a distinct type. Java’s char type has a size of two bytes. The individual charac-
ters of a string cannot be accessed directly but only through methods on the string class. string
literals in program source code are automatically converted into string instances by the Java com-
piler. As in C++, the underlying array is shared between instances whenever possible. The length

of a string can be retrieved via the 1ength () method. Various methods are available to search and
return substrings, extract individual characters, trim whitespace characters, and so on.

Java strings are immutable: They cannot be changed after the string has been constructed. Methods
that appear to modify a string actually return a new string instance. The stringBuffer and
StringBuilder classes (the former is in all versions of Java and is thread-safe; the latter is newer
and higher performance, but nonthread-safe) create mutable strings that can be converted to a String
instance as necessary. The compiler implicitly uses stringBuffer instances when two String instances
are concatenated using the + operator, which is convenient but can lead to inefficient code if you’re
not careful. For example, the code

String s = "";
for(int 1 = 0; 1 < 10; ++1){
s=s+1i+"";

}
is equivalent to

String s = "";

for(int 1 = 0; 1 < 10; ++1){
StringBuffer t = new StringBuffer();
t.append(s);
t.append(i);
t.append(" ");
s = t.toString();

}

which would be more efficiently coded as

StringBuffer b = new StringBuffer();
for(int 1 = 0; 1 < 10; ++1){
b.append(1)
b.append('

)
}
String s = b.toString();

Watch for this case whenever you manipulate strings within a loop.

C#

C# strings are almost identical to Java strings. They are instances of the string class (the alternative
form string is an alias), which is similar to Java’s string class. C# strings are also immutable just
like Java strings. You create mutable strings with the stringBuilder class, and similar caveats apply
when strings are concatenated.

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

JavaScript

Although JavaScript defines a string object, many developers are unaware of its existence due
to JavaScript’s implicit typing. However, the usual string operations are there, as well as more
advanced capabilities, such as using regular expressions for string matching and replacement.

ARRAY AND STRING PROBLEMS

Many array and string problems require the use of additional temporary data structures to achieve
the most efficient solution. In some cases, in languages where strings are objects, it may be more effi-
cient to convert the string to an array than to process it directly as a string.

Find the First Nonrepeated Character

PROBLEM Write an efficient function to find the first nonrepeated character in a
string. For instance, the first nonrepeated character in “total” is 'o' and the first
nonrepeated character in “teeter” is 'r'. Discuss the efficiency of your algorithm.

At first, this task seems almost trivial. If a character is repeated, it must appear in at least two places
in the string. Therefore, you can determine whether a particular character is repeated by comparing
it with all other characters in the string. It’s a simple matter to perform this search for each charac-
ter in the string, starting with the first. When you find a character that has no match elsewhere in
the string, you’ve found the first nonrepeated character.

What’s the time order of this solution? If the string is 7 characters long, then in the worst case,
you’ll make almost # comparisons for each of the 7 characters. That gives worst case O(n?) for this
algorithm. [You can improve this algorithm somewhat by comparing each character with only the
characters following it, because it has already been compared with the characters preceding it. This
is still O(n?).] You are unlikely to encounter the worst case for single-word strings, but for longer
strings, such as a paragraph of text, it’s likely that most characters will repeat, and the most com-
mon case might be close to the worst case. The ease with which you arrived at this solution suggests
that there are better alternatives — if the answer were truly this trivial, the interviewer wouldn’t
bother you with the problem. There must be an algorithm with a worst case better than O(z?).

Why was the previous algorithm O(#?)? One factor of # came from checking each character in the
string to determine whether it was nonrepeated. Because the nonrepeated character could be any-
where in the string, it seems unlikely that you can improve efficiency here. The other factor of 7 was
due to searching the entire string when trying to look up matches for each character. If you improve
the efficiency of this search, you improve the efficiency of the overall algorithm. The easiest way to
improve search efficiency on a set of data is to put it in a data structure that allows more efficient
searching. What data structures can be searched more efficiently than O(n)? Binary trees can be
searched in O(log(n)). Arrays and hash tables both have constant time element lookup. [Hash tables
have worst-case lookup of O(n) but the average case is O(1).] Begin by trying to take advantage of
an array or hash table because these data structures offer the greatest potential for improvement.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ARRAYS AND STRINGS

You want to quickly determine whether a character is repeated, so you need to be able to search the
data structure by character. This means you must use the character as the index (in an array) or key
(in a hash table). (You can convert a character to an integer to use it as an index.) What values would
you store in these data structures? A nonrepeated character appears only once in the string, so if you
store the number of times each character appears, it would help you identify nonrepeating characters.
You must scan the entire string before you have the final counts for each character.

When you complete this, you could scan through all the count values in the array or hash table look-
ing for a 1. That would find a nonrepeated character, but it wouldn’t necessarily be the first one in
the original string.

Therefore, you need to search your count values in the order of the characters in the original string.
This isn’t difficult — you just look up the count value for each character until you find a 1. When
you find a 1, you’ve located the first nonrepeated character.

Consider whether this new algorithm is actually an improvement. You always have to go through the
entire string to build the count data structure. In the worst case, you might have to look up the count
value for each character in the string to find the first nonrepeated character. Because the operations on the
array or hash you use to hold the counts are constant time, the worst case would be two operations for
each character in the string, giving 2x, which is O(n) — a major improvement over the previous attempt.

Both hash tables and arrays provide constant-time lookup; you need to decide which one to use. On
the one hand, hash tables have a higher lookup overhead than arrays. On the other hand, an array
would initially contain random values that you would have to take time to set to zero, whereas a hash
table initially has no values. Perhaps the greatest difference is in memory requirements. An array
would need an element for every possible value of a character. This would amount to a relatively
reasonable 128 elements if you process ASCII strings, but if you have to process strings that could
potentially contain any Unicode character, you would need more than 100,000 elements. In con-
trast, a hash table would require storage for only the characters that actually exist in the input string.
Therefore, arrays are a better choice for long strings with a limited set of possible character values; hash
tables are more efficient for shorter strings or when there are many possible character values.

You could implement the solution either way. We’ll assume the code may need to process Unicode
strings (a safe bet these days) and choose the hash table implementation. In outline form, the func-
tion you write looks like this:

First, build the character count hash table:
For each character
If no value is stored for the character, store 1
Otherwise, increment the value
Second, scan the string:
For each character
Return character if count in hash table is 1
If no characters have count 1, return null

Now implement the function. You might choose to write the function in Java or C#, both of which
have built-in support for both hash tables and Unicode. Because you don’t know what class your
function would be part of, implement it as a public static function:

public static Character firstNonRepeated(String str){

HashMap<Character, Integer> charHash =
new HashMap<Character, Integer>() ;

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

int i, length;
Character c;

length = str.length();
// Scan str, building hash table
for (i = 0; i < length; i++) {
c = str.charAt(i);
if (charHash.containsKey(c)) {
// Increment count corresponding to c
charHash.put (c, charHash.get(c) + 1);
} else {
charHash.put(c, 1);
}
}
// Search hash table in order of str
for (i = 0; i < length; i++) {
¢ = str.charAt(i);
if (charHash.get(c) == 1)
return c;
}
return null;

}

The preceding implementation would probably be sufficient in most interview situations, but it has at
least two major flaws. The first is that it assumes that every Unicode character can be represented in
a single 16-bit Java char. With the UTF-16 encoding that Java uses internally for strings, only about
the first 2'° Unicode characters or code points (the Basic Multilingual Plane or BMP) can be represented
in a single char; the remaining code points require two chars. Because the preceding implementation
iterates through the string one char at a time, it won’t interpret anything outside the BMP correctly.

In addition, there’s room to improve performance. Although autoboxing makes it less obvious, recall
that Java Collections classes work only on reference types. That means that every time you increment
the value associated with a key, the Integer object that held the value is thrown away, and a new
Integer with the incremented value is constructed. Is there a way you could avoid having to construct
so many Integers? Consider what information you actually need about the number of times a char-
acter appears in the string. There are only three relevant quantities: You need to know whether it
occurs zero times, one time, or more than one time. Instead of storing integers in the hash table,
why not just construct two Object values for use as your “one time” and “more than one time” flags
(with not present in the hash table meaning “zero times”) and store those in the hash table. Here’s a
reimplementation that addresses these problems:

public static String firstNonRepeated(String str){
HashMap<Integer,Object> charHash = new HashMap<Integer,Object>();
Object seenOnce = new Object (), seenMultiple = new Object();
Object seen;
int 1;
final int length = str.length();
// Scan str, building hash table
for (i = 0; 1 < length;) { //increment intentionally omitted
final int cp = str.codePointAt(i);
i += Character.charCount (cp); //increment based on code point
seen = charHash.get(cp);
if (seen == null) { // not present
charHash.put (cp, seenOnce) ;

www.it-ebooks.info

http://www.it-ebooks.info/

| CHAPTER6 ARRAYS AND STRINGS

} else {
if (seen == seenOnce) {
charHash.put (cp, seenMultiple);

}
}
// Search hash table in order of str
for (i = 0; i < length;) {
final int cp = str.codePointAt (i) ;
i += Character.charCount (cp) ;
if (charHash.get (cp) == seenOnce) {
return new String(Character.toChars(cp));

}

return null;

}

As this implementation demonstrates, handling Unicode code points encoded as two chars requires
several changes. The Unicode code points are represented as 32-bit ints because they can’t always
fit in a char. Because a code point may take one or two chars in the string, you must check the
number of chars in each code point and advance the string index by this quantity to find the next
code point. Finally, the first nonrepeated character could be one that can’t be represented in a single
char, SO the function now returns a String.

Remove Specified Characters

PROBLEM Write an efficient function that deletes characters from an ASCII
string. Use the prototype

string removeChars(string str, string remove);

where any character existing in remove must be deleted from str. For example,
given a str of "Battle of the Vowels: Hawaii vs. Grozny" and a remove of
"aeiou", the function should transform str to "Bttl f th Vwls: Hw vs. Grzny".
Justify any design decisions you make, and discuss the efficiency of your solution.

This problem breaks down into two separate tasks. For each character in str, you must determine
whether it should be deleted. Then, if appropriate, you must delete the character. The second task,
deletion, is discussed first.

Your initial task is to delete a character from a string, which is algorithmically equivalent to remov-
ing an element from an array. An array is a contiguous block of memory, so you can’t simply remove
an element from the middle as you might with a linked list. Instead, you must rearrange the data in
the array so that it remains a contiguous sequence of characters after the deletion. For example, if
you want to delete "c¢" from the string "abcd" you could either shift "a" and "b" forward one posi-
tion (toward the end) or shift "d" back one position (toward the beginning). Either approach leaves
you with the characters “abd”” in contiguous elements of the array.

In addition to shifting the data, you need to decrease the size of the string by one character. If you
shift characters before the deletion forward, you need to eliminate the first element; if you shift the

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

characters after the deletion backward, you need to eliminate the last element. In most languages,
it’s easier to shorten strings at the end (by either decrementing the string length or writing a NUL
character, depending on the language) than at the beginning, so shifting characters backward is
probably the best choice.

How would the proposed algorithm fare in the worst-case scenario in which you need to delete all
the characters in str? For each deletion, you would shift all the remaining characters back one posi-
tion. If str were 7 characters long, you would move the last character 7z — 1 times, the next to last

n — 2 times, and so on, giving worst-case O(n?) for the deletion. [If you start at the end of the string
and work back toward the beginning, it’s somewhat more efficient but still O(n2) in the worst case.]
Moving the same characters many times seems extremely inefficient. How might you avoid this?

What if you allocated a temporary string buffer and built your modified string there instead of in
place? Then you could simply copy the characters you need to keep into the temporary string, skip-
ping the characters you want to delete. When you finish building the modified string, you can copy
it from the temporary buffer back into str. This way, you move each character at most twice, yield-
ing O(n) deletion. However, you’ve incurred the memory overhead of a temporary buffer the same
size as the original string, and the time overhead of copying the modified string back over the origi-
nal string. Is there any way you can avoid these penalties while retaining your O(n) algorithm?

To implement the O(n) algorithm just described, you need to track a source position for the read
location in the original string and a destination position for the write position in the temporary buf-
fer. These positions both start at zero. The source position is incremented every time you read, and
the destination position is incremented every time you write. In other words, when you copy a char-
acter, you increment both positions, but when you delete a character, you increment only the source
position. This means the source position is always the same as or ahead of the destination position.
After you read a character from the original string (that is, the source position has advanced past it),
you no longer need that character — because you’re just going to copy the modified string over it.
Because the destination position in the original string is always a character you don’t need anymore,
you can write directly into the original string, eliminating the temporary buffer entirely. This is still
an O(n) algorithm but without the memory and time overhead of the earlier version.

Now that you know how to delete characters, consider the task of deciding whether to delete a par-
ticular character. The easiest way to do this is to compare the character to each character in remove
and delete it if it matches any of them. How efficient is this? If str is # characters long and remove is
m characters long, then in the worst case you make 7 comparisons for each of # characters, so the
algorithm is O(nm). You can’t avoid checking each of the n characters in str, but perhaps you can
make the lookup that determines whether a given character is in remove better than O(m).

If you’ve already read the solution to “Find the First Nonrepeated Character,” this should sound
familiar. Just as you did in that problem, you can use remove to build an array or hash table that
has constant time lookup, thus giving an O(n) solution. The trade-offs between hash tables and
arrays are the same as previously discussed. In this case, an array is most appropriate when str

and remove are long and characters have relatively few possible values (for example, ASCII strings).
A hash table may be a better choice when str and remove are short or characters have many pos-
sible values (for example, Unicode strings). Either choice could be acceptable as long as you justify it
appropriately. This time, you’re told that the inputs are ASCII strings, so the array wouldn’t be too
big; because the previous implementation used a hash table, try using an array for this one.

www.it-ebooks.info

http://www.it-ebooks.info/

| CHAPTER6 ARRAYS AND STRINGS

NOTE Why build an array? Can’t you convert remove directly to an array? Yes,
you can, but it would be an array of characters indexed by an arbitrary (that is,
meaningless for this problem) position, requiring you to search through each ele-
ment. The array referred to here would be an array of boolean values indexed by
all the possible values for a char. This enables you to determine whether a char-
acter is in remove by checking a single element.

Your function has three parts:
1. Set all the elements in your lookup array to false.

2. [Iterate through each character in remove, setting the corresponding value in the lookup
array to true.

3. Iterate through str with a source and destination index, copying each character only if its
corresponding value in the lookup array is false.

Now that you’ve combined both subtasks into a single algorithm, analyze the overall efficiency for
str of length # and remove of length . Because the number of characters in the ASCII character
set is fixed, zeroing the array is constant time. You perform a constant time assignment for each
character in remove, so building the lookup array is O(m). Finally, you do at most one constant time
lookup and one constant time copy for each character in str, giving O(n) for this stage. Summing
these parts yields O(n + m), so the algorithm has linear running time.

Having justified and analyzed your solution, you’re ready to code it. You can write this function in Java.
(The C# implementation would be nearly identical.) Because this problem involves string manipula-
tion and the string class is immutable, you need to either convert the string to a char array or use a
StringBuilder for your manipulations. Array access has more compact syntax and typically less over-
head than method invocations on a StringBuilder, so using an array is probably the better choice.

public static String removeChars(String str, String remove) {
char[] s = str.toCharArray();
char[] r = remove.toCharArray();
int src, dst = 0;

// flags automatically initialized to false, size of 128 assumes ASCII
boolean[] flags = new boolean[128];

// Set flags for characters to be removed
for(src = 0; src < r.length; ++src){
flags([rlsrcl] = true;

// Now loop through all the characters,
// copying only if they aren't flagged
for(src = 0; src < s.length; ++src){
if(!flags[slsrc]]){
s[dst++] = s[src];
}
}

return new String(s, 0, dst);

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

Reverse Words

PROBLEM Write a function that reverses the order of the words in a string. For
example, your function should transform the string "Do or do not, there is no
try." to "try. no is there not, do or Do". Assume that all words are space delim-
ited and treat punctuation the same as letters.

