
this print for content only—size & color not accurate spine = 0.633" 272 page count

Books for professionals By professionals®

Practical Django Projects, SeconD eDition

Dear Reader,

Web development should be fun and easy, with a minimum of fuss.
Unfortunately, sometimes it feels as though web development is nothing but
fuss. Even the simplest applications involve a staggering amount of repetitive
busy work that drags the whole process down. In this book, you’ll learn how
Django—a Python-based, open source web-application framework developed
by a fast-paced online news operation—can take the burden of all that tedium
off your shoulders and help you write better web applications with less code.

The aim of this book is to guide you toward becoming a more effective pro-
grammer, regardless of whether you’re a novice web developer or a seasoned
veteran. This book explains the technical details of developing applications
with Django, but more important, it shows you how Django can help you write
clean, flexible code with an eye toward reusability.

The book is organized around three useful projects: a content management
system, a weblog application, and a social code-sharing site. The process of
building each one will expand your knowledge of Django and demonstrate best
practices for developing high-quality applications. As you progress through
these projects, you’ll come to understand each of Django’s major components,
from database interaction and server-side processing all the way up to form
handling for user interaction and HTML templating for presentation. Along the
way, you’ll also learn how Django’s application architecture can lead to pow-
erful and flexible applications that you’ll be able to use and reuse whenever
you need them. You’ll pick up key principles of application design that you can
apply to your own code.

Finally, this updated and expanded edition will introduce you to several
powerful new features of Django, including Django’s newly rewritten adminis-
trative interface and commenting system. Plus, it includes an all-new chapter
covering practical development tools and techniques that you can incorporate
into your own development workflow.

James Bennett

US $44.99

Shelve in
Web development

User level:
Beginner–Intermediate

Bennett

SeconD
eDition

Practical Django Projects

The eXperT’s Voice® in WeB DeVelopmenT

Practical

Projects

SeconD eDition

 cyan
 maGenTa

 yelloW
 Black
 panTone 123 c

James Bennett
Django Release Manager

companion
eBook

Available

THE APRESS ROADMAP

The Definitive Guide to
Django, Second Edition

Practical Django Projects,
Second Edition

Pro DjangoBeginning Python,
Second Edition

www.apress.com
SOURCE CODE ONLINE

companion eBook

See last page for details

on $10 eBook version

Write better web applications faster, and learn
how to build up your own reusable code library

ISBN 978-1-4302-1938-5

9 781430 219385

54499

Updated for
Django 1.1

Updated for
Django 1.1

Practical Django Projects
Second Edition

James Bennett

Practical Django Projects, Second Edition

Copyright © 2009 by James Bennett

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1938-5

ISBN-13 (electronic): 978-1-4302-1939-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
United States and other countries.

Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was written without endorsement
from Sun Microsystems, Inc.

Lead Editor: Duncan Parkes
Technical Reviewer: Ben Ford
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,

Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Senior Project Manager: Kylie Johnston
Copy Editor: Nina Goldschlager Perry
Associate Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Lynn L’Heureux
Proofreader: BIM Indexing & Proofreading Services
Indexer: Ron Strauss
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com/info/bulksales
http://www.apress.com

iii

Contents at a Glance

About the Author .xi

About the Technical Reviewer . xiii

Introduction . xv

ChaPtEr 1 Welcome to Django . 1

ChaPtEr 2 Your First Django Site: A Simple CMS . 9

ChaPtEr 3 Customizing the Simple CMS . 23

ChaPtEr 4 A Django-Powered Weblog . 43

ChaPtEr 5 Expanding the Weblog . 77

ChaPtEr 6 Templates for the Weblog . 97

ChaPtEr 7 Finishing the Weblog . 123

ChaPtEr 8 A Social Code-Sharing Site . 149

ChaPtEr 9 Form Processing in the Code-Sharing Application 165

ChaPtEr 10 Finishing the Code-Sharing Application . 187

ChaPtEr 11 Practical Development Techniques . 205

ChaPtEr 12 Writing Reusable Django Applications . 223

INDEX . 243

v

Contents

About the Author .xi

About the Technical Reviewer . xiii

Introduction . xv

ChaPtEr 1 Welcome to Django . 1

What’s a Web Framework and Why Should I Want One? 1

Saying Hello to Django . 2

Saying Hello to Python . 3

Installing Django . 4

Taking Your First Steps with Django . 5

Exploring Your Django Project . 7

Looking Ahead . 8

ChaPtEr 2 Your First Django Site: a Simple CMS . 9

Configuring Your First Django Project . 9

Putting Together the CMS . 12

Introducing the Django Template System . 18

Looking Ahead . 22

ChaPtEr 3 Customizing the Simple CMS . 23

Adding Rich-Text Editing . 23

Adding a Search System to the CMS . 26

Improving the Search View . 31

Improving the Search Function with Keywords . 33

Looking Ahead . 40

■CONTENTSvi

ChaPtEr 4 a Django-Powered Weblog . 43

Compiling a Feature Checklist . 43

Writing a Django Application . 44

Projects vs . Applications . 44

Standalone and Coupled Applications . 45

Creating the Weblog Application . 45

Designing the Models . 47

Building the Entry Model . 52

Basic Fields . 53

Slugs, Useful Defaults, and Uniqueness Constraints 54

Authors, Comments, and Featured Entries . 55

Different Types of Entries . 57

Categorizing and Tagging Entries . 58

Writing Entries Without Writing HTML . 60

Finishing Touches . 61

The Weblog Models So Far . 62

Writing the First Views . 65

Using Django’s Generic Views . 69

Decoupling the URLs . 72

Looking Ahead . 75

ChaPtEr 5 Expanding the Weblog . 77

Writing the Link Model . 77

Views for the Link Model . 83

Setting Up Views for Categories . 84

Using Generic Views (Again) . 86

Views for Tags . 87

Cleaning Up the URLConf Module . 88

Handling Live Entries . 93

Looking Ahead . 95

■CONTENTS vii

ChaPtEr 6 templates for the Weblog . 97

Dealing with Repetitive Elements: The Power of Inheritance 97

How Template Inheritance Works . 99

Limits of Template Inheritance . 100

Defining the Base Template for the Blog . 100

Setting Up Section Templates . 103

Displaying Archives of Entries . 104

Entry Index . 104

Yearly Archive . 105

Monthly and Daily Archives . 106

Entry Detail . 107

Defining Templates for Other Types of Content . 110

Extending the Template System with Custom Tags 111

How a Django Template Works . 112

A Simple Custom Tag . 113

Writing a More Flexible Tag with Arguments 115

Writing the Compilation Function for the New Tag 116

Writing the LatestContentNode . 119

Registering and Using the New Tag . 120

Looking Ahead . 122

ChaPtEr 7 Finishing the Weblog . 123

Comments and django .contrib .comments . 123

Implementing Model Inheritance and Abstract Models 123

Installing the Comments Application . 124

Performing Basic Setup . 125

Retrieving Lists of Comments for Display . 127

Moderating Comments . 129

Using Signals and the Django Dispatcher . 129

Building the Automatic Comment Moderator 130

Adding Akismet Support . 131

Sending E-mail Notifications . 135

Using Django’s Comment-Moderation Features 138

viii ■CONTENTS

Adding Feeds . 140

Creating the LatestEntriesFeed Class . 140

Generating Entries by Category: A More Complex Feed Example . 144

Looking Ahead . 147

ChaPtEr 8 a Social Code-Sharing Site . 149

Compiling a Feature Checklist . 149

Setting Up the Application . 150

Building the Initial Models . 150

The Language Model . 151

The Snippet Model . 153

Testing the Application . 156

Building Initial Views for Snippets and Languages 156

CSS for pygments Syntax Highlighting . 158

Views for Languages . 159

An Advanced View: Top Authors . 160

Improving the View of Top Authors . 161

Adding a top_languages View . 162

Looking Ahead . 163

ChaPtEr 9 Form Processing in the Code-Sharing application 165

A Brief Tour of Django’s Form System . 165

A Simple Example . 165

Validating the Username . 167

Validating the Password . 168

Creating the New User . 168

How Form Validation Works . 170

Processing the Form . 172

Writing a Form for Adding Code Snippets . 174

Writing a View to Process the Form . 177

Writing the Template to Handle the add_snippet View 178

Automatically Generating the Form from a Model Definition 179

Simplifying Templates That Display Forms . 182

Editing Snippets . 183

Looking Ahead . 186

■CONTENTS ix

ChaPtEr 10 Finishing the Code-Sharing application 187

Bookmarking Snippets . 187

Adding Basic Bookmark Views . 188

Creating a New Template Tag: {% if_bookmarked %} 191

Parsing Ahead in a Django Template . 192

Resolving Variables Inside a Template Node 193

Using RequestContext to Automatically Populate Template Variables . . .196

Adding the User Rating System . 198

Rating Snippets . 199

Adding an {% if_rated %} Template Tag . 200

Retrieving a User’s Rating . 201

Looking Ahead . 202

ChaPtEr 11 Practical Development techniques . 205

Using Version-Control Systems to Track Your Code 205

A Simple Example . 206

Version-Control Tools and Hosting Options . 208

Choosing and Using a VCS . 208

Using Isolated Python Environments to Manage Software 209

Using Build Tools . 212

Using a Deployment Tool . 214

Simplifying Your Django Development Process . 215

Living Without Projects . 215

Using Relative Paths in Settings . 217

Dealing with Settings That Change for Different Environments . . . 218

Unit-Testing Your Applications . 219

Looking Ahead . 222

ChaPtEr 12 Writing reusable Django applications 223

One Thing at a Time . 224

Staying Focused . 224

Advantages of Tightly Focused Applications 225

Developing Multiple Applications . 226

Drawing the Lines Between Applications . 227

Splitting Up the Code-Sharing Application . 228

x ■CONTENTS

Building for Flexibility . 228

Flexible Form Handling . 229

Flexible Template Handling . 230

Flexible Post-Form Processing . 231

Flexible URL Handling . 232

Taking Advantage of Django’s APIs . 233

Staying Generic . 233

Distributing Django Applications . 234

Python Packaging Tools . 234

Writing a setup .py Script with distutils . 235

Standard Files to Include in a Package . 236

Documenting an Application . 237

Looking Ahead . 241

INDEX . 243

xi

About the Author

■JaMES BENNEtt is a web developer at the Lawrence Journal-
World in Lawrence, Kansas, where Django was originally
developed. He is both a regular contributor to and the
release manager for the open source Django project.

xiii

About the Technical Reviewer

■BEN ForD has been using Django since 2006, in both personal projects and more
“enterprise” settings. Django has also set him on the path of learning Python’s deeper
magic, including metaprogramming, decorators, and descriptors. The journey continues.

xv

Introduction

the past few years have seen an explosion in the development of dynamic, database-
driven web sites. Whereas many sites were once built using nothing but hand-written
HTML, or a few CGI scripts or server-side includes, today’s database-backed web applica-
tions have become the norm for everything from personal blogs to online stores to the
social networking sites that have revolutionized the way many people use the Web.

But this has come at a cost. Developing these applications, even for relatively simple
uses, involves a significant amount of complex work, and much of that work ends up
being repeated for each new application. Although web developers have always had
access to libraries of code that could automate certain tasks, such as HTML templating
or database querying, the process of bringing together all the necessary pieces for a fully
polished application has largely remained difficult and tedious.

This challenge has led to the recent development, and subsequent popularity, of
“web frameworks.” Web frameworks are reusable collections of components that handle
many of the common and repetitive tasks of web-application development in an inte-
grated fashion. Instead of requiring you to obtain disparate libraries of code and find
ways to make them work together, web frameworks provide all the necessary compo-
nents in a single package and take care of the integration work for you.

Django is one of the most recent crop of web frameworks, growing out of the needs
of a fast-paced online news operation. Django’s original developers needed a set of tools
that would not only help them quickly develop new and highly dynamic web applications
in response to the news industry’s rapidly evolving requirements, but would also let them
save time and effort by reusing pieces of code, and even entire applications, whenever
possible.

In this book, you’ll see how Django can help you achieve both of these goals—rapid
application development and flexible, reusable code—through both the tools it pro-
vides to you directly and the development practices that it makes possible. I’ll guide you
through the development of several example applications and show you how the various
components and applications bundled with Django can help you write less code at each
stage of the development process. You’ll also see first-hand a number of best practices for
reusable code and learn how you can apply them in your own applications. Plus, you’ll
learn how to integrate existing third-party libraries into Django-powered applications to
minimize the amount of code you’ll need to write from scratch.

■INTRODUCTIONxvi

I’ve written this book from a pragmatic viewpoint. The sample applications are all
intended to be useful in real-world situations, and once you’ve worked through them,
you’ll have more than just a technical understanding of Django and its components.
You’ll have a clear understanding of how Django can help you become a more productive
and more effective developer.

C h a p t e r 1

Welcome to Django

Web development is hard, and don’t let anybody tell you otherwise. Building a fully func-
tional, dynamic web application with all the features that users want is a daunting task with
a seemingly endless list of things you have to get just right. And before you can even start
thinking about most of them, you must do a huge amount of up-front work: set up a database,
create all the tables to store your data, plan out all the relationships and queries, come up with
a solution for dynamically generating the HTML, figure out how to map specific URLs to dif-
ferent bits of code, and more. Just getting to the point where you can add features your users
will see or care about is a vast and largely thankless job.

But it doesn’t have to be that way.
This book will teach you how to use Django, a “web framework” that will significantly

ease the pain of embarking on new development projects. You’ll be able to follow along as you
build real-world applications, and at every step you’ll see how Django is there to help you out.
At the end, you’ll come to a wonderful realization—that web development is fun again.

What’s a Web Framework and Why Should I
Want One?
The biggest downside of web development is the sheer amount of tedium it involves. All the
aforementioned up-front tasks plus dozens more lurk behind every new application you
develop, and they quickly suck all the joy out of even the most exciting projects. Web frame-
works such as Django aim to eliminate all that tedium by providing an organized, reusable set
of common libraries and components that can do the heavy lifting, freeing you up to work on
the features that make your project unique.