You probably already have a good idea how to start this problem. Because you need to operate on
words, you must be able to recognize where words start and end. You can do this with a simple
token scanner that iterates through each character of the string. Based on the definition given in the
problem statement, your scanner can differentiate between nonword characters — namely, the space
character — and word characters, which for this problem are all characters except space. A word
begins, not surprisingly, with a word character and ends at the next nonword character or the end of
the string.

The most obvious approach is to use your scanner to identify words, write these words into a tem-
porary buffer, and then copy the buffer back over the original string. To reverse the order of the
words, you must either scan the string backward to identify the words in reverse order or write the
words into the buffer in reverse order (starting at the end of the buffer). It doesn’t matter which
method you choose; the following discussion identifies the words in reverse order.

As always, consider the mechanics of how this works before you begin coding. First, you need to
allocate a temporary buffer of the appropriate size. Next, enter the scanning loop, starting with the
last character of the string. When you find a nonword character, you can write it directly to the buf-
fer. When you find a word character, however, you can’t write it immediately to the temporary buffer.
Because you scan the string in reverse, the first word character you encounter is the last character of
the word, so if you were to copy the characters in the order you find them, you’d write the characters
within each word backward. Instead, you need to keep scanning until you find the first character
of the word and then copy each character of the word in the correct, nonreversed order. (You may
think you could avoid this complication by scanning the string forward and writing the words in
reverse. However, you then must solve a similar, related problem of calculating the start position
of each word when writing to the temporary buffer.) When you copy the characters of a word, you
need to identify the end of the word so that you know when to stop. You could do this by checking
whether each character is a word character, but because you already know the position of the last
character in the word, a better solution is to continue copying until you reach that position.

An example may help to clarify this. Suppose you are given the string "piglet quantum". The
first word character you encounter is 'm'. If you copy the characters as you found them, you end
up with the string "mutnaug telgip", which is not nearly as good a name for a techno group as
the string you were supposed to produce, "quantum piglet". To get "quantum piglet" from
"piglet quantum" you need to scan until you get to 'q' and then copy the letters in the word in the
forward direction until you get back to 'm' at position 13. Next, copy the space character immediately
because it’s a nonword character. Then, just as for "quantum", you would recognize the character 't
as a word character, store position 5 as the end of the word, scan backward to 'p', and finally write
the characters of "piglet" until you got to position 5.

www.it-ebooks.info

http://www.it-ebooks.info/

88 | CHAPTER6 ARRAYS AND STRINGS

After you scan and copy the whole string, copy the buffer back over the original string. Then you
can deallocate the temporary buffer and return from the function. This process is illustrated graphi-
cally in Figure 6-1.

String Buffer

Encounter m, and scan .
back to start of word at q lelilglalele] [qlulaln[tfulml] LT T TTTIITTTT]

Copyforwardfromqtom|p|i|q|l|e|t| |q|u|a|n|t|u|m \° |q|U|a|n|t|u|m| | | | | | | | |

Copy spacedirectly [pli|g[ile[t] [qlulaln[t[ulm[\?| [qlulalnltlulm TT T TTTT]

— -

Encounter t, and scan lplilgli]elt]

Epcouner & end scan [alolalalclalal] [alalalalelula] T

Copyforwardfromp tot [plilglilelt] [glulaln[tlulm[\] [alulaln|e]ulm] [plilglafele] |
—_—_— eemsemsssseaa- >

NUL terminate buffer [p[i[gl1fe[t] [glulaln[tfulm]\] [qlulaln[tlulm] [plilglafelt]\]

strlcpybufferoverstring|q|u|a|n|t|u|m| [plilglafelel\] [alulalnltlulm] [plilglafele]\]

FIGURE 6-1

It’s obviously important that your scanner stop when it gets to the first character of the string. Although
this sounds simple, it can be easy to forget to check that the read position is still in the string, especially
when the read position is changed at more than one place in your code. In this function, you move
the read position in the main token scanning loop to get to the next token and in the word scanning
loop to get to the next character of the word. Make sure neither loop runs past the beginning of the
string.

Just for variety, implement this problem in C, and assume that you’re dealing with ASCII characters
that can be safely stored in byte arrays.

bool reverseWords(char str([]){
char *buffer;
int slen, tokenReadPos, wordReadPos, wordEnd, writePos = 0;

slen = strlen(str);

/* Position of the last character is length - 1 */
tokenReadPos = slen - 1;

buffer = (char *) malloc(slen + 1);

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

if(!buffer)
return false; /* reverseWords failed */
while(tokenReadPos >= 0) {
if(str[tokenReadPos] == ' '){ /* Non-word characters */

/* Write character */
buffer[writePos++] = str[tokenReadPos--];

} else { /* Word characters */

/* Store position of end of word */

wordEnd = tokenReadPos;

/* Scan to next non-word character */

while(tokenReadPos >= 0 && str[tokenReadPos] != ' ')
tokenReadPos--;

/* tokenReadPos went past the start of the word */

wordReadPos = tokenReadPos + 1;

/* Copy the characters of the word */

while(wordReadPos <= wordEnd) {
buffer [writePos++] = str[wordReadPos++];

}
}
/* null terminate buffer and copy over str */
buffer[writePos] = '\0';
strlcpy(str, buffer, slen + 1);
free(buffer);

return true; /* ReverseWords successful */

}

The preceding token scanner-based implementation is the general-case solution for this type of prob-
lem. It is reasonably efficient, and its functionality could easily be extended. It is important that you
are able to implement this type of solution, but the solution is not perfect. All the scanning backward,
storing positions, and copying forward is somewhat lacking in algorithmic elegance. The need for a
temporary buffer is also less than desirable.

Often, interview problems have obvious general solutions and less-obvious special-case solutions.
The special-case solution may be less extensible than a general solution but more efficient or elegant.
Reversing the words of a string is such a problem. You have seen the general solution, but a special-
case solution also exists. In an interview, you might have been steered away from the general solution
before you got to coding it. (The general solution is followed through to code here because token and
string scanning are important techniques.)

One way to improve an algorithm is to focus on a particular, concrete deficiency and try to remedy
that. Because elegance, or lack thereof, is hard to quantify, you might try to eliminate the need for
a temporary buffer from your algorithm. You can probably see that this is going to require a signifi-
cantly different algorithm. You can’t simply alter the preceding approach to write to the same string
it reads from — by the time you get halfway through, you will have overwritten the rest of the data
you need to read.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ARRAYS AND STRINGS

Rather than focus on what you can’t do without a buffer, you should turn your attention to what you
can do. You can reverse an entire string in place by exchanging characters. Try an example to see
whether this might be helpful: "in search of algorithmic elegance" would become "ecnagele cimhtiro-
gla fo hcraes ni". Look at that! The words are in exactly the order you need them, but the characters
in the words are backward. All you have to do is reverse each word in the reversed string. You can do
that by locating the beginning and end of each word using a scanner similar to the one used in the
preceding implementation and calling a reverse function on each word substring.

Now you just have to design an in-place reverse string function. The only trick is to remember that
there’s no one-statement method of exchanging two values in C — you have to use a temporary vari-
able and three assignments. Your reverse string function should take a string, a start index, and an
end index as arguments. Begin by exchanging the character at the start index with the character at
the end index, and then increment the start index and decrement the end index. Continue like this
until the start and end index meet in the middle (in a string with odd length) or end is less than start
(in a string with even length) — put more succinctly, continue while end is greater than start.

You can continue to implement in C, but to keep things interesting this time, use wide character strings.
(Wide character string and character literals are prepended with 1 to distinguish them from regular
byte-sized literals.) These functions look like the following:

void wcReverseWords (wchar_ t str[]){
int start = 0, end = 0, length;
length = wcslen(str);
/* Reverse entire string */
wcReverseString (str, start, length - 1);
while(end < length){
if(strlend] !'= L' '){ /* Skip non-word characters */
/* Save position of beginning of word */
start = end;
/* Scan to next non-word character */

while(end < length && str[end] != L' ')
end++;

/* Back up to end of word */

end--;

/* Reverse word */
wcReverseString(str, start, end);

}
end++; /* Advance to next token */

}
void wcReverseString(wchar_t str[], int start, int end){
wchar_t temp;
while(end > start){
/* Exchange characters */
temp = str[start];
strstart] = strl[end];
str[end] = temp;
/* Move indices towards middle */
start++; end--;

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

This solution does not need a temporary buffer and is considerably more elegant than the previous
solution. It’s also more efficient, mostly because it doesn’t suffer from dynamic memory overhead
and doesn’t need to copy a result back from a temporary buffer.

Integer/String Conversions

PROBLEM Write two conversion routines. The first routine converts a string

to a signed integer. You may assume that the string contains only digits and the
minus character (' - '), that it is a properly formatted integer number, and that the
number is within the range of an int type. The second routine converts a signed
integer stored as an int back to a string.

Every language has library routines to do these conversions. For example, in C# the Convert.ToInt32 ()
and convert.ToString () methods are available. Java uses the Integer.parseInt () and Integer
.toString () methods. You should mention to the interviewer that under normal circumstances, you
know better than to duplicate functionality provided by standard libraries. This doesn’t get you off
the hook — you still need to implement the functions called for by the problem.

From String to Integer

You can start with the string-to-integer routine, which is passed a valid string representation of an
integer. Think about what that gives you to work with. Suppose you were given "137". You would
have a three-character string with the character encoding for '1' at position 0, '3 at position 1,
and ' 7' at position 2. Recall from grade school that the 1 represents 100 because it is in the hun-
dred’s place, the 3 represents 30 because it is in the ten’s place, and the 7 is just 7 because it is in the
one’s place. Summing these values gives the complete number: 100 + 30 + 7 = 137.

This gives you a framework for dissecting the string representation and building it back into a single
integer value. You need to determine the numeric (integer) value of the digit represented by each
character, multiply that value by the appropriate place value, and then sum these products.

Consider the character-to-numeric-value conversion first. What do you know about the values of
digit characters? In all common character encodings, the values are sequential: ' 0' has a value one
less than '1', which in turn is followed by '2', '3, and so on. (Of course, if you didn’t know this,
you’d have to ask the interviewer.) Therefore, the value of a digit character is equal to the digit plus
the value of '0'. (The value of '0' is the nonzero code number representing the character '0'.)
This means you subtract the value of '0' from a digit character to find the numeric value of the
digit. You don’t even need to know what the value of '0' is; just write -' 0", which the compiler
interprets as “subtract the value of '0'.”

Next, you need to know what place value each digit must be multiplied by. Working through the
digits left to right seems problematic because you don’t know what the place value of the first digit
is until you know how long the number is. For example, the first character of "367" is identical to
that of "31"; although it represents 300 in the first case and 30 in the second case. The most obvi-
ous solution is to scan the digits from right to left because the rightmost position is always the one’s
place, the next to rightmost is always the ten’s, and so on. This enables you to start at the right end

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ARRAYS AND STRINGS

of the string with a place value of 1 and work backward through the string, multiplying the place
value by 10 each time you move to a new place. This method, however, requires two multiplications
per iteration, one for multiplying the digit by the place value and another for increasing the place
value. That seems a little inefficient.

Perhaps the alternative of working through the characters left to right was too hastily dismissed. Is
there a way you could get around the problem of not knowing the place value for a digit until you’ve
scanned the whole string? Returning to the example of "367", when you encounter the first char-
acter, '3, you register a value of 3. If the next character were the end of the string, the number’s
value would be 3. However, you encounter '6' as the next character of the string. Now the '3
represents 30 and the 6 represents '6'. On the next iteration, you read the last character, ' 7', so the
3 represents 300, the '6' represents 60, and the '7' represents 7. In summary, the value of the
number you’ve scanned so far increases by a factor of 10 every time you encounter a new character.
It doesn’t matter that you don’t initially know whether the '3 represents 3, 30, or 30,000 — every
time you find a new digit you just multiply the value you’ve already read by 10 and add the value of
the new digit. You’re no longer tracking a place value, so this algorithm saves you a multiplication
on each iteration. The optimization described in this algorithm is frequently useful in computing
checksums and is considered clever enough to merit a name: Horner’s Rule.

Up to this point, the discussion has touched on only positive numbers. How can you expand your
strategy to include negative numbers? A negative number has a ' -' character in the first position.
You want to skip over the ' -' character so that you don’t interpret it as a digit. After you scan all
the digits and build the number, you need to change the number’s sign so that it’s negative. You can
change the sign with the negation operator: - . You have to check for the ' - character before you
scan the digits so that you know whether to skip the first character, but you can’t negate the value
until after you’ve scanned the digits. One way around this problem is to set a flag if you find the '~
character and then apply the negation operator only if the flag is set.

In summary, the algorithm is as follows:

Start number at 0
If the first character is '-'

Set the negative flag

Start scanning with the next character
For each character in the string

Multiply number by 10

Add (digit character - '0') to number
If negative flag set

Negate number
Return number

Coding this in Java results in the following:

public static int strToInt(String str){
int i = 0, num = 0;
boolean isNeg = false;
int len = str.length();

if(str.charAt(0) == '-'){
isNeg = true;
i=1;

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

while(1 < len){
num *= 10;

num += (str.charAt(i++) - '0');
if(isNeg)
num = -num;

return num;

}

Before you declare this function finished, check it for cases that may be problematic. At minimum,
you should check -1, 0, and 1, so you’ve checked a positive value, a negative value, and a value that’s
neither positive nor negative. You should also check a multidigit value like 324 to ensure that the
loop has no problems. The function appears to work properly for these cases, so you can move on to
the opposite conversion in intToStr.

From Integer to String

In intToStr, you perform the inverse of the conversion you did in strToInt. Given this, much of
what you discovered in writing strToInt should be of use to you here. For example, just as you
converted digits to integer values by subtracting '0' from each digit, you can convert integer values
back to digits by adding '0' to each digit.

Before you can convert values to characters, you need to know what those values are. Consider how
you might do this. Suppose you have the number 732. Looking at this number’s decimal representa-
tion on paper, it seems a simple matter to identify the digit values 7, 3, and 2. However, you must
remember that the computer isn’t using a decimal representation, but rather the binary representa-
tion 1011011100. Because you can’t select decimal digits directly from a binary number, you must
calculate the value of each digit. It seems logical to try to find the digit values either left to right or
right to left.

Try left to right first. Integer dividing 732 by the place value (100) gives the first digit, 7. However,
now if you integer divide by the next place value (10), you get 73, not 3. It looks as if you need to
subtract the hundreds value you found before moving on. Starting over with this new process gives
you the following:

732 + 100 = 7 (first digit); 732 - 7 x 100 = 32
32 + 10 = 3 (second digit); 32 - 3 x 10 = 2
2 + 1 = 2 (third digit)

To implement this algorithm, you must find the place value of the first digit and divide the place
value by 10 for each new digit. This algorithm seems workable but complicated. What about work-
ing right to left?

Starting again with 732, what arithmetic operation can you perform to yield 2, the rightmost digit?
Modulo gives the remainder of an integer division. (In languages with C-influenced syntax the mod-
ulo operator is %.) 732 modulo 10 gives you 2. Now how can you get the next digit? 732 modulo
100 gives you 32. You could integer divide this by 10 to get the second digit, 3, but now you have to
track two separate place values.

What if you did the integer divide before the modulo? Then you’d have 732 integer divide by 10 is 73;
73 modulo 10 is 3. Repeating this for the third digit you have 73 /10 = 7; 7 % 10 = 7. This seems

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ARRAYS AND STRINGS

like an easier solution — you don’t even have to track place values; you just divide and modulo until
there’s nothing left.

The major downside of this approach is that you find the digits in reverse order. Because you don’t
know how many there will be until you’ve found them all, you don’t know where in the string to
begin writing. You could run through the calculations twice — once to find the number of digits so
that you know where to start writing them and again to actually write the digits — but this seems
wasteful. Perhaps a better solution is to write the digits out backward as you discover them and then
reverse them into the proper order when you’re done. Because the largest possible value of an integer
yields a relatively short string, you could write the digits into a temporary buffer and then reverse
them into the final string.

Again, negative numbers have been ignored so far. Unfortunately, the modulo of a negative number
is not handled consistently across different languages, so writing code that calculates the modulo of
a negative number is likely to be error prone and may confuse others reading your code. One way
around this problem is to avoid it entirely. In strToInt, you treated the number as if it were posi-
tive and then made an adjustment at the end if it were negative. How might you employ this type of
strategy here? You could start by negating the number if it were negative. Then it would be positive,
so treating it as a positive number wouldn’t be a problem. The only wrinkle would be that youd
need to write a ' - if the number had originally been negative, but that isn’t difficult — just set a
flag indicating that the number is negative when you negate it.

You’ve solved all the important subproblems in intTostr — now assemble these solutions into an
outline you can use to write your code.

If number less than zero:
Negate the number
Set negative flag
While number not equal to 0
Add '0' to number % 10 and write this to temp buffer
Integer divide number by 10
If negative flag is set
Write '-' into next position in temp buffer
Write characters in temp buffer into output string in reverse order:

Rendering this in Java might give the following:

public static final int MAX DIGITS = 10;
public static String intToStr(int num) {
int 1 = 0;
boolean isNeg = false;
/* Buffer big enough for largest int and - sign */
char[] temp = new char[MAX DIGITS + 1 1;
/* Check to see if the number is negative */
if(num < 0){
num = -num;
isNeg = true;

}

/* Fill buffer with digit characters in reverse order */
while(num != 0){

temp[i++] = (char) ((num % 10) + '0");

num /= 10;

www.it-ebooks.info

http://www.it-ebooks.info/

Arrays | 87

}
StringBuilder b = new StringBuilder();
if(isNeg)

b.append('-');

while(1 > 0){

b.append(temp[--1]);
}
return b.toString();

}

Again, check the same potentially problematic cases you tried for strToInt (multidigit, -1, 0, and
1). Multidigit numbers, —1, and 1 cause no problems, but if num is 0 you never go through the body
of the while loop. This causes the function to write an empty string instead of "0". How can you fix
this bug? You need to go through the body of the while loop at least once so that you write a ' 0"
even if num starts at 0. You can ensure that the body of the loop is executed at least once by chang-
ing it from a while loop to a do...while loop. This fix yields the following code, which can handle
converting 0 as well as positive and negative values to strings:

public static final int MAX_DIGITS = 10;
public static String intToStr(int num) {
int i = 0;
boolean isNeg = false;
/* Buffer big enough for largest int and - sign */
char[] temp = new char[MAX_DIGITS + 1];
/* Check to see if the number is negative */
1f(num < 0){
num = -num;
isNeg = true;
}

/* Fill buffer with digit characters in reverse order */
do {
temp[i++] = (char) ((num % 10) + '0");
num /= 10;
} while(num != 0);
StringBuilder b = new StringBuilder();
if(isNeg)
b.append('-');

while(1 > 0){

b.append(temp[--1]);
}
return b.toString();

SUMMARY

Arrays are an essential part of nearly every programming language, so you should expect that they
will appear in some of your interview problems. Accessing an array is constant time if you have the
index of the element you need, but linear time if you have only the value of the element but not the
index. If you insert or delete in the middle of an array, you must move all the elements that follow to

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ARRAYS AND STRINGS

open or close the space. Static arrays are created with a fixed size; dynamic arrays grow as needed.
Most languages support both types to a greater or lesser extent.

Strings are one of the most common applications of arrays. In C, a string is little more than an array
of characters. In object-oriented languages the array is typically hidden within a string object. String
objects can be converted to and from character arrays; make sure you know how to do this in the
languages you’ll be using because the operations required by programming problems are often more
convenient with arrays. Basic string objects are immutable (read-only) in C# and Java; other classes
provide writeable string functionality. Careless concatenation of immutable strings can lead to inef-
ficient code that creates and throws away many string objects.

Most modern applications support multiple languages using Unicode. There are multiple encodings
for representing Unicode, all of which require multiple bytes for at least some characters, and many
of which are variable length. (Some characters require more bytes than others.) These encodings can
considerably complicate string problems, but most of the time you probably won’t need to worry about
this for interview problems.

www.it-ebooks.info

http://www.it-ebooks.info/

Recursion

Recursion is a deceptively simple concept: Any function that calls itself is recursive. Despite
this apparent simplicity, understanding and applying recursion can be surprisingly complex.
One of the major barriers to understanding recursion is that general descriptions tend to
become highly theoretical, abstract, and mathematical. Although there is certainly value in
that approach, this chapter instead follows a more pragmatic course, focusing on example,
application, and comparison of recursive and iterative (nonrecursive) algorithms.

UNDERSTANDING RECURSION

Recursion is useful for tasks that can be defined in terms of similar subtasks. For example,
sort, search, and traversal problems often have simple recursive solutions. A recursive function
performs a task in part by calling itself to perform the subtasks. At some point, the function
encounters a subtask that it can perform without calling itself. This case, in which the func-
tion does not recurse, is called the base case; the former, in which the function calls itself to
perform a subtask, is referred to as the recursive case.

NOTE Recursive algorithms have two cases: recursive cases and base cases.

These concepts can be illustrated with a simple and commonly used example: the factorial
operator. n! (pronounced “n factorial”) is the product of all integers between 7 and 1. For
example, 4! =4 x 3 x 2 x 1 = 24. n! can be more formally defined as follows:

nl=nn-1)"
or=1=1

This definition leads easily to a recursive implementation of factorial. The task is to deter-
mine the value of n!, and the subtask is to determine the value of (7 — 1)!. In the recursive
case, when 7 is greater than 1, the function calls itself to determine the value of (z — 1)! and

www.it-ebooks.info

http://www.it-ebooks.info/

108 | CHAPTER7 RECURSION

multiplies that by 7. In the base case, when 7 is 0 or 1, the function simply returns 1. Rendered in
code, this looks like the following:

int factorial(int n){

if (n > 1) { /* Recursive case */
return factorial(n-1) * n;

} else { /* Base case */
return 1;

}

}

Figure 7-1 illustrates the operation of this function when computing 4!. Notice that n decreases by

1 each time the function recurses. This ensures that the base case will eventually be reached. If a
function is written incorrectly such that it does not always reach a base case, it recurses infinitely. In
practice, there is usually no such thing as infinite recursion: Eventually a stack overflow occurs and
the program crashes — a similarly catastrophic event.

Factorial (4) {
if(4>1 {
return Factorial (3) * 4;
L > Factorial(3) {
if3>1 {
return Factorial (2) * 3;
L > Factorial (2) {
if2>1 {
return Factorial (1) * 2;

L > Factorial (1) {

if>1
Jelse
return 1;
Y]
return 1* 2; }
v)
+ return 2 * 3;
} }
return 6 * 4;
) }
FIGURE 7-1

Note that when the value returned by the recursive call is itself immediately returned, as in the pre-
ceding definition for factorial, the function is tail-recursive. Some compilers can perform tail call
elimination on tail-recursive functions, an optimization that reuses the same stack frame for each
recursive call. An appropriately optimized tail-recursive function could recurse infinitely without
overflowing the stack.

NOTE Every recursive case must eventually lead to a base case.

www.it-ebooks.info

http://www.it-ebooks.info/

Understanding Recursion | 109

This implementation of factorial represents an extremely simple example of a recursive function.
In many cases, your recursive functions may need additional data structures or an argument that
tracks the recursion level. Often the best solution in such cases is to move the data structure or
argument initialization code into a separate function. This wrapper function, which performs ini-
tialization and then calls the purely recursive function, provides a clean, simple interface to the rest
of the program.

For example, if you need a factorial function that returns all its intermediate results (factorials less
than 7), as well as the final result (1!), you most naturally return these results as an integer array,
which means the function needs to allocate an array. You also need to know where in the array each
result should be written. These tasks are easily accomplished using a wrapper function, as follows:

int[] allFactorials(int n){ /* Wrapper function */
int[] results = new int[n == 0 ? 1 : n];
doAllFactorials(n, results, 0);
return results;
}
int doAllFactorials(int n, int[] results, int level){
if(n>1){ /* Recursive case */
results[level] = n * doAllFactorials(n - 1, results, level + 1);
return results[level];
} else { /* Base case */
results[level] = 1;
return 1;

}

You can see that using a wrapper function enables you to hide the array allocation and recursion
level tracking to keep the recursive function clean. In this case, you can determine the appropriate
array index from n, avoiding the need for the 1evel argument, but in many cases there is no alterna-
tive to tracking the recursion level, as shown here.

NOTE [t may be useful to write a separate wrapper function to do initialization
for a complex recursive function.

Although recursion is a powerful technique, it is not always the best approach, and rarely is it

the most efficient approach. This is due to the relatively large overhead for function calls on most
platforms. For a simple recursive function like factorial, many computer architectures spend more
time on call overhead than on the actual calculation. Iterative functions, which use looping con-
structs instead of recursive function calls, do not suffer from this overhead and are frequently more
efficient.

NOTE [terative solutions are usually more efficient than recursive solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

110 | CHAPTER7 RECURSION

Any problem that can be solved recursively can also be solved iteratively. Iterative algorithms are
often easy to write, even for tasks that might appear to be fundamentally recursive. For example, an
iterative implementation of factorial is relatively simple. It may be helpful to reframe the definition
of factorial, such that you describe ! as the product of every integer between 7 and 1, inclusive. You
can use a for loop to iterate through these values and calculate the product:

int factorial(int n){
int i, val = 1;
for(i=mn; i>1; i--) /* n =0 or 1 falls through */
val *= 1i;
return val;

}

This implementation is significantly more efficient than the previous recursive implementation
because it doesn’t make any additional function calls. Although it represents a different way of
thinking about the problem, it’s not any more difficult to write than the recursive implementation.

For some problems, obvious iterative alternatives like the one just shown don’t exist, but it’s always
possible to implement a recursive algorithm without using recursive calls. Recursive calls are gener-
ally used to preserve the current values of local variables and restore them when the subtask per-
formed by the recursive call is completed. Because local variables are allocated on the program’s
stack, each recursive instance of the routine has a separate set of the local variables, so recursive
calls implicitly store variable values on the program’s stack. You can eliminate the need for recursive
calls by allocating your own stack and manually storing and retrieving local variable values from
this stack.

Implementing this type of stack-based iterative function tends to be significantly more complicated
than implementing an equivalent function using recursive calls. Furthermore, unless the overhead
for the stack you use is significantly less than the function call overhead, a function written this
way won’t be more efficient than a conventional recursive implementation. Therefore you should
implement recursive algorithms with recursive calls unless instructed otherwise. An example of a
recursive algorithm implemented without recursive calls is given in the solution to the “Preorder
Traversal, No Recursion” problem in Chapter 5.

NOTE A recursive algorithm can be implemented without recursive calls by using
a stack, but it’s usually more trouble than it’s worth.

In an interview, a working solution is of primary importance; an efficient solution is secondary.
Unless you’ve been told otherwise, go with whatever type of working solution comes to you first. If
it’s a recursive solution, you might want to mention the inefficiencies inherent in recursive solutions
to your interviewer, so it’s clear that you know about them. In the rare instance that you see a recur-
sive solution and an iterative solution of roughly equal complexity, you should probably mention
them both to the interviewer, indicating that you’re going to work out the iterative solution because
it’s likely to be more efficient.

www.it-ebooks.info

http://www.it-ebooks.info/

Recursion Problems | 111

RECURSION PROBLEMS

Recursive algorithms offer elegant solutions to problems that would be awkward to code nonre-
cursively. Interviewers like these kinds of problems because many people find recursive thinking

difficult.

Binary Search

PROBLEM Implement a function to perform a binary search on a sorted array
of integers to find the index of a given integer. Comment on the efficiency of this
search, and compare it with other search methods.

In a binary search, you compare the central element in your sorted search space (an array, in this
case) with the item you’re looking for. There are three possibilities. If the central element is less than
what you’re searching for, you eliminate the first half of the search space. If it’s more than the search
value, you eliminate the second half of the search space. In the third case, the central element is
equal to the search item, and you stop the search. Otherwise, you repeat the process on the remain-
ing portion of the search space. If it’s not already familiar to you from computer science courses,
this algorithm may remind you of the optimum strategy in the children’s number-guessing game in
which one child guesses numbers in a given range and a second responds “higher” or “lower” to
each incorrect guess.

Because a binary search can be described in terms of binary searches on successively smaller por-
tions of the search space, it lends itself to a recursive implementation. Your method needs to be
passed the array it is searching, the limits within which it should search, and the element for which
it is searching. You can subtract the lower limit from the upper limit to find the size of the search
space, divide this size by two, and add it to the lower limit to find the index of the central element.
Next, compare this element to the search element. If they’re equal, return the index. Otherwise, if
the search element is smaller, the new upper limit becomes the central index — 13 if the search ele-
ment is larger, the new lower limit is the central index + 1. Recurse until you match the element
you’re searching for.

Before you code, consider what error conditions you need to handle. One way to think about this

is to consider what assumptions you’re making about the data you are given and then consider how
these assumptions might be violated. One assumption, explicitly stated in the problem, is that only a
sorted array can be searched. If the upper limit is ever less than the lower limit, it indicates that the
list is unsorted, and you should throw an exception. (Another way to handle this case would be to
call a sort routine and then restart the search, but that’s more than you need to do in an interview.)

Another assumption implicit in a search may be a little less obvious: The element you’re searching
for is assumed to exist in the array. If you don’t terminate the recursion until you find the element,
you’ll recurse infinitely when the element is missing from the array. You can avoid this by throwing
an exception if the upper and lower limits are equal and the element at that location is not the ele-
ment you’re searching for. Finally, you assume that the lower limit is less than or equal to the upper
limit. For simplicity, you can just throw an exception in this case; although in a real program, you’d
probably want to define this as an illegal call and use an assertion to check it.

www.it-ebooks.info

http://www.it-ebooks.info/

112 | CHAPTER7 RECURSION

Your recursive function will be easier to use if you write a wrapper that sets the initial values for the
limits to the full extent of the array. Now you can translate these algorithms and error checks into

Java code:
int binarySearch(int[] array, int target) throws BSException {
return binarySearch(array, target, 0, array.length-1);
}
int binarySearch(int[] array, int target, int lower,
int upper) throws BSException {
int center, range;
range = upper - lower;
if(range < 0){
throw new BSException("Limits reversed");
} else if(range == 0 && array[lower] != target){
throw new BSException("Element not in array");
}
if(arrayl[lower] > array[upper])({
throw new BSException("Array not sorted");
}
center = ((range)/2) + lower;
if(target == arrayl[center]){
return center;
} else if(target < arrayl[center]){
return binarySearch(array, target, lower, center - 1);
} else {
return binarySearch(array, target, center + 1, upper);
}
}

Although the preceding function completes the given task, it is not as efficient as it could be. As
discussed at the beginning of this chapter, recursive implementations are generally less efficient than

equivalent iterative implementations.

If you analyze the recursion in the previous solution, you can see that each recursive call serves only
to change the search limits. There’s no reason why you can’t change the limits on each iteration of
a loop and avoid the overhead of recursion. (When compiled with tail call elimination, the preced-
ing recursive implementation would likely produce machine code indistinguishable from an iterative
implementation.) The method that follows is a more efficient, iterative analog of the recursive binary

search:

int

iterBinarySearch(int[] array, int target) throws BSException ({

int lower = 0, upper = array.length - 1;
int center, range;

if(lower > upper){

throw new BSException("Limits reversed");
}
while(true){

range = upper - lower;

www.it-ebooks.info

http://www.it-ebooks.info/

Recursion Problems | 113

if(range == 0 && array[lower] != target){
throw new BSException("Element not in array");

if(array[lower] > array[upper]){
throw new BSException ("Array not sorted");

center = ((range)/2) + lower;

if (target == arraylcenter]){
return center;

} else if(target < arrayl[center])({
upper = center - 1;

} else {
lower = center + 1;

}

A binary search is O(log(n)) because half of the search space is eliminated (in a sense, searched) on
each iteration. This is more efficient than a simple search through all the elements, which would be
O(n). However, to perform a binary search, the array must be sorted, an operation that is usually
O(n log(n)).