This idea of standardizing a set of common libraries to deal with common tasks is far from
new. In fact, this standardization is such an established practice in most areas of programming
that you’d get strange looks if you suggested somebody should just start writing code from
scratch. And in enterprise web development, frameworks of various sorts have been in use for
years. Most companies that routinely need to develop large-scale applications rely heavily on
frameworks to provide common functionality and speed up their development processes.

But in the world of web development, frameworks have traditionally been—almost out
of necessity—just as heavyweight as the applications in which they’re used. They tend to be
written in Java or C# and targeted at large corporate development projects, and sometimes
they come with a price tag that only a Fortune 500 company could love. Django is part of a new

1

Chapter 1 ■ WeLCOMe tO DJaNGO2

generation of frameworks geared toward a broader audience: developers who don’t necessar-
ily have the weight of a multinational conglomerate’s needs bearing down on their shoulders,
but who still need to get things done quickly. In other words, Django targets developers like
you and me.

The past couple years have seen the emergence of a number of these new web frame-
works, written in and for programming languages that are much more accessible to the
average web developer (and, just as importantly, to the average web host): PHP, Perl, Python,
and Ruby. Each framework has a slightly different philosophy regarding code organization
and the number of “extras” it includes, but they all share a common baseline goal: to provide
an integrated, easy-to-use set of components that handle the tedious, repetitive tasks of web
development with as little fuss as possible.

Saying Hello to Django
Django began life as a simple set of tools used by the in-house web team of a newspaper com-
pany in a small college town in Kansas. Like anybody who spends enough time doing web
development, they got tired of writing the same kinds of code over and over again—database
queries, templates, the whole nine yards. They grew weary of this quickly, in fact, because they
were pressured to keep up with a tight newsroom schedule. Needing custom code for a big
story or feature wasn’t (and still isn’t) unusual, and the development timelines needed to be
measurable in days, or even hours, to keep pace with the news.

In the space of a couple years, they developed a set of libraries that worked extremely well
together. By automating or simplifying the common tasks of web development, the libraries
helped them get their work done quickly and efficiently. In the summer of 2005, they got per-
mission from the newspaper’s managers to release those libraries publicly, for free, under an
open source license so that anyone could use and improve them. They also gave these libraries
a snappy name, “Django,” in honor of the famous gypsy jazz guitarist Django Reinhardt.

As befits its newsroom heritage, Django bills itself as “the web framework for perfec-
tionists with deadlines.” At its core is a set of solid, well-tested libraries covering all of the
repetitive aspects of web development:

	 •	 An	object-relational	mapper,	which	is	a	library	that	knows	what	your	database	looks	
like, what your code looks like, and how to bridge the gap between them without repet-
itive hand-written SQL

	 •	 A	set	of	HTTP	libraries	that	knows	how	to	parse	incoming	web	requests;	how	to	hand	
them	to	you	in	a	standard,	easy-to-use	format;	and	how	to	turn	the	results	of	your	code	
into well-formed responses

	 •	 A	URL	routing	library	that	lets	you	define	exactly	the	URLs	you	want	and	map	them	to	
the appropriate parts of your code

	 •	 A	validation	library	that	helps	you	display	forms	in	web	pages	and	process	user-sub-
mitted data

	 •	 A	templating	system	that	lets	even	nonprogrammers	write	HTML	mixed	with	data	gen-
erated by your code and just the right amount of presentational logic

Chapter 1 ■ WeLCOMe tO DJaNGO 3

And that’s just scratching the surface. Django’s core libraries include a wealth of other fea-
tures you’ll come to love. A number of useful applications that build on Django’s features are
also bundled with it and provide out-of-the-box solutions for specific needs such as adminis-
trative interfaces and user authentication. In the example applications used in this book, you’ll
see all of these features in action. So let’s dive in.

Saying Hello to Python
Django is written in a programming language called Python, so the applications you develop
with it will also be written in Python. That means you’ll need to have Python installed on your
computer before you can get started with Django. You can download Python for free from
http://python.org/download/;	it’s	available	for	all	major	operating	systems.	As	I	write	this,	the	
Python language is in the process of migrating from one series of major releases (with version
numbers of the form “2.x”) to another (with version numbers of the form “3.x”). This process is
expected to take several years, and most Python-based software, Django included, has not yet
begun migrating to the new 3.x series. Thus it’s best to install the latest 2.x version of Python—
Python 2.6.1 at the time of this writing—in order to enjoy the latest features and bug fixes for
the Python language while using Django.

Once you’ve installed Python, you should be able to open a command prompt (Command
Prompt on Windows, Terminal on Mac OS X, or any terminal emulator on Linux) and start
the Python interactive interpreter by typing the command python. Normally, you’ll save your
Python code into files that will run as part of your applications. But the interactive interpreter
will let you explore Python—and Django, once it’s installed—in a more freeform way: the
interpreter lets you type in Python code, a line at a time, and see the results immediately. You
can also use it to access and interact with code in your own Python files, code in the Python
standard libraries, or code in any third-party libraries you’ve installed. This capability makes
the interactive interpreter a powerful learning and debugging tool.

ADmOnItIOn: LeArnIng PytHOn

If you don’t know any Python, or even if you’ve never done any programming before, don’t worry. Python
is easy to learn, and you don’t need to know much of it to get started with Django. In fact, many first-time
Django users learn Python and Django at the same time. (When I first started with Python, I learned the basics
in a weekend by reading online tutorials.)

I’ll call attention to important Python concepts when needed, but I recommend that you look at a Python
tutorial before going very far into this book. The Python documentation index at http://python.org/doc/
features a good list of tutorials and books (several of which are available for free online) to help you learn the
basics of Python. (I’d recommend knowing at least how Python functions and classes work.) You’ll be able to
pick up the rest as you go along.

If you’re looking for a good reference to keep handy as you’re learning Django, check out Beginning
Python: From Novice to Professional, Second Edition by Magnus Lie Hetland and Dive Into Python by Mark
Pilgrim (both from Apress).

http://python.org/download/
http://python.org/doc/

Chapter 1 ■ WeLCOMe tO DJaNGO4

When you first fire up the Python interpreter, you’ll see something like this:

 Python 2.6.1 (r261:67515, Apr 2 2009, 01:36:23)
 [GCC 4.0.1 (Apple Computer, Inc. build 5488)] on darwin
 Type "help", "copyright", "credits" or "license" for more information.
 >>>

The >>> is Python’s command prompt. You can type a line of Python code and press
Enter, and if that code returns a result, you’ll see it immediately. To test this, try a simple line
that prints some text. Open the Python interpreter, type the following line at the prompt, and
then press the Enter key:

 >>> print "Hello, world!"

You’ll see the result appear on the next line:

 Hello, world!
 >>>

Anything you can type into a file as part of a Python program can be typed directly into
the interpreter. You can also access the built-in help system by typing help() and pressing
Enter. When you’re ready to exit the Python interpreter, press Ctrl+D to shut it down.

Installing Django
Now that you’ve got Python installed and working, it’s time to install Django and start explor-
ing its features. You can get a copy from the official	Django	web	site;	visit	www.djangoproject.
com/download/ and follow the instructions for downloading the latest official release (which
should be Django 1.1 by the time this book goes to press).

ADmOnItIOn: PAckAgeD reLeASeS vS. DeveLOPment cODe

Django is always being updated and improved. So in addition to the official release, the current in-devel-
opment code is available for download in the form of a “development version.” The Django web site offers
instructions for installing the development version on your computer.

The advantage of using the development version is that you can immediately use new features as soon as
they’re added, rather than wait for the next official release. The downside, of course, is that the in-development
code is still undergoing changes, and thus might contain bugs or other problems that haven’t yet been fixed.

Throughout this book, I’ll assume that you’re using the latest official release of Django. Once you’re a bit
more comfortable with Django, however, you should feel free to start exploring the in-development code to
get a feel for new features that will be available in future releases.

http://www.djangoproject

Chapter 1 ■ WeLCOMe tO DJaNGO 5

Once you’ve downloaded the Django code onto your computer, you can install it by typ-
ing a single command. On Linux or Mac OS X, open a terminal, navigate to the directory where
Django was downloaded, and locate a file named setup.py. Type the following command, and
enter your password when prompted:

 sudo python setup.py install

On Windows, you’ll need to open a command prompt with administrative privileges.
Then you can navigate to the Django directory and type the following:

 python setup.py install

The setup.py script is a standard installation procedure for Python modules, and it takes care
of installing all the relevant Django code into the correct locations for your operating system. If
you’re curious, Table 1-1 summarizes where the Django code will end up on various systems.

table 1-1. Django Installation Locations

Operating System Django Location

Linux /usr/local/lib/python2.6/site-packages/django

Mac OS X /Library/Frameworks/Python.framework/Versions/2.6/lib/python2.5/
site-packages/django

Windows C:\Python\site-packages\django

taking your First Steps with Django
You should now be able to verify that Django installed correctly on your computer. Next, start
the interactive Python interpreter and type in the following:

 >>> import django
 >>> print django.VERSION

Running these commands should display a set of numbers in parentheses, which repre-
sents the version of Django you’re using. The Django 1.1 release, for example, will show (1,
1, 0, ‘final’, 0). Python software typically uses a version tuple—a parenthesized, comma-
separated list of numbers and/or words—to represent version numbers internally, and Django
is no different. (This version tuple makes it easy for Python programs to automatically parse
otherwise complex version numbers such as “1.0 beta 3” or “2.4 prerelease.”)

Now you’re ready to create your first Django project. A Django project is a wrapper of
sorts, which contains a list of one or more Django-powered applications and the settings they
use. Later on, when you’re deploying your Django applications behind a real web server, you’ll
use projects to configure them.

To set up your first project, create a directory on your computer where you’ll keep your
in-progress Django projects, and then navigate to it using a terminal or a command prompt.
It’s often a good idea to have a single directory where you keep all of your own custom Python
code, so choose a single logical place on your computer for this. As you’ll see a bit later, doing
so will simplify the process of telling Python how to find and use that code.

Chapter 1 ■ WeLCOMe tO DJaNGO6

Now you can use the built-in Django management script, django-admin.py, to create your
project. django-admin.py lives in the bin/ subdirectory of the directory Django was installed
into, and it knows how to handle various management tasks involving Django projects. The
command you’re interested in is called startproject, which will create a new, empty Django
project. In the directory where you want to create your project, type the following (refer to
Table 1-1 for the correct path for your operating system):

 /usr/local/lib/python2.6/site-packages/django/bin/django-admin.py startproject cms

This will create a new subdirectory called cms and populate it with the basic files needed
by any Django project. (You’ll see why it’s named cms in the next chapter, when you start to
work with this project.)

ADmOnItIOn: PermISSIOn errOrS

If you’re using Linux or Mac OS X, you might see an error message saying “permission denied.” If this hap-
pens, you need to tell your operating system that the django-admin.py script is safe to run as a program.
You can do this by navigating to the directory where django-admin.py resides and typing the command
chmod +x django-admin.py. Then you can run the django-admin.py script as previously shown.

In the next section, you’ll see what each of the files in the project directory is for, but focus
on manage.py for now. Like django-admin.py, the manage.py script takes care of common proj-
ect- and application-management tasks for you. For example, it can start a simple web server
that will host your project for testing purposes. You can start the manage.py script by going into
your project directory and typing the following:

 python manage.py runserver

Then you should be able to open a web browser and visit the address http://127.0.0.
1:8000/. By default, the development web server runs on your computer’s local “loopback”
network address, which is always 127.0.0.1, and binds to port 8000. When you visit that
address, you should see a simple page saying “It worked!” with some basic instructions for
customizing your project (see Figure 1-1).

ADmOnItIOn: cHAngIng tHe ADDreSS AnD POrt

If something else is already using port 8000 on your computer, if you’re not allowed to run programs that
bind to that port, or if you want to view pages served by Django’s development server from another computer,
you’ll need to manually specify the address and port to use when you launch the development server. You
accomplish this using the syntax python manage.py runserver ip_address:port_number.

For example, to listen on all of your computer’s available IP addresses (so that other computers can
view pages from the development server) and bind to port 9000 instead of 8000, you could type python
manage.py runserver 0.0.0.0:9000 (0.0.0.0 is a special address that means “listen on all available
IP addresses”).

http://127.0.0

Chapter 1 ■ WeLCOMe tO DJaNGO 7

Figure 1-1. Django welcome screen

You can stop the server by pressing Ctrl+C at the command prompt.

exploring your Django Project
The startproject command of django-admin.py created your project directory for you and
automatically filled in a few files. Here’s a quick primer on these files, all of which I’ll explain
further in future chapters:

__init__.py: This will be an empty file. For now you don’t need to put anything into it
(and in fact, most of the time you won’t need to). It’s used to tell Python that its directory
contains executable code. Python can treat any directory containing an __init__.py file as
a Python module.

manage.py: As I explained previously, this is a helper script that knows how to handle com-
mon management tasks. It knows how to start the built-in development web server, create
new application modules, set up your database, and do numerous other things that you’ll
see as you build your first Django applications.

Chapter 1 ■ WeLCOMe tO DJaNGO8

settings.py: This is a Django settings module, which holds the configuration for your
Django project. Over the next few chapters, you’ll see some of the most common settings
and how to edit them to suit your projects.

urls.py: This file contains your project’s master URL configuration. Unlike some lan-
guages and frameworks that simply mimic HTML by letting you place code into the web
server’s public directory and access it directly by file name, Django uses an explicit con-
figuration file to lay out which URLs point to which parts of your code. This file defines the
set of “root” URLs for an entire project.

You might notice that after you started the built-in web server, one or more new files
appeared in the project directory with the same names as those in the preceding list but with
a .pyc extension instead of a .py extension. Python can read the code directly out of your .py
files, but it also can, and often does, automatically compile code into a form that’s faster to
load when a program starts up. This bytecode, as it’s called, is then stored in identically named
.pyc files. If the original file hasn’t changed since the last time a program used it, Python will
load from the bytecode file instead of the original file to gain a speed boost.