Permutations of a String

PROBLEM Implement a routine that prints all possible orderings of the characters
in a string. In other words, print all permutations that use all the characters from
the original string. For example, given the string “hat”, your function should print
the strings “tha”, “abt”, “tah”, “ath”, “hta”, and “hat”. Treat each character in the
input string as a distinct character, even if it is repeated. Given the string “aaa”,
your routine should print “aaa” six times. You may print the permutations in any

order you choose.

Manually permuting a string is a relatively intuitive process, but describing an algorithm for the
process can be difficult. In a sense, the problem here is like being asked to describe how you tie your
shoes: You know the answer, but you probably still have to go through the process a few times to
figure out what steps you’re taking.

Try applying that method to this problem: Manually permute a short string and try to reverse-engineer
an algorithm out of the process. Take the string “abcd” as an example. Because you’re trying to
construct an algorithm from an intuitive process, you want to go through the permutations in a sys-
tematic order. Exactly which systematic order you use isn’t terribly important — different orders are
likely to lead to different algorithms, but as long as you’re systematic about the process, you should
be able to construct an algorithm. You want to choose a simple order that makes it easy to identify
any permutations that you might accidentally skip.

You might consider listing all the permutations in alphabetical order. This means the first group
of permutations will all start with “a”. Within this group, you first have the permutations with

www.it-ebooks.info

http://www.it-ebooks.info/

14

CHAPTER 7 RECURSION

a second letter of “b”, then “c”, and finally “d”. Continue in a like fashion for the other first
letters.

abcd bacd cabd dabc
abdc badc cadb dacb
achd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcba

Before you continue, make sure you didn’t miss any permutations. Four possible letters can be
placed in the first position. For each of these four possibilities, there are three remaining possible let-
ters for the second position. Thus, there are 4 x 3 = 12 different possibilities for the first two letters
of the permutations. After you select the first two letters, two different letters remain available for
the third position, and the last remaining letter is put in the fourth position. If you multiply 4 x 3 x
2 x 1 you have a total of 24 different permutations; there are 24 permutations in the previous list, so
nothing has been missed. This calculation can be expressed more succinctly as 4! — you may recall
that 7! is the number of possible arrangements of 7 objects.

Now examine the list of permutations for patterns. The rightmost letters vary faster than the left-
most letters. For each letter that you choose for the first (leftmost) position, you write out all the
permutations beginning with that letter before you change the first letter. Likewise, after you pick a
letter for the second position, you write out all permutations beginning with this two-letter sequence
before changing the letters in either the first or second position. In other words, you can define the
permutation process as picking a letter for a given position and performing the permutation process
starting at the next position to the right before coming back to change the letter you just picked.
This sounds like the basis for a recursive definition of permutation. Try to rephrase it in explicitly
recursive terms: To find all permutations starting at position 7, successively place all allowable let-
ters in position 7, and for each new letter in position 7 find all permutations starting at position
n + 1 (the recursive case). When 7 is greater than the number of characters in the input string, a
permutation has been completed; print it and return to changing letters at positions less than 7 (the
base case).

You almost have an algorithm; you just need to define “all allowable letters” a little more rigorously.
Because each letter from the input string can appear only once in each permutation, “all allowable
letters” can’t be defined as every letter in the input string. Think about how you did the permuta-
tions manually. For the group of permutations beginning with “b”, you never put a “b” anywhere
but the first position because when you selected letters for later positions, “b” had already been
used. For the group beginning “bc” you used only “a” and “d” in the third and fourth positions
because both “b” and “c” had already been used. Therefore, “all allowable letters” means all letters
in the input string that haven’t already been chosen for a position to the left of the current position
(a position less than 7). Algorithmically, you could check each candidate letter for position # against
all the letters in positions less than 7 to determine whether it had been used. You can eliminate these
inefficient scans by maintaining an array of boolean values corresponding to the positions of the let-
ters in the input string and using this array to mark letters as used or unused, as appropriate.

www.it-ebooks.info

http://www.it-ebooks.info/

Recursion Problems | 115

In outline form, this algorithm looks like the following:

If you're past the last position
Print the string
Return
Otherwise
For each letter in the input string
If it's marked as used, skip to the next letter
Else place the letter in the current position
Mark the letter as used
Permute remaining letters starting at current position + 1
Mark the letter as unused

Separating the base case from the recursive case as performed here is considered good style and
may make the code easier to understand, but it does not provide optimum performance. You can
significantly optimize the code by invoking the base case directly without a recursive call if the next
recursive call invokes the base case. In this algorithm, that involves checking whether the letter just
placed was the last letter — if so, you print the permutation and make no recursive call; otherwise,
a recursive call is made. This eliminates 7! function calls, reducing the function call overhead by
approximately a factor of # (where # is the length of the input string). Short-circuiting the base case
in this manner is called arms-length recursion and is considered poor style, especially in academic
circles. Whichever way you choose to code the solution, it is worthwhile to mention the advantages
of the alternative approach to your interviewer.

Here’s a Java implementation of this algorithm:

public class Permutations {
private boolean[] used;
private StringBuilder out = new StringBuilder();
private final String in;

public Permutations(final String str){

in = str;
used = new boolean[in.length() 1;

public void permute(){

if(out.length() == in.length()){
System.out.println(out);
return;

}

for(int i = 0; i1 < in.length(); ++1i){
if(used[i]) continue;
out.append(in.charAt (i));
used[i] = true;
permute () ;
used[1] = false;
out.setLength(out.length() - 1);

}

This class sets up the array of used flags and the stringBuilder for the output string in the con-
structor. The recursive function is implemented in permute (), which appends the next available
character to out before making the recursive call to permute the remaining characters. After the call
returns, the appended character is deleted by decreasing out’s length.

www.it-ebooks.info

http://www.it-ebooks.info/

116 | CHAPTER7 RECURSION

Combinations of a String

PROBLEM I[mplement a function that prints all possible combinations of the
characters in a string. These combinations range in length from one to the length
of the string. Two combinations that differ only in ordering of their characters are
the same combination. In other words, “12” and “31” are different combinations
from the input string “123”, but “21” is the same as “12”.

This is a companion problem to finding the permutations of the characters in a string. If you haven’t
yet worked through that problem, you may want to do so before you tackle this one.

Following the model of the solution to the permutation problem, try working out an example by
hand to see where that gets you. Because you are trying to divine an algorithm from the example, you
again need to be systematic in your approach. You might try listing combinations in order of length.
The input string “wxyz” is used in the example. Because the ordering of letters within each combina-
tion is arbitrary, they are kept in the same order as they are in the input string to minimize confusion.

w WX WXY WXyZ
X wy WXZ
y wz wyz
z Xy Xyz
Xz
yz

Some interesting patterns seem to be emerging, but there’s nothing clear yet, certainly nothing that
seems to suggest an algorithm. Listing output in terms of the order of the input string (alphabetical
order, for this input string) turned out to be helpful in the permutation problem. Try rearranging the
combinations you generated to see if that’s useful here:

w X y z
WX Xy yz

WXy Xyz

WXYyZ XZ

WXz

wy

wyz

wz

www.it-ebooks.info

http://www.it-ebooks.info/

Recursion Problems | 117

This looks a little more productive. There is a column for each letter in the input string. The first
combination in each column is a single letter from the input string. The remainder of each column’s
combinations consists of that letter prepended to each of the combinations in the columns to the
right. Take, for example, the “x” column. This column has the single letter combination “x”. The

W %«

columns to the right of it have the combinations “y”, “yz”, and “z”, so if you prepend “x” to each of
these combinations you find the remaining combinations in the “x” column: “xy”, “xyz”, and “xz”.
You could use this rule to generate all the combinations, starting with just “z” in the rightmost
column and working your way to the left, each time writing a single letter from the input string at
the top of the column and then completing the column with that letter prepended to each of the
combinations in columns to the right. This is a recursive method for generating the combinations. It
is space inefficient because it requires storage of all previously generated combinations, but it indicates
that this problem can be solved recursively. See if you can gain some insight on a more efficient
recursive algorithm by examining the combinations you’ve written a little more closely.

Look at which letters appear in which positions. All four letters appear in the first position, but

“w” never appears in the second position. Only “y” and “z” appear in the third position, and “z”

is in the fourth position in the only combination that has a fourth position (“wxyz”). Therefore, a
potential algorithm might involve iterating through all allowable letters at each position: w—z in the
first position, x—z in the second position, and so on. Check this idea against the example to see if it
works: It seems to successfully generate all the combinations in the first column. However, when you
select “x” for the first position, this candidate algorithm would start with “x” in the second posi-
tion, generating an illegal combination of “xx”. Apparently the algorithm needs some refinement.

[I3 2}

To generate the correct combination “xy”, you need to begin with “y”, not “x”, in the second posi-
tion. When you select “y” for the first position (third column), you need to start with “z” because
“yy” is illegal and “yx” and “yw” have already been generated as “xy” and “wy”. This suggests that
in each output position you need to begin iterating with the letter in the input string following the let-
ter selected for the preceding position in the output string. Call this letter your input start letter.

It may be helpful to summarize this a little more formally. Begin with an empty output string and
the first character of the input as the input start position. For a given position, sequentially select all
letters from the input start position to the last letter in the input string. For each letter you select,
append it to the output string, print the combination, and then generate all other combinations
beginning with this sequence by recursively calling the generating function with the input start posi-
tion set to the next letter after the one you’ve just selected. After you return from the recursive call,
delete the character you appended to make room for the next character you select. You should check
this idea against the example to make sure it works. It does — no more problems in the second
column. Before you code, it may be helpful to outline the algorithm just to make sure you have it.
(For comparison, we’ve chosen the performance side of the arms-length recursion style/performance
trade-off discussed in the permutation problem. The performance and style differences between the
two possible approaches are not as dramatic for the combination algorithm as they were for the per-
mutation algorithm.)

For each letter from input start position to end of input string

Append the letter to the output string
Print letters in output string

www.it-ebooks.info

http://www.it-ebooks.info/

118 | CHAPTER7 RECURSION

If the current letter isn't the last in the input string
Generate remaining combinations starting at next position with
iteration starting at next letter beyond the letter just selected
Delete the last character of the output string

After all that hard work, the algorithm looks simple! You’re ready to code it. In Java, your imple-
mentation might look like this:

public class Combinations {
private StringBuilder out = new StringBuilder () ;
private final String in;

public Combinations(final String str){ in = str; }

public void combine() { combine(0); }
private void combine (int start){
for(int i = start; 1 < in.length(); ++1i){

out.append(in.charAt (i));
System.out.println(out);
if (1 < in.length())

combine(i + 1);
out.setLength(out.length() - 1);

}

This solution is sufficient in most interviews. Nevertheless, you can make a rather minor optimization
to combine that eliminates the if statement. Given that this is a recursive function, the performance
increase is probably negligible compared to the function call overhead, but you might want to see if
you can figure it out just for practice:
private void combine(int start) {
for(int i = start; i < in.length() - 1; ++i)({

out.append(in.charAt (i));

System.out.println(out);

combine(i + 1);

out.setLength(out.length() - 1);

}

out.append(in.charAt(in.length() - 1));
System.out.println(out);

out.setLength(out.length() - 1);

}
The if statement is eliminated by removing the final iteration from the loop and moving the code
it would have executed during that iteration outside the loop. The general case of this optimization
is referred to as loop partitioning, and if statements that can be removed by loop partitioning are
called loop index dependent conditionals. Again, this optimization doesn’t make much difference
here, but it can be important inside nested loops.

www.it-ebooks.info

http://www.it-ebooks.info/

Recursion Problems | 119

Telephone Words

PROBLEM People in the United States often give others their telephone num-
ber as a word representing the seven-digit number after the area code. For
example, if my telephone number were 866-26635, I could tell people my number
is “TOOCOOL,” instead of the hard-to-remember seven-digit number. Note
that many other possibilities (most of which are nonsensical) can represent 866-
2665. You can see how letters correspond to numbers on a telephone keypad in

Figure 7-2.
ABC DEF
1 2 3
GHI JKL MNO
4 5 6
PRS TUV WXY
7 8 9
* 0] #
FIGURE 7-2

Write a function that takes a seven-digit telephone number and prints out all of
the possible “words™ or combinations of letters that can represent the given num-
ber. Because the 0 and 1 keys have no letters on them, you should change only
the digits 2-9 to letters. You'll be passed an array of seven integers, with each ele-
ment being one digit in the number. You may assume that only valid phone num-
bers will be passed to your function. You can use the helper function

char getCharKey(int telephoneKey, int place)

which takes a telephone key (0-9) and a place of either 1, 2, 3 and returns the
character corresponding to the letter in that position on the specified key. For
example, GetCharKey (3,2) will return ‘E’ because the telephone key 3 has the
letters “DEF” on it and ‘E’ is the second letter.

It’s worthwhile to define some terms for this problem. A telephone number consists of digits. Three
letters correspond to each digit. (Except for 0 and 1, but when 0 and 1 are used in the context of
creating a word, you can call them letters.) The lowest letter, middle letter, and highest letter will be
called the digit’s low value, middle value, and high value, respectively. You will be creating words,
or strings of letters, to represent the given number.

www.it-ebooks.info

http://www.it-ebooks.info/

120 | CHAPTER7 RECURSION

First, impress the interviewer with your math skills by determining how many words can correspond
to a seven-digit number. This requires combinatorial mathematics, but if you don’t remember this
type of math, don’t panic. First, try a one-digit phone number. Clearly, this would have three words.
Now, try a two-digit phone number — say, 56. There are three possibilities for the first letter, and for
each of these there are three possibilities for the second letter. This yields a total of nine words that
can correspond to this number. It appears that each additional digit increases the number of words by
a factor of 3. Thus, for 7 digits, you have 37 words, and for a phone number of length 7, you have 3"
words. Because 0 and 1 have no corresponding letters, a phone number with Os or 1s in it would have
fewer words, but 37 is the upper bound on the number of words for a seven-digit number.

Now you need to figure out an algorithm for printing these words. Try writing out some words rep-
resenting one of the author’s old college phone numbers, 497-1927, as an example. The most natural
manner in which to list the words is alphabetical order. This way, you always know which word
comes next, and you are less likely to miss words. You know that there are on the order of 3’words
that can represent this number, so you won’t have time to write them all out. Try writing just the
beginning and the end of the alphabetical sequence. You will probably want to start with the word
that uses the low letter for each digit of the phone number. This guarantees that your first word is
the first word in alphabetical order. Thus, the first word for 497-1927 starts with G for 4 because

4 has “GHI” on it, W for 9, which has “WXY” on it, P for 7, which has “PRS” on it, and so on,
resulting in “GWPTWAP”.

As you continue to write down words, you ultimately create a list that looks like the following:

GWPIWAP
GWP1TWAR
GWPI1WAS
GWP1WBP

GWP1WBR

IYSTYCR

IYS1YCS

It was easy to create this list because the algorithm for generating the words is relatively intuitive.
Formalizing this algorithm is more challenging. A good place to start is by examining the process of
going from one word to the next word in alphabetical order.

Because you know the first word in alphabetical order, determining how to get to the next word

at any point gives you an algorithm for writing all the words. One important part of the process

of going from one word to the next seems to be that the last letter always changes. It continually
cycles through a pattern of P-R-S. Whenever the last letter goes from S back to P, it causes the next-
to-last letter to change. Try investigating this a little more to see if you can come up with specific
rules. Again, it’s probably best to try an example. You may have to write down more words than

www.it-ebooks.info

http://www.it-ebooks.info/

Recursion Problems | 121

in the example list to see a pattern. (A three-digit phone number should be sufficient, or the previ-
ous list will work if it’s expanded a bit.) It looks as if the following is always true: Whenever a letter
changes, its right neighbor goes through all of its values before the original letter changes again.
Conversely, whenever a letter resets to its low value, its left neighbor increases to the next value.

From these observations, there are probably two reasonable paths to follow as you search for the
solution to this problem. You can start with the first letter and have a letter affect its right neigh-
bor, or you can start with the last letter and have a letter affect its left neighbor. Both of these
approaches seem reasonable. For now, try the former and see where that gets you.

You should examine exactly what you’re trying to do at this point. You’re working with the observa-
tion that whenever a letter changes, it causes its right neighbor to cycle through all its values before
it changes again. You’re using this observation to determine how to get from one word to the next
word in alphabetical order. It may help to formalize this observation: Changing the letter in position
i causes the letter in position i + 1 to cycle through its values. When you can write an algorithm in
terms of how elements 7 and i + 1 interact with each other, it often indicates recursion, so try to fig-
ure out a recursive algorithm.

You have already discovered most of the algorithm. You know how each letter affects the next; you
just need to figure out how to start the process and determine the base case. Looking again at the
list to try to figure out the start condition, you’ll see that the first letter cycles only once. Therefore,
if you start by cycling the first letter, this causes multiple cycles of the second letter, which causes
multiple cycles of the third letter — exactly as desired. After you change the last letter, you can’t
cycle anything else, so this is a good base case to end the recursion. When the base case occurs, you
should also print out the word because you’ve just generated the next word in alphabetical order.
The one special case you have to be aware of occurs when there is a 0 or 1 in the given telephone
number. You don’t want to print out any word three times, so you should check for this case and
cycle immediately if you encounter it.

In list form, the steps look like this:

If the current digit is past the last digit
Print the word because you're at the end
Else
For each of the three digits that can represent the current digit
Have the letter represent the current digit
Move to next digit and recurse
If the current digit is a 0 or a 1, return

A Java implementation is:

public class TelephoneNumber {
private static final int PHONE_NUMBER_LENGTH = 7;
private final int [] phoneNum;
private char[] result = new char[PHONE_NUMBER_LENGTH];
public TelephoneNumber (int[] n) { phoneNum = n; }

public void printWords () { printWords(0); }

www.it-ebooks.info

http://www.it-ebooks.info/

122 | CHAPTER7 RECURSION

private void printWords (int curDigit) {
if(curDigit == PHONE_NUMBER_LENGTH) {
System.out.println(new String(result));

return;
}
for(int 1 = 1; 1 <= 3; ++1) {
result[curDigit] = getCharKey(phoneNum[curDigit], 1);
printWords (curDigit + 1);
if (phoneNum[curDigit] == 0 ||
phoneNum[curDigit] == 1) return;

}

What is the running time of this algorithm? Ignoring the operations involved in printing the string,
the focus of the function is changing letters. Changing a single letter is a constant time operation.
The first letter changes 3 times, the second letter changes 3 times each time the first letter changes
for a total of 9 times, and so on for the other digits. For a telephone number of length n, the total
number of operations is 3 + 3% + 3% + ... + 3""! + 3", Retaining only the highest order term, the run-
ning time is O(3").

PROBLEM Reimplement PrintTelephoneWords without using recursion.

The recursive algorithm doesn’t seem to be helpful in this situation. Recursion was inherent in the
way that you wrote out the steps of the algorithm. You could always try emulating recursion using

a stack-based data structure, but there may be a better way involving a different algorithm. In the
recursive solution, you solved the problem from left to right. You also made an observation that sug-
gested the existence of another algorithm going from right to left: Whenever a letter changes from
its high value to its low value, its left neighbor is incremented. Explore this observation to see if you
can find a nonrecursive solution to the problem.

Again, you’re trying to figure out how to determine the next word in alphabetical order. Because
you’re working from right to left, you should look for something that always happens on the right
side of a word as it changes to the next word in alphabetical order. Looking back at the original
observations, you noticed that the last letter always changes. This seems to indicate that a good way
to start is to increment the last letter. If the last letter is at its high value and you increment it, you
reset the last letter to its low value and increment the second-to-last letter. Suppose, however, that
the second-to-last number is already at its high value. Try looking at the list to figure out what you
need to do. From the list, it appears that you reset the second-to-last number to its low value and
increment the third-to-last number. You continue carrying your increment like this until you don’t
have to reset a letter to its low value.

This sounds like the algorithm you want, but you still have to work out how to start it and how

to know when you’re finished. You can start by manually creating the first string as you did when
writing out the list. Now you need to determine how to end. Look at the last string and figure out
what happens if you try to increment it. Every letter resets to its low value. You could check whether
every letter is at its low value, but this seems inefficient. The first letter resets only once, when you’ve
printed out all the words. You can use this to signal that you’re done printing out all the words.

www.it-ebooks.info

http://www.it-ebooks.info/

Recursion Problems | 123

Again, you have to consider the cases where there is a 0 or a 1. Because 0 and 1 effectively can’t be
incremented (they always stay as 0 and 1), you should always treat a 0 or a 1 as if it were at its high-
est letter value and increment its left neighbor. In outline form, the steps are as follows:

Create the first word character by character

Loop infinitely:
Print out the word
Increment the last letter and carry the change
If the first letter has reset, you're done

Here is a Java implementation of this iterative algorithm:

public class TelephoneNumber {
private static final int PHONE_NUMBER_LENGTH = 7;
private final int [] phoneNum;
private char[] result = new char[PHONE_NUMBER_LENGTH];

public TelephoneNumber (int[] n) { phoneNum = n; }

public void printWords () {
// Initialize result with first telephone word
for(int 1 = 0; i < PHONE_NUMBER_LENGTH; ++1i)
result[i] = getCharKey(phoneNum[i], 1);

for(; ;) { // Infinite loop
for(int i = 0; i < PHONE_NUMBER_LENGTH; ++i) {
System.out.print(result[i]);
}
System.out.print('\n');

/* Start at the end and try to increment from right

* to left.
*/
for(int i1 = PHONE_NUMBER_LENGTH - 1; i >= -1; --1) {
if(i == -1) // if attempted to carry past leftmost digit,
return; // we're done, so return

/* Start with high value, carry case so 0 and 1
* gspecial cases are dealt with right away

*/

if (getCharKey(phoneNum[i], 3) == result[i] ||
phoneNum[i] == || phoneNum[i] == 1){
result[i] = getCharKey(phoneNum[i], 1);
// No break, so loop continues to next digit

} else if (getCharKey(phoneNum[i], 1) == result[i]) {
result[i] = getCharKey(phoneNum[i], 2);
break;

} else if (getCharKey(phoneNum[i], 2) == result[i]) {

result[i] = getCharKey(phoneNum[i], 3);
break;

www.it-ebooks.info

http://www.it-ebooks.info/

124 | CHAPTER7 RECURSION

You can cut down on the calls to getCharkey by caching each letter’s three values in variables,
rather than making repeated calls to see whether a value is low, middle, or high. This would make
the code a little more complicated and may not make any difference after the code is optimized by
the JIT compiler.

What’s the running time on this algorithm?

Again, changing a single letter is a constant time operation. The total number of letter changes is the
same for this algorithm as for the previous, so the running time remains O(3").

SUMMARY

Recursion occurs whenever a function calls itself, directly or indirectly. One or more base cases are
needed to end the recursion; otherwise, the algorithm recurses until it overflows the stack.

Algorithms that are intrinsically recursive should be implemented recursively. Some apparently recur-
sive algorithms can also be implemented iteratively; these iterative implementations are generally more
efficient than their recursive counterparts.

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting

Sorting algorithms are useful for two reasons. The first is to order data for presentation to the
user, such as sorting a list of employees alphabetically by first or last name. The second is to
simplify and optimize other algorithms, either by sorting the input data prior to applying an
algorithm or by sorting the intermediate data an algorithm uses as it runs.

You rarely need to code a sorting algorithm. Most languages include at least one sorting algo-
rithm (typically quicksort) in their standard libraries. These built-in algorithms are suitable for
general use. In situations in which a general-purpose sorting algorithm doesn’t meet your needs,
implementations of specialized sorting algorithms can usually be adapted with minimal effort.

Although you’re unlikely to implement sorting algorithms, you must understand the differences
and trade-offs between them. Each algorithm has benefits and drawbacks, and there’s no single
best way to sort in all cases. Interviewers like sorting problems because they provide a simple
way to address a wide range of issues from algorithmic complexity to memory usage.

SORTING ALGORITHMS

Choosing the right sorting algorithm can have a huge impact on application performance. What’s
right for one application isn’t necessarily right for a different application. Here are some criteria
to consider when selecting a sorting algorithm:

> How much data is to be sorted? For small data sets it doesn’t matter which algorithm
you choose because there is little difference in the execution times, but for large data
sets, the worst-case bounds become radically different. Beware of data sets that are
typically small but may occasionally be much larger — you need to select an algorithm
that performs acceptably on the largest data sets your code may encounter.

> Does the data fit in memory? Most sorting algorithms are efficient only when the data
they operate on resides in memory. If the data set is too large for memory, you may
need to split it into smaller chunks for sorting and then combine those sorted chunks
to create the final sorted data set.

www.it-ebooks.info

http://www.it-ebooks.info/

126

| CHAPTER8 SORTING

> Is the data already mostly sorted? Adding new data to a sorted list can be done efficiently
with certain algorithms, but those same algorithms have poor performance on randomly
ordered data.

> How much additional memory does the algorithm require? An in-place sorting algorithm sorts
the data without using any additional memory, such as by swapping elements in an array. When
memory is at a premium, an in-place algorithm may be a better choice than one with otherwise
superior efficiency.

> Is relative order preserved? A stable sorting algorithm preserves the relative order of data
elements that are otherwise identical for sorting purposes. (In other words, if elements A
and B have identical key values and A precedes B in the original data set, A will still precede
B after a stable sorting.) Stability is generally a desirable feature, but in many cases it may
be worth sacrificing stability for improved performance.

In an interview situation, it’s not unusual for the interviewer to vary the criteria as the interview
progresses to see how well you understand the differences between sorting algorithms.

For simplicity, the sorting problems used in interviews often deal with simple integer values stored
in arrays. In the real world, sorting usually involves more complex data structures with only one

or a few of the values in those data structures affecting the sorting order. The value (or values) that
determine the sorting order is referred to as the key. Most sorting algorithms in standard libraries
are comparison algorithms, which require only that there is a way to determine whether one key is
less than, equal to, or greater than another key. No comparison algorithm can have a more optimal
worst-case running time than O(n log(n)).

Selection Sort

Selection sort is one of the simplest sorting algorithms. It starts with the first element in the array
(or list) and scans through the array to find the element with the smallest key, which it swaps with
the first element. The process is then repeated with each subsequent element until the last element is
reached.

The description of this algorithm suggests a recursive approach, as shown here with the
selectionSortRecursive method:

// Sort an array using a recursive selection sort.
public void selectionSortRecursive(int[] data) {
selectionSortRecursive(data, 0);

}

// Sort a subset of the array starting at the given index.
private void selectionSortRecursive(int[] data, int start) {
if(start < data.length - 1){
swap (data, start, findMinimumIndex(data, start));
selectionSortRecursive(data, start + 1);

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting Algorithms | 127

This implementation depends on the two helper routines £indMinimumIndex and swap:

// Find the position of the minimum value starting at the given index.
private int findMinimumIndex(int[] data, int start) {
int minPos = start;

for(int i = start + 1; i1 < data.length; ++i){
if(datal[i] < data[minPos]) {
minPos = 1i;

}

return minPos;

}

// Swap two elements in an array.
private void swap(int[] data, int indexl, int index2) {
1f(indexl !'= index2){
int tmp = data[indexl];
datal[indexl] = datalindex2];
datal[index2] = tmp;

}

This implementation could be optimized by transforming this tail-recursive procedure into an itera-
tive implementation and inlining the two helper functions.

How efficient is selection sort? The first swap requires 7 — 1 comparisons, the second 7 — 2, the
third 7 — 3, and so on. This is the series (7 — 1) + (7 = 2) + ... + 1, which simplifies to 7(n — 1)/2. This
means that the algorithm is O(n?) in the best, average, and worst cases — the initial order of the
data has no effect on the number of comparisons. As you’ll see later in this chapter, other sorting
algorithms have more efficient running times than this.

Selection sort does have the advantage that it requires at most 7 — 1 swaps. In situations in which
moving data elements is more expensive than comparing them, selection sort may perform better
than other algorithms. The efficiency of an algorithm depends on what you’re optimizing for.

Selection sort is an in-place algorithm. Typical implementations of selection sort, such as the one
shown here, are not stable.

Insertion Sort

Insertion sort is another simple sorting algorithm. It builds a sorted array (or list) one element at a
time by comparing each new element to the already-sorted elements and inserting the new element
into the correct location, similar to the way you sort a hand of playing cards.

A simple implementation of insertion sort is as follows:

// Sort an array using a simple insertion sort.
public void insertionSort(int[] data){
for(int which = 1; which < data.length; ++which) {

www.it-ebooks.info

http://www.it-ebooks.info/

128 | CHAPTER8 SORTING

int val = datal[which];

for(int 1 = 0; i < which; ++i){
if(datali] > val){
System.arraycopy(data, i, data, i+1l, which - i);
data[i] = val;
break;

}

Unlike selection sort, the best-case running time for insertion sort is O(n), which occurs when the list is
already sorted. This means insertion sort is an efficient way to add new elements to a presorted list. The
average and worst cases are both O(n?), however, so it’s not the best algorithm to use for large amounts
of randomly ordered data.

Insertion sort is a stable, in-place sorting algorithm especially suitable for sorting small data sets and
is often used as a building block for other, more complicated sorting algorithms.

Quicksort

Quicksort is a divide-and-conquer algorithm that involves choosing a pivot value from a data set and
splitting the set into two subsets: a set that contains all values less than the pivot and a set that con-
tains all values greater than or equal to the pivot. The pivot/split process is recursively applied to each
subset until there are no more subsets to split. The results are combined to form the final sorted set.

A naive implementation of this algorithm looks like:

// Sort an array using a simple but inefficient quicksort.
public int[] quicksortSimple(int[] data){

if(data.length < 2){
return data;

}

int pivotIndex data.length / 2;
int pivotValue = data[pivotIndex];

int leftCount = 0;
// Count how many are less than the pivot
for(int 1 = 0; i < data.length; ++1i){

if(datal 1] < pivotValue) ++leftCount;
// Allocate the arrays and create the subsets

int[] left = new int[leftCount];
int[] right = new int[data.length - leftCount - 1];

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting Algorithms | 129

int 1
int r

0;
0;

for(int i = 0; i < data.length; ++1i){
if(i == pivotIndex) continue;

int val = datal[i];

if(val < pivotvValue){

left[1++] = val;
} else {
right[r++] = val;

}

// Sort the subsets

left = quicksortSimple(left);
right = quicksortSimple(right);

// Combine the sorted arrays and the pivot back into the original array

System.arraycopy(left, 0, data, 0, left.length);
data[left.length] = pivotValue;
System.arraycopy(right, 0, data, left.length + 1, right.length);

return data;

}

The preceding code illustrates the principles of quicksort, but it’s not a particularly efficient imple-
mentation due to scanning the starting array twice, allocating new arrays, and copying results from
the new arrays to the original.

Quicksort’s performance is dependent on the choice of pivot value. The ideal pivot value is one that
splits the original data set into two subsets of identical (or nearly identical) size. Every time you do a
pivot-and-split, you perform constant-time operations on each of the elements involved. How many
times do you do this for each element? In the best case, the size of a sublist is halved on each succes-
sive recursive call, and the recursion terminates when the sublist size is 1. This means the number of
times you operate on an element is equal to the number of times you can divide # by 2 before reach-
ing one: log(n). Performing log(n) operations on each of # elements yields a combined best case com-
plexity of O(n log(n)).