Looking Ahead
In the next chapter, you’ll walk through setting up your first real Django project, which will
provide a simple content management system, or CMS. If you’re ready to dive in, keep read-
ing, but you should also feel free to pause and explore Python or Django a bit more on your
own. Both the django-admin.py and manage.py scripts accept a help command, which will list
all of the things they can do. Plus, the Python interpreter’s built-in help system can also auto-
matically extract documentation from most Python modules on your computer, including the
ones inside Django. There’s also a special shell command to manage.py that you might find
helpful: it uses your project’s settings module to launch a Python interpreter with a fully con-
figured Django environment that you can explore.

If you’d like, you can also take this opportunity to set up a database to use with Django.
If you installed Python 2.5 or any later version, you won’t have to do this right away. As of ver-
sion 2.5, Python includes the lightweight SQLite database system directly, which you’ll be able
to use throughout this book as you develop your first applications. However, Django also sup-
ports MySQL, PostgreSQL, and Oracle databases, so if you’d prefer to work with one of those,
go ahead and set it up.

C h a p t e r 2

Your First Django Site:
a Simple CMS

One extremely common task in web development is building a simple content management
system (CMS), which lets users dynamically create and edit pages on a site through a web-based
interface. Sometimes called brochureware sites because they tend to be used in the same fashion
as traditional printed brochures handed out by businesses, they’re usually fairly simple feature-
wise, but can be tedious to code over and over again.

In this chapter, you’ll see how Django makes this kind of site almost trivially easy to build.
I’ll walk you through the setup of a simple CMS, and then in the next chapter you’ll see how to
add a few extra features and provide room to expand it in the future.

Configuring Your First Django Project
In the last chapter, you created a Django project called cms. But before you can do much with
it, you’ll need to do some basic configuration. So launch your favorite code-editing program
and use it to open the settings.py file in your project.

ADmOnitiOn: Writing PYthOn

From here to the end of this book, you’ll be writing Python code and the occasional template. If you haven’t
already looked at a Python tutorial to get a feel for the basics, now would be a good time. I’ll explain some of
the most important concepts as we go, but you should check out a dedicated Python tutorial to explore them in
more depth.

And if you don’t have an editing program suitable for working with programming code, you’ll want to get
one. Nearly all programmers’ editors offer built-in support for Python (and other popular languages), which
will simplify the process of writing code.

Don’t be daunted by the size of the settings.py file or the number of settings you’ll find
in it. django-admin.py automatically filled in default values for a lot of them, and for now most
of the defaults will be fine. Near the top of the file is a group of settings whose names all start

9

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 10

with DATABASE_. These settings tell Django what type of database to use and how to connect to
it, and right now that’s all you need to fill in.

If you installed the latest version of Python, you’ll already have a database-adapter mod-
ule that can talk to SQLite databases (Python 2.5 and later include this module in the standard
Python library). SQLite is a great system to use when you’re starting to explore Django because
it stores the entire database in a single file on your computer, and it doesn’t require any of the
complex server or permissions setup of other database systems.

To use SQLite, you need to change only two settings. First, find the DATABASE_ENGINE setting
and change it from this:

 DATABASE_ENGINE = ''

to this:

 DATABASE_ENGINE = 'sqlite3'

Now you need to tell Django where to find the SQLite database file; this information goes
into the DATABASE_NAME setting. You can put the file anywhere on your computer’s hard drive
where you have permission to read and write files. You can even fill in a nonexistent file name,
and the SQLite database engine will create the file for you automatically. Keeping the database
file inside your project folder isn’t a bad idea in this case, so go ahead and do that. I keep all of
my Django projects in a folder called django-projects inside my home directory (on a laptop
running Mac OS X), so I’ll fill it in like this:

 DATABASE_NAME = '/Users/jbennett/django-projects/cms/cms.db'

This path will look a bit different on other operating systems, of course. On Windows it
might be C:\Documents and Settings\jbennett\django-projects\cms\cms.db, for example,
while on a Linux system it might be /home/jbennett/django-projects/cms/cms.db.

I’m telling Django that the SQLite database file should live inside the cms project directory
with a file name of cms.db. The .db file extension isn’t required, but it helps me remember what
that file is for, so I recommend you use a similar naming convention.

ADmOnitiOn: Using A DiFFerent DAtAbAse

If you’d like to set up a MySQL, PostgreSQL, or Oracle database instead of using SQLite, consult the Django
settings documentation online at www.djangoproject.com/documentation/settings/ to see the
correct values for the database settings. However, bear in mind that you will also need to install a Python
adapter module for the database you’re using—as of Python 2.5, SQLite is the only database system directly
supported in the standard Python library.

If you’re using a version of Python prior to 2.5, you need to install an adapter module for your
database no matter which database you use. For details, see the Django installation instructions at www.
djangoproject.com/documentation/install/#get-your-database-running.

http://www.djangoproject.com/documentation/settings/
http://www.djangoproject.com/documentation/install/#get-your-database-running
http://www.djangoproject.com/documentation/install/#get-your-database-running

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 11

Finally, you’ll probably want to change the TIME_ZONE setting, which tells Django which
time zone to use when displaying dates and times from your database. Your database typically
stores dates and times as Universal Time, Coordinated (UTC) timestamps (UTC is the “base”
time zone formerly known as Greenwich Mean Time, or GMT). Rather than use a country-spe-
cific time-zone name (like U.S. Central Standard Time) or a confusing UTC offset (like UTC–6),
the TIME_ZONE setting uses names in zoneinfo format. This standard format, used by many
computer operating systems, is easy for humans to read. The default setting is

 TIME_ZONE = "America/Chicago"

which is equivalent to the U.S. Central time zone, six hours behind UTC. Full lists of zoneinfo
time-zone names are available online, and the official Django settings documentation at www.
djangoproject.com/documentation/settings/ includes a link to one such list. You should
change your TIME_ZONE setting to the zone in which you live.

ADmOnitiOn: time ZOnes On WinDOWs

If you’re using Microsoft Windows, be careful with the TIME_ZONE setting. Because of quirks in Windows’
operating environment, it’s not possible to reliably use a time zone other than the one the computer itself is
currently using. So for best results, specify TIME_ZONE to be the same as the time zone Windows is using.

You won’t need to change it yet, but locate a setting called INSTALLED_APPS by scrolling
down to the bottom of the settings file. As mentioned previously, a Django project is made up
of one or more Django-powered applications, and this setting tells Django which applications
your project is using. The default value looks like this:

 INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
)

Each of these is an application bundled with Django itself, and each provides a useful
piece of common functionality. django.contrib.auth, for example, provides a mechanism for
storing data about users and for authenticating them. django.contrib.sites lets you run mul-
tiple web sites from a single Django project and specify which items in your database should
be accessible to each site.

In time, you’ll see examples of these applications in action, but for now it’s best to leave
the defaults as they are. They provide a “quick start” to your project by taking care of many
tasks right away, and you’ll soon build on their functionality.

Now that you’ve given Django some basic configuration data, you can tell it to set up your
database. Open a terminal or command prompt, navigate to your project’s directory, and type
this command:

 python manage.py syncdb

http://www.djangoproject.com/documentation/settings/
http://www.djangoproject.com/documentation/settings/

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 12

ADmOnitiOn: WhAt gOes On DUring sYnCDb

When you run manage.py syncdb, Django actually does several things in order, and the output on your
screen shows each step. First, Django looks in each application module listed in INSTALLED_APPS and finds
the data models. These are Python classes that define the different types of data the application uses, and
Django knows how to automatically generate appropriate CREATE TABLE SQL statements from them. In
Chapter 3, you’ll write your first data model and see how Django generates the SQL for it.

Once the database tables have been created, Django finds and runs any application-specific initialization
code for each application. In this case, django.contrib.auth includes code that prompts you to create a
user account.

Finally, Django finishes the database setup and installs any initial data you’ve provided. The default set
of bundled applications doesn’t use this feature, but later you’ll see how to supply an initial data file that can
kick-start an application by giving it data to work with immediately. You won’t be providing any initial data
with this CMS application, but some of Django’s bundled applications do provide data that will be inserted into
the database when installed.

This command will create the database file if needed and then create the database tables
for each application listed in the INSTALLED_APPS setting. First you’ll see several lines of out-
put scroll by. Then, because the bundled user-authentication application is being installed,
Django will ask if you’d like to create a “superuser” account for web-based administration.
Type yes, and then enter a username, e-mail address, and password when prompted. You’ll
see shortly how you can use this account to log in to a Django administrative interface.

Putting together the Cms
Most of the applications you’ll build with Django will require you to write a fair amount of
code on your own. Django will take care of the heavy lifting and the repetitive tasks, but it’ll
still be up to you to handle features unique to each specific application. Sometimes, though,
features built into Django or applications bundled with it will provide most or all of what you
need. The contrib applications bundled with Django, for example, provide functionality you’ll
likely reuse from project to project.

You’ll build your simple brochureware CMS by relying heavily on two of Django’s contrib
applications: django.contrib.flatpages and django.contrib.admin.

The first of these, django.contrib.flatpages, provides a data model for a simple page,
including a title, content, and a few configurable options such as custom templates or authen-
tication. The other application, django.contrib.admin, provides a powerful administrative
interface that can work with any Django data model, letting you create a more or less “instant”
web-based interface to administer a site.

The first step here is to add these applications to the INSTALLED_APPS setting. Remember
that Django placed four applications in the list by default. Now you can add two more:

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 13

 INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.admin',
 'django.contrib.flatpages',
)

Once you’ve made that change and saved your settings file, run syncdb again:

 python manage.py syncdb

You’ll see the output scroll by as Django creates database tables for the data models
defined in these applications. Now open your project’s urls.py file, which—as you saw in the
previous chapter—contains the root URL configuration for your project. To enable the admin-
istrative application, follow the instructions to “uncomment” lines in two places in this file:
two lines near the top of the file containing import statements and one line near the bottom,
which I’ll cover shortly.

■note Python comments are lines that begin with the character “#” and that don’t execute as code. They
either provide information to a person reading the file or point to code that has been temporarily disabled.
(The author might have disabled the code because some feature needed to be turned off momentarily or
because a bug needed to be tracked down.)

In each of these places in urls.py, uncomment the lines of code by removing the comment
marker at the beginning of the line and the space following it. (Removing the space is impor-
tant, because Python interprets spaces as indicating the structure of the code.) Then save the
file. Now your project’s urls.py file imports the necessary code from the admin application and
includes the necessary URLs to make it work.

Now you’ll be able to launch the built-in web server again and see the administrative
interface:

 python manage.py runserver

The URL pattern for the admin application is ^admin/, which means that if you visit http://
127.0.0.1:8000/admin/ in your web browser, you’ll see the login page. Enter the username
and password you used when syncdb prompted you to create a user account, and you’ll see
the main admin index page (see Figure 2-1). But note that URLs beginning with admin/ are the
only ones that will work right now; you haven’t set up any other URLs yet.

http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/admin/

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 14

Figure 2-1. Home page of the Django administrative interface

ADmOnitiOn: hOW DjAngO UrL COnFigUrAtiOn WOrks

A Django URL configuration file, or URLConf, defines a list of URL patterns and indicates how they map
to parts of your code. Each URL pattern has at least two parts. The first part is a regular expression that
describes what the URL looks like. The second part is either a view (a Python function that can respond to
HTTP requests) to map that URL to, or an include, which points to a different URLConf module. The ability to
include other URLConf modules makes it easy to define reusable and “pluggable” sets of URLs, which can be
dropped into any point in your project’s URL hierarchy.

A regular expression, in case you’ve never encountered that term before, is a common way to represent
a particular pattern of text. Most programming languages support checking whether a given piece of text
matches the pattern specified in a regular expression, and most introductory programming books cover regu-
lar expressions. Dive Into Python by Mark Pilgrim (Apress, 2004) has a good chapter that covers the basics.

Also, note that regular expressions are quite strict about matching. Ordinarily, a web server will be
somewhat lax and treat /admin and /admin/ as the same URL, for example, returning the same result
either way. But if you specify a regular expression that includes a slash on the end—as your urls.py does
for the admin—you must include the slash on the end when you visit that address in your browser. If you
don’t, the pattern will not match and you’ll get a “Page not found” error.

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 15

Each item listed on the index page corresponds to a data model in one of the installed
applications. The items are grouped according to which application they belong to. The auth
application, django.contrib.auth, provides models for users and groups; the sites application,
django.contrib.sites, provides a model to represent a web site; and the flatpages application
you just installed provides a “flat-page” model. To the right of this list is a Recent Actions side-
bar, which reports actions you’ve taken recently in the admin interface. It’s empty now because
you haven’t done anything yet, but it will show a summary of your actions as soon as you start
making changes to site content. As a first step, click the Sites link. You’ll see a screen like the
one shown in Figure 2-2.

As part of its initialization, django.contrib.sites created an example site “object” for you,
which you can click to edit. Because the built-in web server is running on your computer’s
local loopback interface at port 8000, change the Domain Name field to 127.0.0.1:8000 and
change the Display Name field to localhost. Then click the Save button at the bottom-right
corner to save your changes to the database. If you go back to the main index of the admin
interface, you’ll see that the Recent Actions sidebar now has an entry for that site, showing that
you’ve changed it recently.

Figure 2-2. The default site object created by Django

You’ll notice that the main admin page displays an Add link and a Change link next to
each type of item (see Figure 2-1). Add a new flat page by clicking the Add link next to the Flat
Pages link. This will bring up a blank form, automatically generated from the appropriate data
model. Enter the following values:

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 16

	 •	 In	the	URL	field,	enter	/first-page/.

	 •	 In	the	Title	field,	enter	My first page.

	 •	 In	the	Content	field,	enter	This is my first Django flat page.

Then scroll down and click the Save and Continue Editing button. Django will save the
new flat page into your database and then redisplay the form so you can edit the page. You’ll
also notice that two buttons have appeared above the form: History and View on Site. The His-
tory button shows a simplified history of this flat page (right now, nothing but the initial entry
for it has been created). The View on Site button lets you see the flat page at its public URL.
Clicking the View on Site button redirects you to http://127.0.0.1:8000/first-page/, which
will, for the moment, display an error message like the one shown in Figure 2-3.