On the other hand, what if your pivot choice is poor? In the worst case, the pivot is the minimum
value in the data set, which means that one subset is empty and the other subset contains 7 — 1 items
(all the items except for the pivot). The number of recursive calls is then O(n) (analogous to a com-
pletely unbalanced tree degrading to a linked list), which gives a combined worst-case complexity of
O(n?). This is the same as selection sort or insertion sort.

On average almost any pivot value will split a data set into two non-empty subsets, making the
number of recursive calls fall somewhere between O(log(n)) and O(n). A bit of mathematical work
(omitted here) is enough to show that in most cases the number of times you operate on an element
is still O(log(n)), so the average case complexity of quicksort is also O(n log(n)).

www.it-ebooks.info

http://www.it-ebooks.info/

130 | CHAPTER8 SORTING

For truly randomly ordered data, the value of the pivot is unrelated to its location, so you can choose a
pivot from any location because they’re all equally likely to be good choices. But if the data is already
sorted (or mostly sorted), choosing the value located in the middle of the data set ensures that each
subset contains approximately half the data, which gives guaranteed O(n log(n)) complexity for sorted
data. Because the value in the middle location is the best choice for ordered data and no worse than
any other for unordered data, most quicksort implementations use it as the pivot.

Like the preceding implementation, most implementations of quicksort are not stable.

Merge Sort

Merge sort is another divide-and-conquer algorithm that works by splitting a data set into two or
more subsets, sorting the subsets, and then merging them together into the final sorted set.

The algorithm can be implemented recursively as follows:

// Sort an array using a simple but inefficient merge sort.
public int[] mergeSortSimple(int[] data) {

if(data.length < 2){
return data;

}
// Split the array into two subarrays of approx equal size.

int mid = data.length / 2;
int[] left = new int[mid 1;
int[] right = new int[data.length - mid];

System.arraycopy(data, 0, left, 0, left.length);
System.arraycopy(data, mid, right, 0, right.length);

// Sort each subarray, then merge the result.

mergeSortSimple(left);
mergeSortSimple(right);

return merge(data, left, right);
}

// Merge two smaller arrays into a larger array.

private int[] merge(int[] dest, int[] left, int[] right){
int dind = 0;
int 1ind = 0;
int rind = 0;

// Merge arrays while there are elements in both
while (lind < left.length && rind < right.length) {

if (left[1ind] <= right[rind]){
dest[dind++] = left[lind++];
} else {

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting Problems | 131

dest[dind++] = right[rind++];
}

// Copy rest of whichever array remains
while (lind < left.length)
dest[dind++] = left[lind++];

while (rind < right.length)
dest[dind++] = right[rind++];

return dest;

}

Most of the work is done in the merge method, which combines two sorted arrays into a larger
sorted array.

A hybrid merge sort occurs when a different sorting algorithm is used to sort subsets below a spec-
ified minimum size. For example, you can transform the mergesSortSimple method into a hybrid
algorithm by replacing the termination condition:

if (data.length < 2){

return data;

}
with an insertion sort:

if(data.length < 10){ // some small empirically determined value
insertionSort(data);
return data;

}

This is a common optimization because insertion sort has lower overhead than merge sort and typi-
cally has better performance on very small data sets.

Unlike most other sorting algorithms, merge sort is a good choice for data sets that are too large to
fit into memory. In a typical scenario, the contents of a large file are split into multiple smaller files.
Each of the smaller files is read into memory, sorted using an appropriate algorithm, and written
back out. A merge operation is then performed using the sorted files as input and the sorted data is
written directly to the final output file.

The best, average, and worst-case running times for merge sort are all O(n log(n)), which is great
when you need a guaranteed upper bound on the sorting time. However, merge sort requires O(n)
additional memory — substantially more than many other algorithms.

Typical (maximally efficient) merge sort implementations are stable but not in-place.

SORTING PROBLEMS

Sorting problems often involve selecting the most appropriate algorithm for a particular situation,
or modifying a standard sorting algorithm to give it a new property.

www.it-ebooks.info

http://www.it-ebooks.info/

132

CHAPTER 8 SORTING

The Best Sorting Algorithm

PROBLEM What’s the best algorithm to use for sorting?

This is a bit of a trick question. The key is 7ot to just respond with “quicksort” (or any other spe-
cific sorting algorithm). If you do, your interviewer will likely describe a scenario in which the algo-
rithm you just named is particularly poorly suited and then ask you if you still think that algorithm
is the best choice. Don’t get drawn into that trap!

Each sorting algorithm has its strengths and weaknesses, so you need to fully understand the con-
text before you can select the best algorithm for a particular situation. Start by asking the inter-
viewer some questions about the data you are sorting, the requirements for the sort, and the system
that will perform the sort. Specifically, you might ask some of these questions:

> What do we know about the data? Is the data already sorted or mostly sorted? How large
are the data sets likely to be? Can there be duplicate key values?

> What are the requirements for the sort? Do you want to optimize for best-case, worst-case,
or average-case performance? Does the sort need to be stable?

> What do we know about the system? Is the largest data set to be sorted smaller than, the
same size as, or larger than available memory?

Sometimes, just asking these questions is enough to illustrate your knowledge of sorting algorithms.
(One of the authors started this problem in an interview by asking the question “What can you tell
me about the data?” The interviewer responded “Yes, that’s the right answer,” and moved on to a
different problem.) More commonly, the interviewer will answer your questions and describe a sce-
nario that points toward one algorithm as a better choice than the others.

PROBLEM A master directory server receives a list of accounts, ordered by

user 1D, from each of several departmental directory servers. What’s the best
approach for this server to create a master list combining all the accounts ordered
by user ID?

The naive approach to this is to concatenate all the sublists and apply a general-purpose sorting
algorithm such as quicksort to the combined list, yielding O(log(n)) running time (where 7 is the
combined size of all the departmental lists).

What do you know about the data that might help you find a more efficient solution? In this case, you
know that the sublists are sorted. Can you use this to your advantage? You have several sorted sublists
and you need to combine them. This sounds very much like part of a merge sort. In fact, the situation
here is like the final stage of a merge sort, after the recursive calls have already sorted the sublists. All
that’s left to do is merge the lists. This is only O(n), so it will outperform the naive approach. What are
the limitations of this strategy? The linear running time is great, but it also requires O(n) auxiliary tem-
porary space (in addition to the space required for storing the records in memory) while performing the
merge. If that space is available, then this is an excellent solution.

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting Problems | 133

How would you respond if the interviewer told you that memory on the server is tight and it’s not
acceptable to use O(n) auxiliary space during the sort? In-place sorting algorithms have minimal
requirements for auxiliary storage. If you assume you can get the sublists concatenated without using
O(n) auxiliary storage (for example, you might receive them into one large buffer to begin with) then
one option is to revert to the naive method and use an in-place sorting algorithm such as in-place
quicksort; you’ll sacrifice some performance, but O(n log(n)) is not that much worse than O(n).

Before you settle on this solution, consider why the merge approach requires additional space. You
have each of the sublists in memory, requiring 7 records of storage. Then you need to allocate a tem-
porary buffer of size n to store the merged result. There doesn’t seem to be any way around the output
buffer requirement, but do you actually need to have each of the sublists in memory? The sublists are
already sorted, so at each point in the merge you just need the next item from each sublist. Obviously
you still need storage for all # account records, but if you merge the sublists as you receive them, you
no longer have a requirement for an additional size # buffer. (You probably need a small constant-size
buffer for each of the servers sending information, so if there are 7 departmental servers, additional
memory required is O(m); presumably 72 is much smaller than 7.) This is an example of an online
algorithm: an algorithm that processes data as it becomes available, rather than requiring all data to
be available before starting processing.

The online approach has limitations, too. It requires the merge to be integrated with the commu-
nications with the departmental servers, increasing complexity and decreasing modularity. Also,
if one of the departmental servers has problems during the process and stops sending data, it stalls
the entire operation. Everything has trade-offs, but in an appropriately controlled environment, this
could be the best option.

PROBLEM A system that monitors a manufacturing plant maintains a list of
serial numbers of every item that has ever failed quality control. During the day,
while the plant is operating, new serial numbers are added to the end of the list.
Each night, a batch process runs to resort the list. What’s the best sorting algo-
rithm for this?

Each night, only the newly added serial numbers can be out of order because the rest were sorted the
previous night. Even the newly added serial numbers are likely partially sorted because serial num-
bers are usually assigned in order, and the items are likely tested roughly in order. After the plant
has been running for more than a few weeks, the number of items added to the list each day will
probably be much smaller than the total size of the list.

To summarize, you have a few unsorted items to add to a large sorted list. This sounds like a job
for insertion sort! The situation described is close to that for which insertion sort has its best-case
O(n) performance. But stop to consider the other properties of insertion sort to see if there are any
problems with this choice. Insertion sort is stable and in-place, so no problems there. Worst and aver-
age case performance are O(n?) — that could be a problem. In this scenario the number of unsorted
items is usually small, in which case you can expect nearly O(n) performance, but if the factory has

a bad day and a large number of items fail, you may see closer to O(#?). Ask the interviewer if an
occasional sort that runs long can be tolerated in this environment: If so, then insertion sort is your
answer; if not, you need to keep looking.

www.it-ebooks.info

http://www.it-ebooks.info/

134 | CHAPTER8 SORTING

Suppose that worst-case O(#?) is not acceptable. What other options do you have? Instead of look-
ing at your data as a sorted list and some unsorted items to insert, try thinking of it as two lists:

a large sorted list and a (usually) small, possibly partially sorted list. Sorted lists can be efficiently
merged, so you just need to sort the small (new serials numbers) list and then merge the two of
them. Because you’ll do at least some merging, you might choose to sort the small list with a merge
sort. What’s the worst-case efficiency of this approach? If the length of the old, sorted list is [and
the new, unsorted list is 72, then the sort of the new list is O(m log(mm)) and the merge is O(l + m).
Combined, this is O(l + m log(m)). This approach does have the drawback that O(I +) additional
memory is needed for the merge. There’s no free lunch.

PROBLEM You need to sort a variety of different kinds of data about which little
is known in advance. Data sets will be small enough to fit in memory, but their
size may vary widely. What sorting algorithm would you choose?

If you immediately jumped to something like quicksort for the first problem in this series, the current
problem is probably what you had in mind. This general case of sorting in which you don’t know
much about what you’re sorting is common, so you must be able to solve it efficiently. Just make sure
that your problem is actually a general-purpose sorting problem and you’re not missing an opportu-
nity to select a more appropriate special-purpose sorting algorithm.

Optimizing sorting performance across a wide range of potential inputs is the problem faced by pro-
grammers who write frameworks and standard libraries, so typically these sort routines are appropri-
ate choices, such as Arrays.sort () in Java. These routines typically employ merge sort (if stability is
important) or quicksort (if it isn’t) for most datasets, often switching to insertion sort for very small
datasets (typically # less than approximately 10).

For all these problems involving selecting a sorting algorithm, the interviewer’s objective is not actually

for you to arrive at any particular solution. Instead, the interviewer wants to see that you recognize that
there’s no single sorting algorithm that’s optimal in all situations, that you have some knowledge of

what sorting algorithms are available, and that you can apply this knowledge to select appropriate algo-
rithms and intelligently discuss the running time and memory trade-offs between different options.

Stable Selection Sort

PROBLEM [mplement a stable version of the selection sort algorithm.

This problem requires that you know what a selection sort is. If you don’t remember, ask the inter-
viewer. Briefly, a selection sort works by repeatedly scanning the not-yet-sorted values to find the
lowest key, and then swapping the lowest key into sorted position at the end of the already-sorted
values, as described in more detail earlier in this chapter. A typical implementation is:

// Sort an array using an iterative selection sort.
public void selectionSort(int[] data){
for(int start = 0; start < data.length - 1; ++start){

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting Problems | 135

swap (data, start, findMinimumIndex(data, start));

}

You’re asked to make this sort stable. Recall the definition of a stable sort: It is a sort that preserves
the input ordering of elements with equal keys. If 2, and a, are two elements with equal keys, and a,
comes before a, in the original data set, a, will always be ahead of a, after a stable sort.

You may remember that the standard implementation of a selection sort is not stable; even if you don’t,
the wording of the problem strongly implies it. It’s easier to create a stable version of the sort if you
understand exactly why the preceding implementation is unstable. Try working through a simple exam-
ple that produces an unstable result: [5, 3, 5,, 2]. After the first iteration of the sort, this becomes
[2,3,5,, 5,] —already the original ordering of the two equal keys has been lost. It seems that the
sort is unstable because of the swapping of keys: When an unsorted key is swapped into the location
that the key being sorted came from, information about the position of that unsorted key relative to
the other unsorted keys is lost. The net effect of the swapping is that the unsorted keys are shuffled
as the sort progresses. If you can eliminate the swapping, you might make the sort stable.

The standard unstable selection sort swaps keys because it’s the easiest, most efficient way to cre-
ate space for the key being sorted. How might you create space for this key without swapping? If
you insert the key being sorted, then the ordering of the unsorted keys remains unchanged. You’ll
also need to delete this key from its original location. Remember that you can’t arbitrarily insert or
delete elements from an array — you must move the adjacent elements to open or close the space. In
this case, you can accomplish the deletion and insertion as part of the same process by moving all
the keys between the original location of the key being sorted and its destination one element to the
right.

For simplicity, you can continue to implement the algorithm to sort an array of int, understanding (and
telling your interviewer) that if you were actually just sorting ints, you couldn’t distinguish between
the results of a stable and an unstable sort. Stable and unstable sorts produce different results only
when the key is part of a larger record or object, so objects with the same key value are not necessarily
identical. An implementation of stable selection sort for an array of int might look like:

// Sort an array using a stable selection sort.
public void selectionSortStable(int[] data){
for(int start = 0; start < data.length - 1; ++start){
insert(data, start, findMinimumIndex(data, start));

}

// Insert the data into the array, shifting the array as necessary.
private void insert(int[] data, int start, int minIndex) {
if (minIndex > start){
int tmp = data[minIndex];
System.arraycopy(data, start, data, start +1 , minIndex - start);
datal[start] = tmp;

}

This stable version of selection sort replaces a fast O(1) swap operation with a much slower O ()
array insertion/deletion operation implemented by the System.arraycopy call. You were already
performing an O(n) operation (findMinimumIndex) for each key, so adding another O(n) operation

www.it-ebooks.info

http://www.it-ebooks.info/

136 | CHAPTERS8 SORTING

doesn’t change the overall runtime complexity — it’s still O(n?) — but because you’ve replaced a fast
operation with a much slower one, the actual performance will be worse.

Is there any situation in which it makes sense to use this kind of implementation of stable selection
sort? There are other stable sort algorithms that are more efficient than O(#?). One advantage that
the original unstable selection sort had over many other sort algorithms is that the total number of
moves (swaps) is O(n). In the preceding stable implementation, the array insertion/deletion makes
O(n) moves, and this happens once for each of the # keys to be sorted: The total number of moves
for this stable selection sort is O(?). This implementation gains stability at the price of sacrificing
the only significant benefit of selection sort, so it’s difficult to imagine a scenario in which it would
be useful. How might you maintain O(n) total key moves?

The current implementation executes O(72) moves because it uses an array, where insertion and dele-
tion are inefficient operations requiring moving O(n) elements. If you used a different data structure
where insertion and deletion affect only O(1) elements, then you would regain O(n) total moves. A
linked list meets these requirements. The following is an implementation of a stable selection sort
using a linked list with O(n) total moves. This implementation also operates on any object imple-
menting Comparable rather than being limited to int:

public void selectionSortStable(CursorableLinkedList data) {
CursorablelLinkedList.Cursor sortedBoundary = data.cursor(0);
while(sortedBoundary.hasNext ()){
sortedBoundary.add (
getMinimum(data, sortedBoundary.nextIndex()));

}

// remove and return the first minimum-value element from data

// with position greater than start

private Comparable getMinimum(CursorablelLinkedList data, int start){
CursorableLinkedList.Cursor unsorted = data.cursor(start);
CursorablelLinkedList.Cursor minPos = data.cursor (start+1l);

Comparable minValue = (Comparable) minPos.previous();
while(unsorted.hasNext ()){
if(((Comparable)unsorted.next()).compareTo(minValue) < 0){

// advance minPos to new minimum value location
while(minPos.nextIndex() < unsorted.nextIndex())
minValue = (Comparable) minPos.next();
}
}
minPos.remove () ;
minPos.close();
unsorted.close() ;
return minvValue;

}

This implementation uses the Apache Commons Collections CursorableLinkedList class rather
than LinkedList from the Java Collections Framework because curorablelLinkedList can maintain
the validity of an iterator (cursor) even as the list is modified through other iterators. This capability
enables a more efficient implementation of the sort. The implementation could be further optimized if
you implemented a custom linked list class that supported copying iterators and moving (rather than
just deleting and inserting) elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting Problems | 137

Multi-Key Sort

PROBLEM You have an array of objects, each of which represents an employee:

public class Employee {
public String extension;
public String givenname;
public String surname;

}

Using a standard library sorting routine, sort the array so it is ordered alphabeti-
cally by surname and then by given name as in a company phone book.

To sort the data using a routine from the standard library, you need a comparator: a function that com-
pares two objects. A comparator returns a negative value if the first object is “less than” the second object;
zero if the two objects have equal keys; or a positive value if the first object is “greater than” the second.

For this problem, there are two components of the key: The surname and the given name, so the
comparator needs to use both of these values. You must order first by surname and then by given
name, so the comparator should start by comparing the surnames and then resolve ties by compar-
ing the given names.

In Java, comparators implement the java.util.Comparator interface:

import java.util.Comparator;

// A comparator for Employee instances.
public class EmployeeNameComparator implements Comparator<Employee> {

public int compare(Employee el, Employee e2){
// Compare surnames
int ret = el.surname.compareToIgnoreCase(e2.surname) ;

if(ret == 0){ //Compare givennames if surnames are the same
ret = el.givenname.compareToIgnoreCase(e2.givenname) ;
}

return ret;

}

Now it’s just a matter of invoking the Arrays.sort method with the array and the comparator:

public void sortEmployees(Employee[] employees) {
Arrays.sort(employees, new EmployeeNameComparator());
}

The approach shown here of using a comparator that considers both parts of the key in a single sort
is the most efficient approach, but there is another alternative. If the sort routine you use is stable
(the modified merge sort used by Arrays.sort is), you can achieve the same result by calling the sort
routine twice and sorting on one part of the key at a time. For this problem, you would first sort by
given name and then make a second call to sort by surname. During the second sort, by the definition
of a stable sort, employees with the same surname would retain their relative ordering based on given
name, established by the first sort.

www.it-ebooks.info

http://www.it-ebooks.info/

138

CHAPTER 8 SORTING

Make a Sort Stable

PROBLEM You are working on a platform that has a very fast, hardware-
accelerated sort routine. The routine, shakySort (), is not stable, but you need
to perform a fast, stable sort. Write code that uses shakySort () to perform a
stable sort.

Stability is all about preserving the relative order of elements with equal keys. When the data set
being sorted has keys that are equal, an unstable sort is not guaranteed to yield the same result as a
stable sort. But what if there are 70 equal keys? Stability is meaningless in this case, and all sorting
algorithms produce the same result. If you can transform the input data to ensure that there are no
equal keys in the data set, then it won’t matter that shakySort () isn’t stable.

One approach you might consider is to scan through the data, identify keys with equal values, and
then modify the values based on their positions in the input data set so that keys with earlier posi-
tions have lower values. Then when you do an unstable sort, the formerly equal keys retain their
original relative ordering. Think about how this might be implemented. If the keys have discrete
values, then you might have a situation in which there aren’t enough intermediate values available to
easily modify the keys. For instance, if you had the integer keys [5, 4, 6, 5] you must modify 4 or 6
in addition to at least one of the 5s. Furthermore the keys likely represent data that may be needed
for other purposes. This seems like an overly complicated and undesirable approach.

Because modifying the keys seems undesirable, you need another way to represent information about
their original order. What if you added another value and used that as part of the key? You could have
a field that represented the relative ordering of each otherwise identical key and compare these values
when the main part of the key has the same value. After processing this way, the previous example
becomes [5, 4, 6, 5,1, where subscripts represent the new field. This is a definite improvement, but it’s
still somewhat complex: You need to scan the data, using some additional data structure to track what
the next number in sequence is for each main key value.

Try to simplify this further. Is it necessary for each repeated key to be ordinally numbered (that is: 1,
2, 3...)? No; You just need earlier occurrences of the key to have lower sequence numbers than later

ones. Based on this observation, you can just assign the value for the sequence field based on the ele-
ment’s starting position: [5,, 4,, 6., 5,]. For repeated keys, this meets the requirement of establishing
the relative ordering; for nonrepeated keys you can ignore the sequence number.

With the sequence number as a secondary part of the key, each key is now unique, and the result of
an unstable sort using the new expanded key is the same as that of a stable sort on the original key.

Implementation is simpler if you have something concrete to sort: Add a sequence field to the Employee
class in the previous problem and sort objects of that class.

You must reinitialize the sequence fields before each sort:

public void sortEmployeesStable(Employee[] employees) {
for(int i = 0; i1 < employees.length; ++i){
employees[i] .sequence = 1;
}

shakySort (employees, new EmployeeSequenceComparator());

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting Problems | 139

You also must create a comparator that uses the sequence number as a tie breaker for otherwise
identical keys. For instance, to perform a stable sort by surname:

// A comparator for Employee instances.
public class EmployeeSequenceComparator implements Comparator<Employee> {

public int compare(Employee el, Employee e2) {
// Compare surname first.
int ret = el.surname.compareToIgnoreCase(e2.surname) ;

// Ensure stability
if(ret ==) {
ret = el.sequence - e2.sequence;

return ret;

}

What’s the complexity of making shakysort () stable? Assigning the sequence numbers takes O(1n)
time, but because no comparison sort can be more efficient than O(n log(n)), the asymptotic running
time is not increased (O(n + 7 log(n)) = O(n log(n))). There’s one sequence number for each element,
so this approach requires O(n) additional memory.

Optimized Quicksort

PROBLEM [mplement an efficient, in-place version of the quicksort algorithm.

Before you can start on any implementation, you must understand the quicksort algorithm. Briefly,

quicksort begins by selecting a pivot value from the elements to be sorted. The remaining elements

are then divided into two new lists: one list L containing all the values less than the pivot and another
list G containing all the values greater than or equal to the pivot. Then quicksort is recursively called

to sort L and G. After these calls return, L, the pivot, and G are concatenated (in that order) to yield

the sorted data set. If you didn’t remember at least that much about quicksort, you’d probably have to
ask the interviewer to help you get started.

The simplest implementations of quicksort (such as the one earlier in this chapter) allocate new lists
(or arrays) for L and G and copy results back from them after the recursive calls return, which is
inefficient and requires additional memory. For this problem, you’re asked to write an implementa-
tion that avoids this.

The memory allocations that you need to eliminate happen during the partitioning step: when the
values are rearranged into L and G. Considering the partitioning, there’s no change in the number
of elements, just their position, so it should be possible to store L, the pivot, and G all in the original
array. How might you do this?

You need to move elements to one end of the array or the other depending on the list to which they
belong. Assume that L is on the left side of the array and G is on the right side of the array. Initially
you don’t know what the sizes of L and G are, just that the sum of their sizes is equal to the array.
You know the pivot value, so you can determine whether an individual element belongs to L or G.

www.it-ebooks.info

http://www.it-ebooks.info/

140 | CHAPTER8 SORTING

If you scan through the elements left to right, each time you find a value greater than or equal to the
pivot, you need to move it to the right, into G. Because, again, you don’t know what the final size of
G will be, it makes sense to have G start at the end of the array and grow toward the left. You don’t
have any extra space available, so when you move an element to the right into G, you also must
move an element to the left to open space. The easiest way to do this is to swap the positions of the
element going into G with the element at its destination.

After you swap, the element moving to the left as part of the swap hasn’t been checked yet, so be
sure to check it before advancing. In addition to tracking your position as you scan through the
array, you also need to track the location of the leftmost element of G as it grows to the left, so
you know where to put elements when you swap them into G. When your scan position reaches the
leftmost element of G, all the elements greater than or equal to the pivot have been moved into G,
so the remaining elements in the left portion of the array constitute L. The array is now partitioned
into L and G without using any additional memory. This algorithm can then be recursively applied
to both lists.

In summary, this algorithm is:

Select a pivot
Start the current position at the first element
Start the head of G at the last element
While current position < head of G
If the current element =< pivot
Swap current element with head of G and advance head of G
Else
Advance current position
Recursively call the routine on the L and G segments of the array

As with any complex procedure that you design, you should test this with a few potentially prob-
lematic cases before you code it. Some cases to check include a two-element array and an array with

several identical values. When you work through the latter case, you can identify a bug: If all the val-
ues in an array are equal, the algorithm never terminates because all the elements are greater than or
equal to the pivot, so they all end up in G on each recursive call!

How can you fix this bug? It occurs because G is exactly the same on each successive recursive call.
With the current algorithm, G contains all the elements including the pivot (because the pivot is equal
to the pivot value). What if you separate the pivot from the rest of G? Then G can never equal the ini-
tial array because it’s always at least one element smaller. You need somewhere to store the pivot while
you do the partition. One convenient location to keep it out of the way is the end of the array. When
you start the procedure, swap the pivot element to the end of the array and then partition the remainder
of the array. After partitioning, swap the first element of G with the pivot you had previously stored at
the end of the array. Now the pivot is in its correct location with all the smaller elements (in L) on its left;
G is everything to the right of the pivot. When you make recursive calls on L and G, the pivot is now
excluded, so G decreases in size by at least one on each cycle.

An implementation of this algorithm is as follows:

public void quicksortSwapping(int[] data){
quicksortSwapping(data, 0, data.length);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting Problems | 141

private void quicksortSwapping(int[] data, int start, int len){
if(len < 2) return; // Nothing to sort!

int pivotIndex = start + len / 2; // Use the middle value.
int pivotValue = datal pivotIndex];

int end = start + len;

int curr = start;

// Swap the pivot to the end.
swap (data, pivotIndex, --end);
// Partition the rest of the array.

while(curr < end){
if(datal curr] < pivotValue) {
Curr++;
} else {
swap (data, curr, --end);

}

// Swap the pivot back to its final destination.
swap (data, end, start + len - 1);

// Apply the algorithm recursively to each partition.

int llen = end - start;
int rlen = len - llen - 1;

1if(1llen > 1){
quicksortSwapping(data, start, llen);

if(rlen > 1){
quicksortSwapping(data, end + 1, rlen);

}

The version of quicksort you just developed keeps track of two indexes, one on the left and one

on the right. The partitions are determined by where the indexes meet. But you’re only comparing
values on the left side of the array. Can you compare values on the right as well? Instead of blindly
swapping values between left and right, wouldn’t it make sense to swap mismatched pairs of values?
In other words, on the left you would swap a value greater than or equal to the pivot for one on
the right that is less than or equal to the pivot. This could considerably reduce the total number of
swaps.

While you’re at it, you can also make the math a bit simpler by using indexes to mark partition
boundaries instead of a starting index and a length. The result is this optimized version of quicksort:

public void quicksortOptimized(int[] data){
quicksortOptimized(data, 0, data.length - 1);
}

www.it-ebooks.info

http://www.it-ebooks.info/

142 | CHAPTERS8 SORTING

public void quicksortOptimized(int[] data, int left, int right){
int pivotvalue = datal (left + right) / 2 1;
int 1 = left;
int j = right;

while(1 <= j){
// Find leftmost value greater than or equal to the pivot.
while(datal[i] < pivotValue) i++;

// Find rightmost value less than or equal to the pivot.
while(datalj] > pivotvalue) j--;

// I1If the values are in the wrong order, swap them.
if(1 <=3)¢

swap(data, i, j);

i++;

i--;

}

// Apply the algorithm to the partitions we made, if any.

if(left < 3){
quicksortOptimized(data, left, j);
}

if(i < right){
quicksortOptimized(data, i, right);
}
}

Note that this implementation doesn’t need to explicitly move the pivot as the previous implemen-
tation did. Since it compares values at both ends, and values equal to the pivot are swapped into
the partition at the other end, there is no case in which all the values end up in one partition. This
means that values equal to the pivot may end up in either partition, but the sort is still correct.

This is about as good as quicksort can get! The only other optimization that might be worth consid-
ering is to replace the recursive call to quicksort with another sorting algorithm like insertion sort
after the partition size falls below a certain threshold.

Pancake Sorting

PROBLEM [magine you have a stack of n pancakes, each with a different diam-
eter. You also have a pancake flipper. You can insert your flipper into the stack at
any point, lift up all the pancakes in the substack above the flipper and flip them
over as a unit. In the worst case, how many flips will it take you to sort all the
pancakes by size (largest at the bottom) using an optimal algorithm?

www.it-ebooks.info

http://www.it-ebooks.info/

Sorting Problems | 143

At first this seems like a simple sorting problem: You have a set of items to sort and you’d like to
optimize the worst-case running time of the sort. A merge sort has worst-case O(n log()); this
seems like an easy solution.

Any time there’s a solution that seems this simple, it probably isn’t correct. Compare the situation in
this problem to the usual problem of sorting. In most sorting problems, you can arbitrarily rearrange
or exchange the items to be sorted; here, you’re limited to using flips of a substack.

There’s one other important difference: In analysis of the running time of sort algorithms, you must
include the time required to examine each item. In this problem you must optimize the number

of flips — in a sense you get to examine the pancakes to determine their locations and plan your
strategy for free. After you recognize these differences, it becomes clear that this problem involves
more than applying a standard sorting algorithm.

It’s hard to calculate the worst-case number of flips that a sorting algorithm requires without knowing
what the algorithm is, so start by trying to devise an algorithm for sorting pancakes. You’re allowed to
use only one operation for changing the order of pancakes: the flip. Think about what happens every
time you perform a flip. The order of the pancakes above the point you inserted your flipper is reversed,
but the order of the pancakes below the flipper remains unchanged. It seems like it may be difficult to
maintain pancakes in sorted order near the top of the stack because they keep getting flipped over, so
try sorting the stack starting at the bottom.

The largest pancake should end up on the bottom. How can you get it there? Consider three cases for
where the largest pancake could start out: on the bottom, somewhere in the middle, or on the top.
If the largest pancake starts out on the bottom, then you don’t need to move it. If it’s in the middle,
things seem a little complicated — certainly there’s no way to get it to the bottom with a single flip. If
you don’t see how to deal with this case right away, put it aside, and come back to it later. What if the
largest pancake starts out on the top? Then you could flip the entire stack, moving the pancake from
the top to where you want it on the bottom. This also gives you a method for solving the middle case:
You just need to first move the largest pancake to the top and then flip it to the bottom. It’s quite
simple to move a pancake from somewhere in the middle to the top: Insert the flipper immediately
underneath the pancake and do a flip. Combining all this, you see that in the worst case it takes two
flips to move the largest pancake to the bottom of the stack.

Because the pancakes at the bottom of the stack are unaffected by flips above them, you can continue
sorting from the bottom up using the same procedure. On each cycle, identify the next largest not-yet-
sorted pancake, flip it to the top, and then flip the stack above the largest already-sorted pancake to
move the current pancake from the top into its sorted position. This would be a worst case of 27 flips.

Can you do better than this? You’ve already worked through sorting the first few pancakes; now think
about what happens when you sort the last pancakes. After you’ve sorted the next-to-smallest pancake,
all the other pancakes larger than it are in sorted order beneath it. There’s only one position left that
the smallest pancake can be in: its sorted location at the top of the stack. If you apply the sorting pro-
cedure to the smallest pancake at this point, you just flip it over twice. This wastes two flips without
changing anything, so you can skip these flips. The worst case is no more than 2z — 2 flips.