Figure 2-3. A Django “Page not found” error

http://127.0.0.1:8000/first-page/

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 17

This is a 404 “Page not found” error, but with a twist—every new Django project starts out in
debugging mode, which displays more useful error messages to help you get up and running. In
this case, Django shows you the URL patterns it found in your project’s URLConf, and explains
that the URL you tried to visit didn’t match any of them. This makes sense because you haven’t
yet added anything that looks like the URL /first-page/. So let’s fix that. Open the urls.py file
again and add the following line right below the URL pattern for the admin interface:

 (r'', include('django.contrib.flatpages.urls')),

The pattern part of this is simply an empty string (''), which in regular-expression syntax
means it will actually match any URL. If you wanted to, you could go into urls.py and add a
new line each time you add a flat page. You’ll mostly define individual URLs in applications
you’ll develop later, but because django.contrib.flatpages lets you specify anything for a
page’s URL, it’s easiest in this case to simply place a “catch-all” URL pattern to handle it.

ADmOnitiOn: OrDer OF UrL PAtterns

When Django is trying to match a URL, it starts at the top of the list of URL patterns and works its way down
until it finds a match. This means that it’s better to have more specific patterns like the ^admin/ line come
first, and more general patterns like the catch-all for flat pages come last; otherwise, something like the
catch-all might match a URL before Django gets to the more specific pattern you actually wanted.

The URL pattern for the admin simply specified admin.site.root to handle any incoming
HTTP request for a URL matching its regular expression. (admin.site.root is a Django view,
which responds to an HTTP request.) But this new pattern for flat pages uses include, a func-
tion that tells Django instead to use a different URLConf module (django.contrib.flatpages.
urls) for requests that match its regular expression. Using include like this allows you to
quickly “plug in” different sets of URLs when and where you need them.

Also, notice that instead of specifying the URLConf through its location on disk (such as
django/contrib/flatpages/urls.py), the syntax specifies it by using the same style that you
use when importing Python code: module and submodule names separated by dots. This is
a common pattern in Python because there are functions that can dynamically carry out the
same tasks as the import statement. You’ll find the pattern extremely useful.

Save your urls.py file and either refresh the page in your browser or navigate again to
http://127.0.0.1:8000/first-page/. The page still displays an error, but now you’re closer to
having the simple CMS working (see Figure 2-4).

http://127.0.0.1:8000/first-page/

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 18

Figure 2-4. A Django server error page

This page looks a little scary, but it’s actually not. Once again, Django’s debugging mode
tries to give you as much information as it can. The top of the page shows a short summary of
the error, followed by more detailed information, including a full stack trace (a copy of every-
thing Python and Django were doing when the error happened), a listing of the incoming
HTTP request, and your Django project’s settings (with any sensitive settings, such as database
passwords, blanked out for security reasons).

The problem here is that a flat page, like most output from Django, expects to be dis-
played via a template that generates the correct HTML. django.contrib.flatpages, by default,
looks for a template file named flatpages/default.html, and you haven’t created that yet. The
editing form in the admin interface will, if you go back and look for it, also show a field where
you can input a different template file name on a per-page basis. So let’s pause for a moment
and take care of that.

introducing the Django template system
Django includes a templating system that has two major design goals:

	 •	 Provide	an	easy	way	to	express	the	logic	needed	for	your	application’s	presentation

	 •	 As	much	as	possible,	avoid	restricting	the	types	of	output	you	can	generate

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 19

(You can find the templating system in the module django.template, if you’ve been
exploring the Django codebase and want to take a look at it.)

Some template languages allow you to embed nearly any form of programming code
directly in the templates. While this can be handy, it also creates a tendency for your applica-
tion’s core programming logic to migrate slowly out of other parts of the code and into the
templates, which really ought to confine themselves to the app’s presentational aspects. And
some templating languages force you to write XML or other specific types of markup, even
if what you want to produce isn’t XML at all. Django’s template system does its best to avoid
both of these pitfalls by keeping the allowed programming to a minimum and by not con-
straining you to specific markup languages. (I’ve used the Django template system to generate
content for e-mail messages and even Excel spreadsheets, for example.)

Ultimately, a Django template file for a web page—in other words, a template whose out-
put is HTML—doesn’t end up looking all that different from a normal hand-written web page.
The biggest distinction is in two features that the Django template system provides:

	 •	 Variables: A variable is fed to the template by a view—the actual Python function
that responds to an HTTP request—and is wrapped in double curly braces, like this:
{{ variable_name_here }}. This placeholder is simply replaced with the actual value
of the variable.

	 •	 Tags: A tag is wrapped in single curly braces and percent signs, like this: {% tag_name_
here %}. Tags can do almost anything, and the exact effect depends on the particular
tag. You can also write and use your own custom tags in Django templates, so if there’s
something you need that isn’t provided out of the box, you can add it yourself.

Whenever Django needs a template file, it can look in any of several places, defined by
configurable modules called template loaders. By default, Django looks in the following places:

	 •	 Inside	any	directories	specified in your settings module by the setting TEMPLATE_DIRS

	 •	 Inside	your	installed	applications, if any of them include a directory named templates/

These template loaders let you provide a set of default templates with any given applica-
tion, but also give you the power to override those on a project-by-project basis by listing
specific directories you’ll put customized templates into. The administrative interface, for
example, uses this to great effect: django.contrib.admin contains a templates/ directory with
the default templates, but you can add your own templates in a project-specific template
directory if you need to customize the admin interface.

Go ahead and choose a directory where you’d like to keep the templates for the simple
CMS application. The exact location doesn’t matter, as long as it’s someplace where you’re
allowed to create and read files on your computer. Next, open your project’s settings.py file,
scroll down until you see the TEMPLATE_DIRS setting, and add that directory to the list. Here’s
mine:

 TEMPLATE_DIRS = (
 '/Users/jbennett/html/django-templates/cms/',
)

You’ll note that I’m specifying a completely different directory from the one where the
project’s code is kept. This is often a good practice because it reinforces the idea that the par-
ticular presentation—in the form of a set of HTML templates—can and should be decoupled

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 20

from the back-end code whenever possible. It’s also a useful practice for any application you
might end up reusing across multiple web sites. Different sites will obviously have different
sets of templates, so you’ll find it handy to able to switch them at will without needing to move
lots of files in and out of a project-specific location.

ADmOnitiOn: trAiLing COmmAs

As you might have already learned from a tutorial, Python offers two simple ways to represent sequences of
items: lists and tuples. A tuple is usually wrapped in parentheses, as you’ve seen so far with the INSTALLED_
APPS and now the TEMPLATE_DIRS settings, both of which accept tuples as legal values. But Python tuples
require items to be separated with commas, even if there’s only one item in the tuple. Omitting the commas
is a common annoyance for users who are getting used to the language—I’ve been writing Python for several
years now, and I still sometimes forget to include the commas. Generally, I find it helpful to remember that in
Python, the comma—and not the parentheses, which technically aren’t required—is what makes a tuple.

Now, inside the template directory you chose, create a subdirectory called flatpages/,
and in that subdirectory create a new file called default.html. Refresh the flat page in your
web browser, and you should see a blank white page. Now you have a template directory
specified in your settings, and the file flatpages/default.html exists inside it, so there’s no
longer an error. But the template file is empty, so it doesn’t produce any output. Let’s fix that
by opening up the default.html file and adding some content:

 <html>
 <head>
 <title>{{ flatpage.title }}</title>
 </head>
 <body>
 <h1>{{ flatpage.title }}</h1>
 {{ flatpage.content }}
 </body>
 </html>

Now save the file and refresh the page in your web browser again. You should see some-
thing like the screen shown in Figure 2-5.

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 21

Figure 2-5. Your first Django flat page

You’ll see that this template uses two variables—flatpage.title and flatpage.content—
and no tags. Those variables actually come from a single source: a variable flatpage, which
was passed to the template by a Python view function defined inside django.contrib.flat-
pages. The value of this variable is a FlatPage object, an instance of the data model for flat
pages. Django created this object by querying the database for a row with a URL column that
matched the URL /first-page/. It then used the data from that row to create a Python object
with attributes named title and content, matching what you entered in the admin interface
(along with other attributes—url, for example—which aren’t as important for the presenta-
tional aspect of things).

Chapter 2 ■ YOUr F IrSt DJaNGO SIte: a S IMpLe CMS 22

ADmOnitiOn: hOW DiD DjAngO DO thAt?

Django includes a library called an object-relational mapper, or ORM. The ORM understands the structure
of your data models (which are defined as simple Python classes) and the corresponding structure of your
database. It provides a straightforward syntax for translating between rows and tables in your database and
live Python objects in your code, usually without requiring you to write your own SQL queries. Plus, a view
function in Django’s bundled flatpages application uses the ORM to look up the correct flat page and make
it available to the template. (You’ll write your first view function in Chapter 3.) Throughout this book, you’ll see
examples of the Django ORM in action and get a feel for all of its features. You’ll also see how you can bypass
it in situations where you want to roll your own query by hand.

With this template in place, you now have—literally—a simple dynamic CMS that will
let you define as many pages as you’d like, title them, fill in content, and place them at any
URL (except URLs starting with admin/ because they’ll be matched by the URL pattern for the
admin interface). If you wanted to, you could dress up the template with fancier HTML and
a nice cascading style sheet (CSS), create a few more user accounts through the administra-
tive interface, and deploy the application onto a live web server for real-world use. But so far,
you’ve written only a couple lines of actual code: the URL pattern for the pages in your urls.py
file, a few Django settings, and a little HTML.

Obviously, getting an application up and running with Django won’t always be quite this
easy, but hopefully you’ve seen that taking advantage of Django’s components can signifi-
cantly cut down the amount of work you have to do.

Looking Ahead
Pause here for a few moments to play with the simple CMS and explore the Django administra-
tive interface. Take particular note of the Documentation link that appears in the upper-right
corner of each page in the admin. It provides automatically generated documentation for all of
the data models, URL patterns, and template tags available in your Django project. Not all of it
will be immediately understandable at this point, but click around in the documentation area
to get a feel for what’s in there. When you’re developing or working with more complex applica-
tions, the admin documentation system will be an important resource for learning about and
understanding the code you’re using.

When you’re ready to get back to work, the next chapter will be waiting for you with a
guide to customizing this simple CMS and adding some useful features, including a search
function.

C h a p t e r 3

Customizing the Simple CMS

The simple CMS you put together in the last chapter is already in pretty good shape; it’s
something that most developers wouldn’t mind showing to clients as an initial prototype, for
example. But so far, it uses just a few stock applications bundled with Django and doesn’t offer
any extra features on top of that. In this chapter, you’ll see how to take this simple project as a
foundation and start adding your own customizations, like rich-text editing in the admin and a
search system for quickly finding particular pages.

Adding Rich-Text Editing
The default administrative interface Django provides for the flatpages application is already
production-quality. Many Django-based sites already use it as is to provide an easy way to
manage the occasional simple “About page” or to handle similar tasks. But you might want
to make the web-based administrative interface just a little bit friendlier by adding a rich-text
interface to it so that users don’t have to type in raw HTML.

There are a number of JavaScript-based rich-text editors (RTEs), available with different
features and configurations, but I’ll be using one called TinyMCE. One of the most popular
options, it has roughly the best cross-browser support of any of the existing RTEs. (Due to dif-
ferences in the APIs implemented by web browsers, there’s no truly consistent cross-platform
RTE at the moment.) TinyMCE is also free and released under an open source license. You can
download a copy of the latest stable version from http://tinymce.moxiecode.com/.

Once you’ve unpacked TinyMCE, you’ll see it contains a jscripts/ directory, inside which
is a tiny_mce directory containing all the TinyMCE code. Make a note of where that directory is,
and go to the project’s urls.py file. In urls.py, add a new line so that it looks like the following:

from django.conf.urls.defaults import *

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
 # Example:
 # (r'^cms/', include('cms.foo.urls')),

23

http://tinymce.moxiecode.com/

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS24

 # Uncomment the admin/doc line below and add 'django.contrib.admindocs'
 # to INSTALLED_APPS to enable admin documentation:
 # (r'^admin/doc/', include('django.contrib.admindocs.urls')),

 # Uncomment the next line to enable the admin:
 (r'^admin/', include(admin.site.urls)),
 (r'^tiny_mce/(?P<path>.*)$', 'django.views.static.serve',
 { 'document_root': '/path/to/tiny_mce/' }),
 (r'', include('django.contrib.flatpages.urls')),
)

Replace the /path/to/tiny_mce part with the actual location on your computer of the
tiny_mce directory. For example, if the directory resides at /Users/jbennett/javascript/
TinyMCE/jscripts/tiny_mce, you’d use that value.

AdmoniTion: mEdiA FilEs in PRoducTion vs. dEvEloPmEnT

In production, you’ll usually want to avoid having the same web server handle both Django and static media
files, like style sheets or JavaScript. Because the web-server process needs to keep a copy of Django’s code
and your applications in memory, it’s a waste of resources to use that same process for the simple task of
serving a file off the disk.

For now, I’m using a helper function built into Django that can serve static files, but keep in mind that
you should use this only for development on your own computer. Using it on a live, deployed site will severely
impact your site’s performance. When you deploy a Django application to a live web server, consult the offi-
cial Django documentation at http://docs.djangoproject.com/ to see instructions for your specific
server setup.

Now you just need to add the appropriate JavaScript calls to the template used for add-
ing and editing flat pages. In the last chapter, when you filled in the TEMPLATE_DIRS setting, I
mentioned that Django can also look directly inside an application for templates and that this
capability lets an application author provide default templates while still allowing individual
projects to use their own. That’s precisely what you’re going to take advantage of here. The
admin application is not only designed to use its own templates as a fallback, but it also lets you
provide your own if you’d like to customize it.

By default, the admin application will look for a template in several places, using the first
one it finds. The template names it looks for are as follows, in this order:

 1. admin/flatpages/flatpage/change_form.html

 2. admin/flatpages/change_form.html

 3. admin/change_form.html

http://docs.djangoproject.com/

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS 25

AdmoniTion: choosing FRom mulTiPlE TEmPlATEs

Normally, when you write a Django view—the function that actually responds to an HTTP request—you’ll set
it up to use a single template for its output. (The applications you’ll write in this book will typically need to
specify only one template for each view.) However, there is a helper function, django.template.loader.
select_template, which takes a list of template names, searches for template files matching those
names, and uses the first one it finds. The admin application makes use of this helper function to precisely
enable the sort of customization I’m making here. If you’re ever writing an application where you need to do
the same, keep that function in mind.