There seems to be room for optimization at the end of the sort, so try backing up one more step to
see if you can do any better (assuming that # > 1). After you’ve sorted all but the last two pancakes,
you’ve (worst case) performed 27 — 4 flips. There are only two ways the final two pancakes can be

www.it-ebooks.info

http://www.it-ebooks.info/

144 | CHAPTER8 SORTING

arranged at this point. Either they’re already in sorted order and you’re done, or the larger one is
above the smaller. In the latter case, you just have to flip the two pancakes. This gives a worst-case
total of 21— 4 + 1 = 2n - 3 flips.

Yet more optimal solutions can be derived, but this is probably as far as anyone would expect you
to go in an interview. This problem has an interesting history. Although commonly known as the
pancake problem, it’s more formally classified as sorting by prefix reversal and has applications in
routing algorithms. Before he disappointed his family and friends by dropping out of Harvard, Bill
Gates published a journal article on the problem (Gates, WH and Papadimitriou, CH, “Bounds for
Sorting by Prefix Reversal,” Discrete Mathematics: 27(1) 47-57, 1979). Gates’ algorithm, which is
substantially more complex than what we’ve discussed, stood as the most efficient known solution
to the problem for almost 30 years.

SUMMARY

Sorting algorithms are selected using criteria such as memory use and stability as well as best, aver-
age and worst-case performance. No comparison sort can have better worst-case performance than

O(n log(n)).

Selection sort is one of the simplest sorting algorithms, but it is O(7?) in all cases. It requires only O(#)
swaps, however, so it is suitable for data sets where copying is very expensive. Insertion sort is efficient
when dealing with mostly sorted data sets, where it can have O(n) performance, but average and worst
cases are O(n?). Quicksort is a divide-and-conquer algorithm that offers O(# log(n)) performance in
the best and average cases and O(7?) in the worst case. Merge sort is another divide-and-conquer algo-
rithm that offers O(n log(n)) performance in all cases. It is especially useful for sorting data sets that
cannot fit into memory. You can make any sorting algorithm stable by assigning a sequence number to
each element and using the sequence number as the tie-breaker in a multikey sort.

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrency

Not that long ago, it was common for programs to have a single thread of execution, even if
they were running on a multithreading system. Even today, code you write for an application
or web server is often single-threaded, even if the server itself is multithreaded. Why? Because
multithreaded programming (often referred to as concurrency) is hard to do correctly, even
when the programming language directly supports it. Incorrect use of threads can easily halt
your program’s execution or corrupt its data; worse yet, it can lead to intermittent, difficult to
reproduce bugs.

However, if you write an application that has a graphical user interface that may perform
lengthy operations, you probably need to use threads to maintain a responsive interface.
Even non-interactive applications use threads: Increases in processing power these days come
mostly in the form of additional cores, which a single-threaded application can’t take advan-
tage of. Thread-related issues can appear even in environments that don’t explicitly support
threads, such as JavaScript programmers doing AJAX-style programming, because the web
server responses are processed asynchronously, and hence the JavaScript that runs to process the
response may access data used by other parts of the application. That’s why good programmers
take the time to learn how to write multithreaded programs correctly.

BASIC THREAD CONCEPTS

This chapter starts by reviewing what threads are and how you can control them.

Threads

A thread is the fundamental unit of execution within an application: A running application
consists of at least one thread. Each thread has its own stack and runs independently from the
application’s other threads. By default, threads share their resources, such as file handles or
memory. Problems can occur when access to shared resources is not properly controlled. Data
corruption is a common side effect of having two threads simultaneously write data to the
same block of memory, for example.

www.it-ebooks.info

http://www.it-ebooks.info/

146 | CHAPTER9 CONCURRENCY

Threads can be implemented in different ways. On most systems, threads are created and managed
by the operating system: These are called native threads or kernel-level threads. Sometimes the
threads are implemented by a software layer above the operating system, such as a virtual machine:
These are called green threads. Both types of threads have essentially the same behavior. Some
thread operations are faster on green threads, but they typically cannot take advantage of multiple
processor cores, and implementation of blocking 1/0 is difficult. As multicore systems have become
prevalent, most virtual machines have shifted away from green threads. The remainder of this chap-
ter assumes that the threads are native threads.

Because the number of threads that can be executed at any given instant is limited by the number
of cores in the computer, the operating system rapidly switches from thread to thread, giving
each thread a small window of time to run. This is known as preemptive threading, because

the operating system can suspend a thread’s execution at any point to let another thread run. (A
cooperative model requires a thread to explicitly take some action to suspend its own execution
and let other threads run.) Suspending one thread so another can start to run is referred to as a
context switch.

System Threads versus User Threads

A system thread is created and managed by the system. The first (main) thread of an application
is a system thread, and the application often exits when the first thread terminates. User threads

are explicitly created by the application to do tasks that cannot or should not be done by the main
thread.

Applications that display user interfaces must be particularly careful with how they use threads.
The main thread in such an application is usually called the event thread because it waits for and
delivers events (such as mouse clicks and key presses) to the application for processing. Generally
speaking, making the event thread unavailable to process events for any length of time (for instance,
by performing lengthy processing in this thread or making it wait for something) is considered bad
programming practice because it leads to (at best) an unresponsive application or (at worst) a frozen
computer. Applications avoid these issues by creating threads to handle potentially time-consuming
operations, especially those involving network access. These user threads often communicate data
back to the event (main) thread by queueing events for it to process; this allows the event thread to
receive data without stopping and waiting or wasting resources by repeatedly polling.

Monitors and Semaphores

Applications must use thread synchronization mechanisms to control threads’ interactions with
shared resources. Two fundamental thread synchronization constructs are monitors and sema-
phores. Which you use depends on what your system or language supports.

A monitor is a set of routines protected by a mutual exclusion lock. A thread cannot execute any of
the routines in the monitor until it acquires the lock, which means that only one thread at a time can
execute within the monitor; all other threads must wait for the currently executing thread to give up
control of the lock. A thread can suspend itself in the monitor and wait for an event to occur, in which
case another thread is given the chance to enter the monitor. At some point the suspended thread is

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Thread Concepts | 147

notified that the event has occurred, allowing it to awake and reacquire the lock at the earliest possible
opportunity.

A semaphore is a simpler construct: just a lock that protects a shared resource. Before using a
shared resource, the thread is supposed to acquire the lock. Any other thread that tries to acquire
the lock to use the resource is blocked until the lock is released by the thread that owns it, at which
point one of the waiting threads (if any) acquires the lock and is unblocked. This is the most basic
kind of semaphore, a mutual exclusion, or mutex, semaphore. Other semaphore types include
counting semaphores (which let a maximum of # threads access a resource at any given time) and
event semaphores (which notify one or all waiting threads that an event has occurred).

Monitors and semaphores can be used to achieve similar goals, but monitors are simpler to use
because they handle all details of lock acquisition and release. When using semaphores, each thread
must be careful to release every lock it acquires, including under conditions in which it terminates
unexpectedly; otherwise, no other thread that needs the shared resource can proceed. In addi-

tion, every routine that accesses the shared resource must explicitly acquire a lock before using the
resource, something that can be accidentally omitted when coding. Monitors automatically acquire
and release the necessary locks.

Most systems provide a way for the thread to timeout if it can’t acquire a resource within a certain
amount of time, allowing the thread to report an error and/or try again later.

Thread synchronization doesn’t come for free: It takes time to acquire and release locks whenever a
shared resource is accessed. This is why some libraries include both thread-safe and non-thread-safe
classes, for instance stringBuffer and StringBuilder in Java.

Deadlocks

Consider the situation in which two threads block each other because each is waiting for a lock that
the other holds. This is called a deadlock: Each thread is permanently stalled because neither can
continue running to the point of releasing the lock that the other needs.

One typical scenario in which this occurs is when two processes each need to acquire two locks (A
and B) before proceeding but attempt to acquire them in different orders. If process 1 acquires A,
but process 2 acquires B before process 1 does, then process 1 blocks on acquiring B (which pro-
cess 2 holds) and process 2 blocks on acquiring A (which process 1 holds). There are a variety of
complicated mechanisms for detecting and breaking deadlocks, none of which are entirely satisfac-
tory. In theory the best solution is to write code that cannot deadlock — for instance, whenever it’s
necessary to acquire more than one lock, the locks should always be acquired in the same order and
released in reverse order. In practice, it becomes difficult to enforce this across a large application
with many locks, each of which may be acquired by code in many different places.

A Threading Example

A banking system provides an illustration of basic threading concepts and the necessity of thread
synchronization. The system consists of a program running on a single central computer that con-
trols multiple automated teller machines (ATMs) in different locations. Each ATM has its own
thread so that the machines can be used simultaneously and easily share the bank’s account data.

www.it-ebooks.info

http://www.it-ebooks.info/

148 | CHAPTER9 CONCURRENCY

The banking system has an Account class with a method to deposit and withdraw money from a
user’s account. The following code is written as a Java class but the code is almost identical to what
youw’d write in C#:

public class Account ({
int userNumber ;
String userLastName;
String userFirstName;
double userBalance;
public boolean deposit(double amount) {
double newBalance;
if(amount < 0.0){
return false; /* Can't deposit negative amount */
} else {
newBalance = userBalance + amount;
userBalance = newBalance;
return true;
}
}
public boolean withdraw(double amount) {
double newBalance;
if (amount < 0.0 || amount > userBalance){
return false; /* Negative withdrawal or insufficient funds */
} else {
newBalance = userBalance - amount;
userBalance = newBalance;
return true;

}

Suppose a husband and wife, Ron and Sue, walk up to different ATMs to withdraw $100 each from
their joint account. The thread for the first ATM deducts $100 from the couple’s account, but the
thread is switched out after executing this line:

newBalance = userBalance - amount;

Processor control then switches to the thread for Sue’s ATM, which is also deducting $100. When
that thread deducts $100, the account balance is still $500 because the variable, userBalance, has
not yet been updated. Sue’s thread executes until completing this function and updates the value of
userBalance to $400. Then, control switches back to Ron’s transaction. Ron’s thread has the value
$400 in newBalance. Therefore, it simply assigns this value to userBalance and returns. Thus, Ron
and Sue have deducted $200 total from their account, but their balance still indicates $400, or a net
$100 withdrawal. This is a great feature for Ron and Sue, but a big problem for the bank.

Fixing this problem is trivial in Java. Just use the synchronized keyword to create a monitor:

public class Account ({
int userNumber ;
String userLastName;
String userFirstName;
double userBalance;
public synchronized boolean deposit(double amount) {
double newBalance;

www.it-ebooks.info

http://www.it-ebooks.info/

Basic Thread Concepts | 149

if(amount < 0.0){

return false; /* Can't deposit negative amount */
} else {

newBalance = userBalance + amount;

userBalance = newBalance;

return true;

}
public synchronized boolean withdraw(double amount) {
double newBalance;
if (amount < 0.0 || amount > userBalance) {
return false; /* Negative withdrawal or insufficient funds */
} else {
newBalance = userBalance - amount;
userBalance = newBalance;
return true;

}

The first thread that enters either deposit or withdraw blocks all other threads from entering either
method. This protects the userBalance class data from being changed simultaneously by different
threads. The preceding code can be made marginally more efficient by having the monitor synchro-
nize only the code that uses or alters the value of userBalance instead of the entire method:

public class Account {
int userNumber;
String userLastName;
String userFirstName;
double userBalance;
public boolean deposit(double amount) {
double newBalance;
1f(amount < 0.0){
return false; /* Can't deposit negative amount */
} else {
synchronized(this){
newBalance = userBalance + amount;
userBalance = newBalance;
}

return true;

}

public boolean withdraw(double amount){
double newBalance;
synchronized(this){

if(amount < 0.0 || amount > userBalance) {
return false;
} else {

newBalance = userBalance - amount;
userBalance = newBalance;
return true;

www.it-ebooks.info

http://www.it-ebooks.info/

150 | CHAPTER9 CONCURRENCY

In fact, in Java a synchronized method such as:

synchronized void someMethod () {
// the code to protect
}

is exactly equivalent to:

void someMethod () {
synchronized(this){
// the code to protect
}
}

The 1ock statement in C# can be used in a similar manner, but only within a method:

void someMethod () {
lock(this){
// the code to protect
}
}

In either case, the parameter passed to synchronize or lock is the object to use as the lock.

Note that the C# lock isn’t as flexible as the Java synchronized because the latter allows threads to
suspend themselves while waiting for another thread to signal them that an event has occurred. In
C# this must be done using event semaphores.

CONCURRENCY PROBLEMS

Issues that you encounter with threads in professional development can be Byzantine in their com-
plexity, but concise thread problems appropriate for an interview are difficult to compose. Therefore
the questions you get are likely to come from a fairly small set of classic thread problems, several of
which are presented here.

Busy Waiting

PROBLEM Explain the term “busy waiting” and how it can be avoided.

This is a simple problem, but one with important performance implications for any multithreaded
application.

Consider a thread that spawns another thread to complete a task. Assume that the first thread needs
to wait for the second thread to finish its work, and that the second thread terminates as soon as its
work is done. The simplest approach is to have the first thread keep checking whether the second
thread is alive and proceed as soon as it is dead:

Thread task = new TheTask() ;
task.start () ;

www.it-ebooks.info

http://www.it-ebooks.info/

Concurrency Problems | 151

while(task.isAlive()){
; // do nothing
}

This is called busy waiting because the waiting thread is still active, but it’s not actually accomplish-
ing anything. It’s “busy” in the sense that the thread is still executed by the processor, even though
the thread is doing nothing but waiting for the second thread to finish. Typically there are more
active threads than cores, so this actually “steals” processor cycles away from the second thread
(and any other active threads in the system), cycles that could be better spent doing real work.

Busy waiting is avoided by using a monitor or a semaphore, depending on what’s available to the
programmer. The waiting thread simply sleeps (suspends itself temporarily) until the other thread
notifies it that it’s done. In Java, any shared object can be used as a notification mechanism:

Object theLock = new Object();
synchronized(theLock) {

Thread task = new TheTask(theLock);

task.start () ;

try {

theLock.wait () ;
}
catch(InterruptedException e){
// do something if interrupted

class TheTask extends Thread {
private Object theLock;
public TheTask(Object theLock) {
this.theLock = theLock;
}
public void run() {
synchronized(theLock) {
// do the task
theLock.notify () ;

}

In this case, because TheTask terminates after it completes its task, the first thread could also sleep
until it completes using join (), but wait () and notify () provide a more general approach that
isn’t dependent on thread termination. The preceding code can be simplified somewhat by using the
thread object itself for the signaling:

Thread task = new TheTask();
synchronized(task) {
task.start () ;
try {
task.wait () ;
}
catch(InterruptedException e){
// do something if interrupted
}

www.it-ebooks.info

http://www.it-ebooks.info/

152 | CHAPTER9 CONCURRENCY

class TheTask extends Thread {
public void run() {
synchronized(this){
// do the task
this.notify();

}

There are a very few circumstances where spinlocks, a form of busy waiting, are actually desirable.
If you can guarantee that the lock you’re waiting for will be released in less time than it would take
to acquire a conventional lock (a situation often encountered in kernel programming), it may be
more efficient to use a spinlock that busy waits for this short period of time.

Another case where spinlocks are useful is high-performance computing (HPC) where the entire
system is dedicated to a single application and exactly one compute thread is created per core. In
this scenario, if one thread is waiting on data from a second thread running on a different core,
there’s no useful work that can be performed on the first thread’s core until the data arrives, so
there’s no downside to wasting compute cycles by busy waiting. The time between data arrival and
the process proceeding past the lock is often less for a spinlock than a semaphore, so under these
specific circumstances an application using spinlocks may have better performance than one using
semaphores. In any case, appropriate use of spinlocks requires careful assembly coding (to ensure
that the attempts at lock acquisition are atomic); busy waiting should always be avoided in high-level
languages.

Producer/Consumer

PROBL