The admin application provides only the last template in this list—admin/change_form.
html—and uses that for all adding and editing of items if you don’t supply a custom template.
But as you can see, there are a couple of other options. By using a list of possible template
names, rather than a single prebuilt template, the admin application lets you override the
interface for a specific application (in this case, the flatpages application, by supplying the
template admin/flatpages/change_form.html) or for a specific data model (by supplying the
template admin/flatpages/flatpage/change_form.html). Right now you want to customize
the interface for only one specific model. So inside your templates directory, create an admin
subdirectory. Then create a flatpages subdirectory inside admin and a flatpage subdirectory
inside flatpages. Finally, copy the change_form template from django/contrib/admin/tem-
plates/admin/change_form.html in your copy of Django into the admin/flatpages/flatpage/
directory you just created.

Now you can open up the change_form.html template in your template directory and
edit it to add the appropriate JavaScript for TinyMCE. This template is going to look fairly
complex—and it is, because the admin application has to adapt itself to provide appropriate
forms for any data model—but the change you’ll be making is pretty simple. On line 6 of the
template, you’ll see the following:

 {{ media }}

Immediately below that, add the following:

 <script type="text/javascript" src="/tiny_mce/tiny_mce.js"></script>
 <script type="text/javascript">
 tinyMCE.init({
 mode: "textareas",
 theme: "simple"
 });
 </script>

This will make use of the URL you set up to serve the TinyMCE files. Now save the file and
go back to your web browser. The form displayed for adding and editing flat pages will now
have the basic TinyMCE editor attached to the text area for the page’s content, as shown in
Figure 3-1.

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS26

TinyMCE is extremely customizable. You can rearrange the editing toolbar, choose which
of the many built-in controls should appear on it, add your own controls, and write new
themes to change the way it looks. And if you’d like to use another RTE or make other customi-
zations to the admin interface, you can follow the same process.

Figure 3-1. The flat-pages admin form with rich-text editor

Adding a search system to the cms
So far you’ve just been using the applications bundled with Django itself and making small
customizations to the templates they use. Up to now that’s accomplished a lot, but for most
of your projects, you’ll be writing your own applications in Python. So now you’ll add a new
feature—written in Python—to the simple CMS: a simple search system that lets users type in
a query and get back a list of any pages whose titles or contents match.

It would be possible to add this directly to the flatpages application bundled with Django,
but that’s not really a good idea, for two reasons:

	 •	 It	makes	upgrading	Django	a	hassle.	You	have	extra	Python	code	that	didn’t	come	with	
Django and the code needs to be preserved across the upgrade.

	 •	 A	useful	feature	like	a	search	system	might	need	to	be	expanded	later	to	work	with	
other types of content, in which case it wouldn’t make sense to have it be part of the
flatpages application.

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS 27

So let’s make this into its own application. Go to your project directory and type the fol-
lowing command:

 python manage.py startapp search

Just as the startproject command to django-admin.py created a new, empty project
directory, the startapp command to manage.py creates a new, empty application module.
It will set up the search/ directory inside your project and add the following files to it:

	 •	 __init__.py: Just like the one in the project directory, this __init__.py file starts out
empty. Its job is to indicate that the directory is also a Python module.

	 •	 models.py: This file will contain any data models defined for the application. A little
later in this chapter, you’ll write your first model in this file.

	 •	 views.py: This file will contain the view functions, which respond to HTTP requests
and do most of the work of user interaction.

	 •	 tests.py: This is where you can place unit tests, which are functions that let you auto-
matically verify that your application works as intended. You can safely ignore this file
for now. (You’ll learn more about unit tests in Chapter 11.)

For now, you’ll just be writing a simple view, so open up the views.py file. The first step is
to import the things you’ll be using. Part of Python’s (and Django’s) design philosophy is that
you should be able to clearly see what’s happening with as little implicit “magic” as possible.
So each file needs to contain Python import statements for things it wants to reference from
other Python modules. To start, you’ll need three import statements:

 from django.http import HttpResponse
 from django.template import loader, Context
 from django.contrib.flatpages.models import FlatPage

These statements give you a solid foundation for writing your search view:

	 •	 HttpResponse is the class Django uses to represent an HTTP response. When
an HttpResponse is given as the return value of a view, Django will automatically
convert it into the correct response format for the web server it’s running under.

	 •	 The	loader module in django.template provides functions for specifying the name
of a template file, which will be located (assuming it’s in a directory specified in
TEMPLATE_DIRS), read from disk, and parsed for rendering.

	 •	 Context is a class used to represent the variables for a template. You pass it to a Python
dictionary containing the names of the variables and their values. (If you’re familiar
with other programming languages, a Python dictionary is similar to what some lan-
guages call a hash table or associative array.)

	 •	 FlatPage is the model class that represents the pages in the CMS.

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS28

AdmoniTion: PyThon nAming sTylE

Every programming language has a set of standard conventions for how to name things. Java, for example,
tends to use camel case, where things are given NamesThatLookLikeThis, while PHP tends to favor
underscores, or names_that_look_like_this.

The standard practice in Python is that classes should have capitalized names—hence Context—and
use the camel-case style for multiword names like HttpResponse or FlatPage. Modules, functions, and
normal variables use lowercase names and underscores to separate multiple words in a name. Following this
convention will help Python programmers—including you—quickly understand a new piece of code when
reading it for the first time.

If you’re interested in learning more about standard Python style, you can read the official Python style
guide online at www.python.org/dev/peps/pep-0008/.

Now you’re ready to write a view function that will perform a basic search. Here’s the
code, which will go into views.py below the import statements you added:

 def search(request):
 query = request.GET['q']
 results = FlatPage.objects.filter(content__icontains=query)
 template = loader.get_template('search/search.html')
 context = Context({ 'query': query, 'results': results })
 response = template.render(context)
 return HttpResponse(response)

Let’s break this down line by line. First, you’re defining a Python function using the key-
word def. The function’s name is search, and it takes one argument named request. This
will be an HTTP request (an instance of the class django.http.HttpRequest), and Django will
ensure that it’s passed to the view function when needed.

Next, look at the HTTP GET variable q to see what the user searched for. Django automati-
cally parsed the URL, so a URL like this:

 http://www.example.com/search?q=foo

results in an HttpRequest whose GET attribute is a dictionary containing the name q and the
value foo. Then you can read that value out of it just as you would access any Python diction-
ary.

The next line does the actual search. The FlatPage class, like nearly all Django data mod-
els, has an attribute named objects that can be used to perform queries on that model. In
this case, you want to filter through all of the flat pages, looking for those whose contents
contain the search term. To do this, you use the filter method and the argument content__
icontains=query, storing the results in a variable named results. This will provide a list of
FlatPage objects that matched the query.

http://www.python.org/dev/peps/pep-0008/
http://www.example.com/search?q=foo

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS 29

AdmoniTion: djAngo dATAbAsE-lookuP synTAx

As you’ll see shortly, a Django data model has special attributes called fields, which usually correspond to
the names of the columns in the database. When you use Django’s object-relational mapper (ORM) to run a
query, each argument in the query comprises a combination of a field name and a lookup operator, separated
by double underscores.

In this case, the field name is content because that’s the field on the FlatPage model that represents
the page’s contents (each FlatPage also has fields named title, url, and so on). The lookup operator is
icontains, which checks whether the value in that column contains the string you’ve passed to it. The i
at the front means the operator performs a case-insensitive lookup, so a query for hello would match both
hello and Hello, for example. The Django ORM supports a large number of other lookup operators, many of
which you’ll see in action throughout this book.

Now that you have the query and the results, you need to produce some HTML and return
a response. So the next line uses the get_template function of the loader module you imported
to load a template named search/search.html. Next, you need to give the template some data to
work with, so create a Context containing two variables: query is the search query, and results
contains the search results.

You then use the template’s render method, passing in the Context you created, to gen-
erate the HTML for the response. And finally, you’ll return an HttpResponse containing the
rendered HTML.

Now save the views.py file. You’ll come back to it in a moment and make some improve-
ments, but for now you need to create a template so that the search view can generate its HTML.
Go into your templates directory, create a new subdirectory called search, and inside that create
a file called search.html. Next you’ll open up the search.html file and add the following to it:

 <html>
 <head>
 <title>Search</title>
 </head>
 <body>
 <p>You searched for "{{ query }}"; the results are listed below.</p>

 {% for page in results %}
 {{ page.title }}
 {% endfor %}

 </body>
 </html>

This makes use of both the variables passed to it. It uses {{ query }} to display the query
and loops over the results to display them in an unordered list. (Remember, you can directly
output variables in Django templates by wrapping their names in double curly braces.)

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS30

Notice that I’ve also used a Django template tag, for, which lets you loop over a sequence
of things and do something with each one. The syntax is pretty simple. In effect, it says, “for
each page in the results variable, display the following HTML, filled in with the values from
that page.” You can probably guess that, within the for loop, {{ page.title }} refers to the
title field of the current page in the loop, but {{ page.get_absolute_url }} is new. It’s stan-
dard practice for a Django model class to define a method called get_absolute_url(), which
will output a URL to be used for referring to the object, and the FlatPage model does so. (Its
get_absolute_url() method simply returns the value of its url field; other models can and
will have more complex ways of working out their URLs.)

AdmoniTion: cAlling An objEcT’s mEThods in A djAngo TEmPlATE

The Django template system lets you access methods on Python objects in the same way you access any
other attributes: using a dot (.) character. For example, {{ page.get_absolute_url }} uses a dot to
call the get_absolute_url() method. But note that in a template you don’t use parentheses when calling
a method, and you can’t pass arguments to a method called in this way. This goes back to Django’s phi-
losophy of not allowing too much “programming” in templates—something that’s complex enough to need
arguments passed to it probably isn’t purely presentational. The Django template system also forbids access
to methods that alter the data in your database. Calls to those methods definitely belong in a view function
and not in a template.

You can also access values from a dictionary by using the same dot syntax. As with the lack of paren-
theses in method calls, this is different from how you would do it in Python code (where dictionary access
uses brackets, as in request.GET[‘q’]), but it has the advantage of making the Django template syntax
extremely uniform. The technique also serves as a reminder that Django templates are not simply Python
code and therefore don’t offer a full programming language.

Also, note that the for tag needs a matching endfor tag when you’re done telling it what to
do inside the loop. Most Django template tags that span a section of the template will need an
explicit end tag to declare when you’re done with them.

Now open your flatpages/default.html template and somewhere in it place the follow-
ing HTML:

 <form method="get" action="/search/">
 <p><label for="id_q">Search:</label>
 <input type="text" name="q" id="id_q" />
 <input type="submit" value="Submit" /></p>
 </form>

This HTML adds a search box that will submit to the correct URL with the correct GET
variable (q) for the search query.

Finally, open up your project’s urls.py. After the lines for the admin and the TinyMCE
JavaScript, but before the catch-all pattern for the flat pages, add the following:

 (r'^search/$', 'cms.search.views.search'),

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS 31

Remember that because this regular expression ends in a slash, you’ll need to include it
when you type the address into your browser. Unlike the URL patterns you’ve set up previ-
ously, which used the include directive to pull in other URLConf modules, this one maps the
URL search/ to a single specific view: the search view you just wrote. After saving the urls.py
file, you should be able to type in a search query on any page in your CMS and get back a list of
matching pages.

improving the search view
The search view works pretty well for something so short: it’s only about a half dozen lines of
code, plus a few import statements. But you can make it shorter, and it’s a good idea to do so.

You’ll notice that of the six lines of actual code in the search view, four are dedicated to
loading the template, creating a Context, rendering the HTML, and returning the response.
That’s a series of steps you’ll need to walk through on nearly every view you write, so Django
provides a shortcut function called django.shortcuts.render_to_response that handles the
process all in one step. So edit the views.py file to look like this:

 from django.shortcuts import render_to_response
 from django.contrib.flatpages.models import FlatPage

 def search(request):
 query = request.GET['q']
 return render_to_response('search/search.html',
 { 'query': query,
 'results': FlatPage.objects.filter(➥

 content__icontains=query) })

The render_to_response function gets two arguments here:

 1. The name of the template file, search/search.html

 2. The dictionary to use for the template’s context

Given that information, it handles the entire process of loading the template, rendering
the output, and creating the HttpResponse. Notice also that you’re no longer using a separate
line to fetch the results. They’re only needed for the template context, so you can do the query
right there inside the dictionary, trusting that its result will be assigned properly to the results
variable. You’ve also broken up the arguments, including the dictionary, over several lines.
Python allows you to do this any time you construct a list or dictionary (as well as in several
other situations), and it makes the code much easier to read than if it were all sprawled out
over one long line.

Save the views.py file, and then go back and perform a search again. You’ll notice that
it works exactly the same way, only now the search view is much shorter and simpler. And,
importantly, it doesn’t have the repetitive “boilerplate” of the template loading and rendering
process. There will be times when you’ll want to do that manually (for example, if you want to
insert some extra processing before returning the response), but in general you should use the
render_to_response shortcut whenever possible.

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS32

Another simple improvement would be to have the search view handle situations where
it’s accessed directly. Right now, if you just visit the URL /search/ instead of accessing it
through the search box on another page, you’ll see an ugly error complaining that the key q
wasn’t found in the request.GET dictionary (because the q variable comes from performing
a search). It would be much more helpful to simply display an empty search form, so let’s
rewrite the view to do the following:

 def search(request):
 query = request.GET.get('q', '')
 results = []
 if query:
 results = FlatPage.objects.filter(content__icontains=query)
 return render_to_response('search/search.html',
 { 'query': query,
 'results': results })

Now you’re using request.GET.get('q', '') to read the q variable. get(), a method avail-
able on any Python dictionary, lets you ask for the value of a particular key and specify a default
to fall back on if the key doesn’t exist (the default in this case is just an empty string). Then you
can check the result to see whether there’s a search query. If there isn’t, you set results to an
empty list, and that won’t be changed. This means you can rewrite the template like this:

 <html>
 <head>
 <title>Search</title>
 </head>
 <body>
 <form method="get" action="/search/">
 <p><label for="id_q">Search:</label>
 <input type="text" name="q" id="id_q" value="{{ query }}" />
 <input type="submit" value="Submit" /></p>
 </form>
 {% if results %}
 <p>You searched for "{{ query }}"; the results are listed below.</p>

 {% for page in results %}
 {{ page.title }}
 {% endfor %}

 {% else %}
 {% if query %}
 <p>No results found.</p>
 {% else %}
 <p>Type a search query into the box above, and press "Submit"
 to search.</p>
 {% endif %}
 {% endif %}
 </body>
 </html>

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS 33

Now the search.html template will show the same search box that appears on all the other
pages in the CMS, and you’ll notice that a value attribute has also been added to the HTML for
the search input box. This way, if there was a query, it will be filled in as a reminder of what the
user searched for.

I’m also using another new template tag: if. The if tag works similarly to the if statement
in Python, letting you test whether something is true or not and letting you do something based
on the result. It also takes an optional else clause, which I’m using to show a different message
if the user hasn’t searched for anything yet. Also, just as the for tag needs an endfor tag, if needs
an endif. And finally, notice that you can nest the if tag: inside the else clause I’m using another
if tag to differentiate between the results being empty because there was no query and the
results being empty because no pages matched the query.

AdmoniTion: sEcuRiTy considERATions

One of the most common types of security problems with web applications is vulnerability to a cross-site
scripting attack, or XSS. This sort of vulnerability occurs when you blindly accept input from a user and dis-
play it in a page on your site, as I’m doing with the search query. The problem is that a hacker can send a
search query that contains HTML and JavaScript, then lure someone into visiting a page for that query. The
JavaScript will be executed as if it were part of your site and could be used to hijack a user’s account.

There’s also a risk of another form of attack, called SQL injection, where a hacker relies on a web site to
include user input directly in a database query. For example, a hacker might send a search query containing
the text “DROP DATABASE;” which could—if blindly executed—delete the entire database for the site.

Django provides some built-in protection from these types of attacks, however. First, Django templates
automatically “escape” the contents of any variables you display (so that, for example, the < character becomes
<, removing the ability for a variable to end up as HTML that’s rendered by a web browser). Second, Django
carefully constructs database queries so that SQL injection isn’t possible.

However, you shouldn’t let these mechanisms lull you into a false sense of invincibility. Any time you’re
dealing with user-submitted data, you need to carefully ensure that you’re taking appropriate steps to pre-
serve your site’s security.

improving the search Function with keywords
The search function you’ve just added to the CMS is pretty handy, but you can make it a little
bit better by adding the ability to recognize specific keywords and automatically pull up partic-
ular pages in response. This will let the site’s administrators provide helpful hints for users who
are searching and also creates useful metadata that you might want to take advantage of later.

To add this feature, you’ll need to create a Django data model; models go in the models.py
file, so open that up. You’ll see that it already has an import statement at the top:

 from django.db import models

This statement imports the module that contains all of the necessary classes for creating
Django data models, and the startapp command automatically added it to the models.py file
to help you get started. Below that line, add the following:

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS34

 from django.contrib.flatpages.models import FlatPage

 class SearchKeyword(models.Model):
 keyword = models.CharField(max_length=50)
 page = models.ForeignKey(FlatPage)

 def __unicode__(self):
 return self.keyword

This is a simple Django model with two fields:

	 •	 keyword: This is a CharField, which means it will accept short strings. I’ve specified a
max_length of 50, which means that up to 50 characters can go into this field. In the
database, Django will turn this into a column declared as VARCHAR(50).

	 •	 page: This is a foreign key pointing at the FlatPage model, meaning that each
SearchKeyword is tied to a specific page. Django will turn this into a foreign-key
column referencing the table that the flat pages are stored in.

Finally, there’s one method on this model: __unicode__(). This is a standard method that all
Django model classes should define, and it’s used whenever a (Unicode) string representation of
a SearchKeyword is needed. If you’ve ever worked with Java, this is like the toString() method on
a Java class. The __unicode__() method should return something that can sensibly be used as a
representation of the SearchKeyword, so it’s defined to return the value of the keyword field.

AdmoniTion: PyThon’s Two TyPEs oF sTRings

Python actually has two different classes that represent strings: str and unicode. (There’s also a parent
class, basestring, which can’t be instantiated directly but does provide a useful way to check whether
something is a string type.) Instances of str are sometimes called bytestrings because each one corresponds
to a specific series of bytes in a specific character encoding. (The default for Python is ASCII, but you can eas-
ily create strings in other encodings.) Instances of unicode, meanwhile, are strings of Unicode characters,
and need to be converted to a byte-based encoding such as UTF-8 or UTF-16 before being output. (Unicode
itself is not an “encoding.”)

Because of this, Python classes can define either of two specially named methods, __str__() or
__unicode__(), to provide string representations of themselves or, if necessary, they can define both. All
of Django’s internals are built to work with unicode strings, so it’s best simply to define __unicode__().
Strings stored by Django models will be converted to unicode strings when they’re retrieved from your data-
base, and Django will automatically convert to appropriately encoded bytestrings when producing output for
an HTTP response.

Be aware that not all Python software is written to handle unicode strings (or even non-ASCII-encoded
bytestrings) properly. When you write applications that rely on third-party software, you will sometimes have
to work around this by manually converting a string. Django provides a set of utility functions to make this
easier, and in later chapters you’ll see them in action.

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS 35

Save the models.py file, then open the project’s settings.py file and scroll down to the
INSTALLED_APPS setting. Add cms.search to the list, and save the file. This will tell Django that
the search application inside the cms project directory is now part of the project and that its
data model should be installed. Next, run python manage.py syncdb, and Django will create the
new table for the SearchKeyword model.

AdmoniTion: why did ThE sEARch viEw woRk bEFoRE?

You’ve probably noticed that I used the search view already without adding the search application to
INSTALLED_APPS. This worked because you can take advantage of any Python code on your computer when
routing URLs to view functions, regardless of whether they’re in an application that’s listed in INSTALLED_
APPS or not. In fact, they don’t have to be part of a Django application module at all. This means, if you really
want or need to, you can keep stand-alone libraries of code on your computer and call on them from your
Django projects.

Django does need to know exactly which applications to install data models for, however. So now that
you’ve got a model, it’s necessary to add the search application to INSTALLED_APPS so that Django will
create the database table for it. There are some other features that require you to have an application and list
it in INSTALLED_APPS. Most of the time you’ll want to do that, regardless of whether it’s strictly necessary (if
for no other reason than to provide a quick reminder of what your project is using), but it’s useful sometimes
to know what requires this and what doesn’t.

If you manually connect to your database and look at the table layout (consult the docu-
mentation for the specific database system you’re using to see how to do this), you’ll see that
the new table was created with two columns corresponding to the fields on the SearchKeyword
model. The table also has a third column, id, which is declared as the primary key and is an
auto-incrementing integer. If you don’t explicitly mark any of the fields in a model to serve as a
primary key, Django will do this for you automatically.

Next, you’ll want to enable the administrative interface for the new model. To do this, cre-
ate a new file called admin.py and place the following code inside it:

from django.contrib import admin

from cms.search.models import SearchKeyword

class SearchKeywordAdmin(admin.ModelAdmin):
 pass

admin.site.register(SearchKeyword, SearchKeywordAdmin)

This code defines a subclass of django.contrib.admin.ModelAdmin called
SearchKeywordAdmin. The pass statement means that you don’t want to customize anything in
this subclass (though in a moment you’ll see how to make some changes to this type of class).

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS36

Then the admin.site.register function tells Django’s administrative interface to associate this
ModelAdmin subclass with the SearchKeyword model.

Now you can fire up the development web server again, and you’ll see the new model
appear in the index. You can add and edit keywords just as you can add and edit instances of
any of the models fromthe other installed applications. Unfortunately, this interface is a little
clunky: the keywords are added on a separate page, and you have to explicitly choose which
page to associate each keyword with, as shown in Figure 3-2.

Figure 3-2. The default admin form for a search keyword

What you’d really like is to have the interface for the search keywords appear on the same
page as the form for adding and editing pages. You can do that by making a few small changes
to the SearchKeyword class so that it looks like this:

from django.contrib import admin
from django.contrib.flatpages.admin import FlatPageAdmin
from django.contrib.flatpages.models import FlatPage

from cms.search.models import SearchKeyword

class SearchKeywordInline(admin.StackedInline):
 model = SearchKeyword

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS 37

class FlatPageAdminWithKeywords(FlatPageAdmin):
 inlines = [SearchKeywordInline]

admin.site.unregister(FlatPage)
admin.site.register(FlatPage, FlatPageAdminWithKeywords)

This code is doing several things. First, it defines a new type of class: a subclass of
django.contrib.admin.StackedInline. This class allows a form for adding or editing one
type of model to be embedded within the form for adding or editing a model it’s related to.
(There’s another class for this as well, called TabularInline; the difference between these
classes is in the way the form will look when embedded.) In this case, the class is told that
its model is SearchKeyword, which means it will embed a form for adding or editing search
keywords.

Next, the existing admin class for the FlatPage model is being imported and subclassed,
and a new option is added to it: the inlines declaration, which should be a list of inline
classes to use. This just lists the SearchKeywordInline class you’ve defined. Finally, the
admin.site.unregister function removes the existing admin definition that the flatpages
application provided, and a call to admin.site.register replaces it with the new definition
you’ve just written.

Once you’ve saved this file, you can go back to the admin interface in your browser and
see that each flat page now has several inline forms for search keywords (see Figure 3-3).

Figure 3-3. Search keywords can be added and edited inline, alongside a flat page.

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS38

Go ahead and add some keywords to the pages in your database; you’ll want them to be
available when you try out the improved keyword-based search.

Adding support for keywords in the search view is pretty easy. Just edit the view so that it
looks like the following:

 def search(request):
 query = request.GET.get('q', '')
 keyword_results = []
 results = []
 if query:
 keyword_results = FlatPage.objects.filter(➥

searchkeyword__keyword__in=query.split()).distinct()
 results = FlatPage.objects.filter(content__icontains=query)
 return render_to_response('search/search.html',
 { 'query': query,
 'keyword_results': keyword_results,
 'results': results })

You’ve added a second query in the preceding code, which looks up pages whose associ-
ated search keywords match the query. Though it may look daunting at first, it’s actually pretty
simple.

First you’re using a call to filter, just as in the other query. This one, though, is interest-
ing. It’s actually reaching “across” the foreign key from the SearchKeyword model and looking
in the keyword field there. Any time you have a relationship like this between models, you can
chain lookups across the relationship by using double underscores: searchkeyword__keyword
translates to “the keyword field on the related SearchKeyword model.” The lookup operator
here is __in, which takes a list of things to match against. You’re feeding it query.split().
At this point the query variable is a string, and Python provides a split() method which, by
default, splits on spaces. This is exactly what you want—to be able to handle queries that con-
tain multiple words.

Next, the call to filter is followed by distinct(). The nature of this query means that,
if a single page has multiple keywords that match the search, multiple copies of that page
will show up in the results. You want only one copy of each page, so you use the distinct()
method, which adds the SQL keyword DISTINCT to the database query.

Finally, you add keyword_results to the context you’ll be using with the template. The
template will need to update. Though it’s getting a little more complex because of the multiple
cases it has to handle, it’s still fairly straightforward to follow:

 <html>
 <head>
 <title>Search</title>
 </head>
 <body>
 <form method="get" action="/search/">
 <p><label for="id_q">Search:</label>
 <input type="text" name="q" id="id_q" value="{{ query }}" />
 <input type="submit" value="Submit" /></p>
 </form>

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS 39

 {% if keyword_results or results %}
 <p>You searched for "{{ query }}".</p>
 {% if keyword_results %}
 <p>Recommended pages:</p>

 {% for page in keyword_results %}
 {{ page.title }}
 {% endfor %}

 {% endif %}
 {% if results %}
 <p>Search results:</p>

 {% for page in results %}
 {{ page.title }}
 {% endfor %}

 {% endif %}
 {% endif %}
 {% if query and not keyword_results and not results %}
 <p>No results found.</p>
 {% else %}
 <p>Type a search query into the box above, and press "Submit"
 to search.</p>
 {% endif %}
 </body>
 </html>

The complexity really comes from the nested if tags to deal with the various cases, but
those nested tags let you cover every possibility. Also, notice the line that reads {% if keyword_
results or results %}: the if tag lets you do some simple logic to test whether any or all of
a set of conditions are met. In this case, it provides an easy way to handle the situation where
there’s some type of result, and then it tackles the different cases individually, as needed. If
you’ve added some keywords to the pages in your database, try searching for those keywords
now, and you’ll see the appropriate pages show up in the search results.

Before I wrap up, let’s add one more useful feature to the search view. If there’s only
one result that precisely matches a keyword, you’ll redirect straight to that page and save the
user a mouse click. You can accomplish this by using HttpResponseRedirect, a subclass of the
HttpResponse class that issues an HTTP redirect to a URL you specify. Open up views.py and
add the following line at the top:

 from django.http import HttpResponseRedirect

This is necessary because, again, Python requires you to explicitly import anything you
plan to use. Now edit the search view like this:

 def search(request):
 query = request.GET.get('q', '')
 keyword_results = results = []

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS40

 if query:
 keyword_results = FlatPage.objects.filter(➥

 searchkeyword__keyword__in=query.split()).distinct()
 if keyword_results.count() == 1:
 return HttpResponseRedirect(keyword_results[0].get_absolute_url())
 results = FlatPage.objects.filter(content__icontains=query)
 return render_to_response('search/search.html',
 { 'query': query,
 'keyword_results': keyword_results,
 'results': results })

Up until now, you’ve been treating the results of database queries like normal Python lists,
and, although they can be used like that, they actually make up a special type of object called
a QuerySet. QuerySet is a class Django uses to represent a database query. Each QuerySet has
the methods you’ve seen so far—filter() and distinct()—plus several others, which you can
“chain” together to build a progressively more complex query. A QuerySet also has a count()
method, which will tell you how many rows in the database matched the query. (It does a
SELECT COUNT to find this out, though for efficiency reasons, it can also take advantage of some
other methods that don’t require an extra query.)

AdmoniTion: whEn doEs djAngo ExEcuTE ThE QuERy?

The single most important feature of QuerySet is that it’s “lazy.” Initially, it doesn’t do anything except make
a note of what query it’s eventually supposed to execute in the database, which is why you can keep chaining
extra things onto it to add filtering, a DISTINCT clause, or other conditions. The actual database query won’t
be executed until you do something that forces it to happen, like (in this case) counting or looping over the
results.

By using count(), you can see whether a keyword search returned exactly one result and
then issue a redirect. The URL you redirect to is keyword_results[0].get_absolute_url();
this bit of code pulls out the first (and, in this case, only) page in the results and calls its
get_absolute_url() method to get the URL.

Go ahead and try this out. Add a new search keyword that’s unique to one page, and then
search for it. If you’ve set up the view as previously described, you’ll immediately be redirected
to that page.

looking Ahead
In the last two chapters, you’ve gone from literally nothing to a useful, functional CMS with
an easy web-based administrative interface. You added rich-text editing to prevent users from
having to write raw HTML, and you added a search system that allows administrators to set
up keyword-based results. Along the way, you’ve written fewer than a hundred lines of actual

Chapter 3 ■ CUStOMIZ ING the S IMpLe CMS 41

code. Django did most of the heavy lifting, and you just supplied the templates and a little bit
of code to enable the search function.

Best of all, you now have a simple, reusable solution for a common web-development
task: a brochureware-style CMS. Any time you need to re-create it, you can set up Django
and walk through these same easy steps (or even just make a copy of the project, changing
the appropriate settings in the process). Doing this will save you time and free you from the
tedium of a fairly repetitive situation.

Feel free to spend some time playing around with the CMS: add some style to the tem-
plates, customize the admin pages a bit more, or—if you’re feeling really adventurous—even
try adding a few features of your own. If you’d like a homework assignment of sorts, check out
the Django database API documentation (online at www.djangoproject.com/documentation/
db-api/) and see if you can work out how to add an index view that lists all of the pages in the
database.

When you’re ready for a new project, start reading the next chapter, where you’ll be start-
ing on your first application from scratch: a Django-powered weblog.

http://www.djangoproject.com/documentation/

C h a p t e r 4

a Django-powered Weblog

The simple CMS you built in the last two chapters was a good example of how Django’s
bundled applications can help you get a project off the ground quickly and without much
code. But most of the time, you’ll probably be developing things that aren’t covered quite so
neatly by prebuilt applications included with Django itself. Django still has a lot to offer in
these situations, mostly by taking the bulk of repetitive work off your shoulders. Over the rest
of this book, you’ll be writing applications from scratch and seeing how Django’s components
can make that a much easier and much less painful process. Let’s start with something that’s
quickly becoming a necessity for any organization that goes online: a weblog.

Compiling a Feature Checklist
Real-world applications usually start with at least a rough specification of what they’ll need to
do, and I’ll follow the same process here. Before you sit down and write the weblog applica-
tion, you’ll need to decide up-front what you want it to do. When I wrote a weblog app for my
own personal use, this was the feature list I had in mind:

	 •	 It	needs	to	provide	an	easy	way	for	you	to	add	and	edit	entries	without	writing	raw	
HTML.

	 •	 It	should	support	multiple	authors	and	provide	a	way	to	separate	entries	according	to	
author.

	 •	 Each	entry	should	allow	an	optional	short	excerpt	to	be	displayed	when	a	summary	is	
needed.

	 •	 The	weblog’s	authors	should	be	able	to	create	categories	and	assign	entries	to	them.

	 •	 Authors	should	be	able	to	decide	which	entries	will	be	displayed	publicly	and	which	
will not (in order to, for example, mark an unfinished entry as a draft and come back to
it later).

	 •	 Entries	should	be	able	to	be	“featured,”	and	these	entries	should	be	easily	retrievable	
(for display on the weblog’s home page, for example).

	 •	 A	link	log	should	be	provided,	as	well,	to	allow	posting	of	interesting	or	notable	links.

	 •	 Both	entries	and	links	should	support	tagging—adding arbitrary descriptive words to
provide extra metadata or organization.

43

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG44

	 •	 The	link	log	should	integrate	with	Delicious	(a	social	bookmarking	site	at	http://
delicious.com/) or other popular link-sharing services so that links posted to the
weblog automatically show up on the service as well.

	 •	 Visitors	should	be	able	to	browse	entries	and	links	by	date,	by	tag,	or	(in	the	case	of	
entries) by category.

	 •	 Visitors	to	the	blog	should	be	able	to	leave	comments	on	entries	and	links.

	 •	 Comments	should	be	subject	to	some	sort	of	moderation	in	order	to	avoid	comment	
spam.

There are more features you could add here, but this list is enough to keep you busy for a
while; it will make use of a broad range of Django’s features. So let’s get started.

Writing a Django Application
In the last chapter, when you added the search function and SearchKeyword model to the sim-
ple CMS, you built a simple Django application—initially created with the manage.py startapp
command—to	hold	them.	At	the	time	I	didn’t	spend	much	time	detailing	just	what	goes	into	
a Django application. However, now that you’re going to start doing more complex things, it’s
worth pausing for a moment to go over it, to understand how individual Django applications
differ from a Django project.

Projects vs. Applications
As	you’ve	seen	already,	you configure a Django project through its settings module, which—
among other things—specifies the database it will connect to and the list of applications it
uses.	In	a	way,	the	defining	quality	of	a	project	is	that	it’s	the	“thing”	that	holds	the	settings	
(including both the settings module and the root URLConf module, which specifies the proj-
ect’s base URL configuration).

A	project	can	also	contain	other	code	if	it	makes	sense	for	that	code	to	be	part	of	the	
project directly, but the necessity for this is fairly rare. Generally, a project exists to provide
a	“container”	for	a	set	of	Django	applications	to	work	together,	and	most	projects	won’t	ever	
need anything beyond the initial files created by django-admin.py startproject.

A	Django	application, on the other hand, is responsible for actually providing some piece
of	functionality	and	should	try	to	focus	on	that	functionality	as	much	as	possible.	An	applica-
tion doesn’t have a settings module—that’s the job of any projects that use it—but it does
provide several other things:

	 •	 An	application	can	(and	often	does)	provide	one	or	more	data	models.

	 •	 An	application	usually	provides	one	or	more	view	functions,	often	related	in	some	way	
to its data models.

	 •	 An	application	can	provide	libraries	of	custom	template	tags,	which	extend	Django’s	
template system with extra, application-specific features.

	 •	 An	application	can	(and	usually	should) provide a URLConf module suitable for being
“plugged	in”	to	a	project	(via	the	include directive, as you’ve already seen in the case of
the administrative interface and flatpages application bundled with Django).

http://delicious.com/
http://delicious.com/

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 45

And,	of	course,	an	application	should	also	provide	any	extra	“utility”	code	needed	to	sup-
port itself, or it should have clear dependencies on other applications or on third-party Python
modules that provide that support.

Standalone and Coupled Applications
It is important to be aware of the distinction between two different ways of developing Django
applications. One method, which I used in the last chapter, uses the manage.py startapp
command to create an application module inside the project’s directory. While this is easy
and	convenient,	it	does	have	some	drawbacks,	most	notably	in	the	fact	that	it	“couples”	the	
application	to	the	project.	Any	other	Python	code	that	wants	to	access	that	application	needs	
to	know	that	it	“lives”	inside	that	particular	project.	(For	example,	to	import	the	SearchKeyword
model from a separate piece of code, you’d have to import it from cms.search.models instead
of just search.models.)	Any	time	you	want	to	reuse	the	application,	you	need	to	either	make	
a copy of the project or create a set of empty directories to emulate the project’s directory
structure.

The alternative is to develop a standalone application, which acts as an independent, self-
contained Python module and doesn’t need to be kept inside a project directory in order to
work	correctly.	A	standalone	application	is	much	easier	to	reuse	and	distribute,	but	setting	it	
up does involve a bit more initial work: the manage.py startapp command can’t create things
automatically for you unless you’re developing an application that’s coupled to a particular
project.

There are cases where you’ll develop one-off applications that don’t need to be reusable
or distributable. (In those cases, it’s perfectly fine to develop them inside of, and coupled to, a
particular	project;	just	be	wary	of	the	fact	that	many	supposedly	“one-off”	pieces	of	code	like	
this do eventually need to be reused elsewhere.) But in general, you’ll get more benefit from
developing standalone applications that can be reused in many different projects. That’s how
you’ll be working for the rest of this book.

Creating the Weblog Application
Because this is going to be a standalone application, you’ll need to create a Python module
for it manually instead of relying on manage.py startapp, but that’s not too hard. You might
remember that all the startapp command really did was create a directory and put three files
into it, and that’s all you’ll need to do to get started.

There are only two things you need to worry about when manually setting up a new appli-
cation module: what to call it and where to put it. You can call an application by any name
that’s legal for a Python module: Python allows module names to consist of any combination
of letters and numbers and, optionally, underscores to separate words (although the name
must start with a letter). Because Django is named after a jazz musician, some developers like
to	continue	the	pattern	by	naming	applications	after	famous	jazz	figures.	(For	example,	the	
company	I	work	for	sells	a	CMS	called	Ellington—named	for	Duke	Ellington—and	there’s	a	
popular	open	source	e-commerce	application	named	Satchmo	in	honor	of	Louis	Armstrong.)	
This isn’t required, but it’s something I like to do whenever there’s not a more obvious name.
So when I wrote my own weblog application, I named it Coltrane after John Coltrane. That
seemed appropriate, given that Coltrane was known for composition and improvisation, two
skills that also make a good blogger.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG46

Where to put the application’s code is a slightly trickier question to answer. So far you
haven’t run into this problem because Django’s manage.py script, in order to make initial setup
and development easier, somewhat obscures an important requirement for Python code: it
has to be placed in a directory that’s on the Python path. The Python path is simply a list of
directories where Python will search whenever it encounters an import statement. So code
that’s meant to be imported (as your application will be, in order to be used as part of a Django
project) needs to be on the Python path.

When you installed Python, a default Python path was set up for you, and it included a
directory called site-packages. When you installed Django, the setup.py installer script placed
all of Django’s code inside that directory. You can place your own code in site-packages if
you’d like, but it’s generally not a good idea to do so. The site-packages directory is almost
always set up in a part of your computer’s file system that requires administrative access to
write to, and you won’t have much fun constantly jumping through the authentication hoop
to place things there. Instead, most Python programmers create a directory where they’ll keep
their own code and add it to the Python path, so let’s do that. Because you’ve already created
a directory to hold your Django projects, go ahead and add it to your Python path and place
your standalone applications in it as well. This way, you’ll need to add only one directory to
the Python path, and you won’t be scattering code into multiple locations on your computer.

ADmoniTion: HoW To CHAnge Your PYTHon PATH

On Mac OS X, as well as most other UNIX- or Linux-based systems, changing the Python path is easy. You
can type a command like the following to add directories to the path:

export PYTHONPATH=/home/myuser/my-python-code:$PYTHONPATH

To avoid typing that over and over again, you can usually add it to a file called .profile or .bash_
profile in your home directory. That way, it will be executed each time you open up a command line
(although you might also need to add it to a .shrc or .bashrc file).

On Windows, the setup is a bit more involved. This is largely because Windows, unlike UNIX-based
systems, isn’t as friendly to command-line–based programs. In the Control Panel’s System area, under the
Advanced tab, you can set environment variables. The PYTHONPATH variable should already be set up with
the initial value that Python provided, and you can add new directories to it (directories in the list should be
separated with semicolons).

Now, in the same directory where you created the cms project (in other words, alongside
cms, not inside cms), create a new directory named coltrane. Inside that, create four empty
files:

	 •	 __init__.py

	 •	 models.py

	 •	 views.py

	 •	 admin.py

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 47

This is all you’ll need for now: the __init__.py file will tell Python that the coltrane direc-
tory is a Python module, and the models.py and views.py files will hold the initial code for the
weblog	application.	Finally,	admin.py will let you set up Django’s administrative interface for
the weblog.

Designing the models
You’re going to need several models to implement all of the features in your list, and a couple of
them will be moderately complex. However, you can start with a simple one: the model that will
represent categories for entries to be assigned to. Open up the weblog application’s models.py
file, and add the following:

 from django.db import models

 class Category(models.Model):
 title = models.CharField(max_length=250)
 slug = models.SlugField(unique=True)
 description = models.TextField()

 def __unicode__(self):
 return self.title

Most of this should be familiar after your first foray into Django models in the last chap-
ter. The import statement pulls in Django’s models module, which includes the base Model
class and definitions for the different types of fields to represent data. You’ve already seen the
CharField (this one has a longer max_length in order to allow for long category names) and the
__unicode__() method (which, for this model, returns the value of the title field). But there
are two new field types here: SlugField and TextField.

The meaning of TextField is pretty intuitive. It’s meant to store a larger amount of text
(in the database, it will become a TEXT column), and it will be used here to provide a useful
description of the category.

SlugField is a bit more interesting. It’s meant to store a slug: a short, meaningful piece of
text, composed entirely of characters that are safe to use in a URL. You use SlugField when
you generate the URL for a particular object. This means, for example, that instead of having a
URL like /categories?category_id=47, you could have /categories/programming/. This is use-
ful to your site’s visitors (because it makes the URL meaningful and easier to remember) and
for search-engine indexing. URLs that contain a relevant word often rank higher in Google and
other search engines than URLs that don’t. The term slug, as befits Django’s heritage, comes
from the newspaper industry, where it is used in preprint production and sometimes in wire
formats as a shorter identifier for a news story.

Note that I’ve added an extra argument to SlugField: unique=True. Because the slug is
going to be used in the URL and the same URL can’t refer to two different categories, it needs
to be unique. Django’s administrative interface will enforce uniqueness for this field, and
manage.py syncdb will create the database table with a UNIQUE constraint for that column.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG48

You’ll also want to be able to manage categories through Django’s administrative interface,
so in the admin.py file add the following:

from django.contrib import admin
from coltrane.models import Category

class CategoryAdmin(admin.ModelAdmin):
 pass

admin.site.register(Category, CategoryAdmin)

It’s useful when developing an application to stop every once in a while and actually try
it out. So go back to the cms project, open its settings file, and add coltrane—the new weblog
application—to its INSTALLED_APPS setting:

 INSTALLED_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.admin',
 'django.contrib.flatpages',
 'cms.search',
 'coltrane',
)

Because it’s directly on the Python path, just adding coltrane will work. Next, run python
manage.py syncdb to install the table for the Category model and launch the development
server.	The	admin	index	page	will	look	like	that	shown	in	Figure	4-1.

You can see that the Category	model	shows	up,	but	it’s	labeled	“Categorys.”	That’s	no	
good. Django’s admin interface generates that label from the name of the model class and tries
to	pluralize	it	by	adding	an	“s,”	which	works	most	of	the	time.	It	doesn’t	always	work,	though,	
and when it doesn’t Django lets you specify the correct plural name. Go back to the weblog’s
models.py file and edit the Category model class to look like the following:

 class Category(models.Model):
 title = models.CharField(max_length=250)
 slug = models.SlugField(unique=True)
 description = models.TextField()

 class Meta:
 verbose_name_plural = “Categories”

 def __unicode__(self):
 return self.title

Once you save the file and refresh the admin index page in your browser, you should see
something	similar	to	what’s	shown	in	Figure	4-2.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 49

Figure 4-1. The Django admin interface with the Category model

Figure 4-2. The correct pluralization of the Category model

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG50

Because you often need to provide extra meta-information about a model, Django lets
you add an inner class named Meta, which can specify a large number of common options. In
this case, you’re using an option called verbose_name_plural, which will return a pluralized
name for the model class whenever it’s needed. (There’s also a verbose_name option, which
can specify a singular version if it differs significantly from the class name, but you don’t need
it here.) You’ll see a number of other useful options for the inner Meta class as you flesh out the
weblog’s models.

If you click in the admin interface to add a category, you’ll see the appropriate fields in
a nice form: title, slug, and description. But adding a category this way will reveal another
shortcoming. Most of the time, the value for the slug field will probably be similar or even iden-
tical to the value for the title field (for example, a Programming category should probably have
a	slug	like	“programming”).	Manually	typing	the	slug	every	time	would	be	tedious,	so	why	not	
generate it automatically from the title and let the user manually change it if necessary? This is
easy enough to do. In the admin.py file, change the CategoryAdmin class to look like this:

class CategoryAdmin(admin.ModelAdmin):
 prepopulated_fields = { 'slug': ['title'] }

Then save the admin.py file and add a category. The prepopulated_fields argument will turn
on a helpful piece of JavaScript in Django’s administrative interface, and it will automatically fill
in a suggested slug as you type a value into the title field. Note that prepopulated_fields gets a
list: this means you could specify multiple fields from which to draw the slug value, which isn’t
common but is sometimes useful. The JavaScript that generates slugs is also smart enough to
recognize,	and	omit,	words	like	“a,”	“an,”	“the,”	and	so	on.	These	are	called	stop words and gen-
erally aren’t useful to have in a slug.

Also,	note	that	when	Django	creates	the	database	table	for	this	model,	it	will	add	an	index	
to the slug column. You can manually tell Django to do this with any field (by using the option
db_index=True for the field), but SlugField will get the index automatically. This provides a per-
formance boost in the common case of using a slug from a URL to perform database queries.

ADmoniTion: SlugS AnD normAlizATion

If you’re familiar with theories of database normalization—guidelines for designing relational databases so as
to avoid duplicated information—you may be wondering why the slug gets its own column if it’s just going to
be generated from the title. This smells suspiciously like needless duplication, doesn’t it?

The slug gets its own column mostly because it doesn’t necessarily depend on the title. For some long
category titles, for example, the slug might differ significantly in order to stay short and memorable. Also, nor-
malized tables aren’t an absolute rule. Deliberately denormalizing—as long as it’s done carefully—can often
yield important performance improvements, as you’ll see when you write the model for entries.

While you’re looking at categories in the admin interface, let’s pause and add another use-
ful feature—helpful hints that give the weblog application’s users more information as they fill
in the data. So edit the definition of the title field in models.py like this:

 title = models.CharField(max_length=250, help_text='Maximum 250 characters.')

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 51

Next, save the models.py file and look	at	the	admin	form	again	(see	Figure	4-3).

Figure 4-3. The admin form for adding a category

The string given in the help_text argument shows up underneath the text box for the
title field, providing a useful hint about what can be entered there. You can add help_text
to any field in your model, and it’s generally a good idea to do so whenever there’s something
users should know while entering data. So let’s add it for the slug field as well:

 slug = models.SlugField(help_text="➥

Suggested value automatically generated from title. Must be unique.")

Next, save the models.py file and refresh the admin form again. You’ll see that text show
up under the slug field’s text box, notifying users that a suggested value will be filled in and
reminding them that the slug must be unique.

Before I move on, let’s add one more improvement. If you try adding a couple of catego-
ries, you might notice that the admin page, which lists all of the categories, doesn’t necessarily
keep them in any order. It would be nice to have them displayed in an alphabetical list so that
a	user	can	scan	through	them	quickly.	Again,	this	is	easy	enough	to	do.	The	inner	Meta class
accepts an option to specify a default ordering for the model:

 class Meta:
 ordering = ['title']
 verbose_name_plural = "Categories"

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG52

Save the models.py file after inserting that code. When you refresh the admin page, you’ll
see that the categories are alphabetized. Unless you specifically override it on a per-query
basis, Django will now append the clause ORDER BY title ASC to any database query for the
categories table, which will get categories back in the correct alphabetical order. Notice that
the value for ordering is a list. You can specify multiple fields here, and they’ll be correctly
placed into an ORDER BY clause for most queries. (The admin application uses only the first
field in the ordering option when retrieving lists of objects.)

One more useful thing you can add is a special method called get_absolute_url(). In
Chapter	2,	you	saw	that	this	is	the	standard	practice	for	a	Django	model	that	wants	to	specify	
its own URL, and every model that is intended to be used in a public-facing view should have
a get_absolute_url() method. So let’s add one:

 def get_absolute_url(self):
 return "/categories/%s/" % self.slug

For	now,	just	put	this	method	at	the	bottom	of	the	Category class; remember that it needs
to be indented to be part of the class. You’ll see a bit later how to keep all the parts of a Django
model class organized.

This method will return a string with the value of the category’s slug field interpolated
into	the	correct	place.	Adding	this	method	will	also	cause	the	admin	interface	to	show	a	View	
on Site button for each category, though for now it won’t be very useful because you haven’t
yet set up any URLs or views to actually display them.

ADmoniTion: PYTHon STring FormATTing

While it’s possible to create a string by concatenation—building up the pieces one at a time and using the
plus sign (+) operator to join them together—that becomes extremely tedious if you need to include multiple
variables or generated values in the final result. So most languages, Python included, provide a simpler way
to interpolate variables and values into a string using special formatting characters.

The formatting characters (and, in many languages, the names of functions that build up strings in this
fashion) come from the printf family of functions in the standard library of the C programming language.
But Python doesn’t use a function for this. Instead, you simply write out the string with the appropriate for-
matting characters, then follow it with a percent sign (%) and any values to be interpolated into the result.

The full specification of Python’s string-formatting syntax, including a list of the formatting characters,
is available in the Python documentation online at http://docs.python.org/library/stdtypes.
html#string-formatting-operations.

Building the entry model
Now that you have categories to assign entries to, it’s time to build the model for the weblog
entries. Because it will really be the center of attention for this application, it’ll also be the
most complex model you’ll need to build, so let’s take it a bit at a time.

http://docs.python.org/library/stdtypes

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 53

Basic Fields
First	off,	you	need	to	have	a	few	core	fields	to hold the title of the entry, the optional excerpt,
the text of the entry, and the date the entry was published. So let’s start with those. Open up
the models.py file and, below the Category model class, start adding the new Entry model.
(Don’t run manage.py syncdb yet. You’ll be adding more fields to this model, and it’s best to
wait	until	that’s	done	before	having	Django	create	the	database	tables.)	Add	these	lines	first:

 class Entry(models.Model):
 title = models.CharField(max_length=250)
 excerpt = models.TextField(blank=True)
 body = models.TextField()
 pub_date = models.DateTimeField()

Also,	go	ahead	and	set	up	a	basic	admin	definition	for	this	model	in	admin.py. You’ll want
to change the line that imports the Category model to also import Entry:

from coltrane.models import Category, Entry

And	then	add	the	new	admin	class	for	the	Entry model:

class EntryAdmin(admin.ModelAdmin):
 pass

admin.site.register(Entry, EntryAdmin)

The first three fields in this new model—title, excerpt, and body—are all of types you’ve
seen before. But the pub_date field has a new field type called DateTimeField. It will represent
the entry’s publication date. Compared to the field types you’ve seen so far, DateTimeField is
unique in several ways:

	 •	 When	you	store	entries	into	or	retrieve	them	from	the	database,	this	field	will	have	
as its value a Python datetime object (the datetime class is found in the datetime
module, which is a standard part of Python), regardless of how it’s actually stored in
the database (different databases will, internally, handle it in slightly different ways).
Django also provides separate field types, which store only a date or only a time, but
DateTimeField handles both. This means you can track not only the date the entry was
published,	but	also	the	time	(so	you	can	eventually	display	something	like	“Published	
on	October	7	at	10:00	P.M.”).

	 •	 The	exact	type	of	database	column	created	for	this	field	will	vary	from	database	to	
database. Up until now, you’ve seen fields that consistently become the same type of
column (VARCHAR for CharField, for example) no matter what type of database you’re
using. However, because of variations in column types, Django will use different options
as	appropriate.	For	example,	DateTimeField will become a DATETIME column in SQLite
and a TIMESTAMP column in PostgreSQL.

	 •	 So	far,	each	type	of	field	you’ve	worked	with	has	translated	directly	into	one	form	input	
in	the	administrative	interface,	usually	a	text	box.	A	DateTimeField, however, becomes
two form inputs: one for the date and one for the time. You’ll see this when you start
working with entries in the administrative interface.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG54

There’s also an option on the excerpt field that you haven’t seen before: blank=True. So
far, the question of required fields hasn’t really come up. You’ve been working with simple
models where there’s no need to have some things be optional, so Django’s default behavior—
to make the field required when entering data through a form in the admin interface and to
create a NOT NULL column in the database—has been fine. In this case, though, you need to
make the excerpt field optional, and the blank=True option tells Django that it’s okay not to
enter anything for this field. You can add blank=True to any type of field in a Django model.

ADmoniTion: BlAnk FielDS vS. null FielDS

Django actually uses two separate options to handle required and nonrequired fields on models: blank and
null. The blank option affects only forms displayed to users of a Django-powered application and prevents
the form from displaying a validation error if no value is entered. The null option, on the other hand, will set
up the database to accept a NULL value. If you need to allow users to leave a field blank and have a NULL
inserted into its column in the database, you’ll need to specify both options.

If this seems strange, keep in mind that there are very common cases where you’ll want to allow a user
to leave a field blank in a form (or even hide a field entirely) but still prevent a NULL value from going to the
database (by generating a value for that field if the user doesn’t supply one). You’ll see an example later in
this chapter.

Also, it’s important to note that for text-based field types (CharField, TextField, and others), Django
will never insert a NULL. For these field types, a blank value will be inserted as an empty string. This is to
avoid a situation where there are potentially two different blank values for the field (either an empty string or
a NULL) and to ensure that code that checks for blank values can be kept simple. Because of this, you should
generally avoid specifying null=True on text-based field types.

Slugs, Useful Defaults, and Uniqueness Constraints
Just as you added a slug for categories, it’s a good idea to add one for entries and to set it up to
populate a default from the entry’s title. So add the following to the Entry model:

slug = models.SlugField()

Then change the EntryAdmin class to automatically populate the slug:

class EntryAdmin(admin.ModelAdmin):
 prepopulated_fields = { 'slug': ['title'] }

With the Category model, you added unique=True to force the slug to be unique, but
for entries it would be nice to have something slightly different. Most good weblog software
builds URLs that include the publication dates of entries (so that they look like /2007/10/09/
entry-title/), which means that all you really need is for the combination of the slug and the
publication date to be unique. Django provides an easy way to specify this, through an option
called unique_for_date:

 slug = models.SlugField(unique_for_date='pub_date')

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 55

This will tell Django to allow a particular slug to be used only once on each date. The
unique_for_date constraint is one of three date-based constraints supported by Django. The
other two are unique_for_month and unique_for_year. Whereas unique_for_date allows a given
value to be used only once per day, the other two constrain values to being used once per
month and once per year, respectively.

It would also be nice to provide a sensible default value for the pub_date field. Most of the
time,	entries	will	be	“published”	on	the	same	day	they’re	entered,	so	defaulting	to	the	current	
date and time would be convenient for the weblog’s authors. Django allows you to specify
a default value for any type of field by using the default option. The only question is how to
specify	a	default	of	“right	now.”

The answer lies in Python’s standard datetime module. This provides a function, datetime.
datetime.now(), for obtaining the current date and time and returns the correct type of object
(a Python datetime, as previously described) for filling in a DateTimeField. So at the top of the
models.py file, add an import statement to make the datetime module available:

 import datetime

and then edit the pub_date field to add the default:

 pub_date = models.DateTimeField(default=datetime.datetime.now)

Notice that there aren’t any parentheses there—it’s datetime.datetime.now, not datetime.
datetime.now(). When you’re specifying a default, Django lets you supply either an appropri-
ate value or a function, which will generate the appropriate value on demand. In this case,
you’re supplying a function, and Django will call it whenever the default value is needed. This
ensures that the correct current datetime is generated each time.

ADmoniTion: FunCTionS vS. reTurn vAlueS

Python lets you refer to functions directly and pass them around as “first-class” objects the same way you
can pass around any other type of value. The difference is simply that you leave off the parentheses, as
you’ve done with the default value for the pub_date field. Understanding the difference between the function
and the return value from calling the function is critical to using many parts of Django effectively. In this case,
if the default had been specified as datetime.datetime.now(), it would have been called once—when
the model was first loaded—and then never again, creating an apparently unchanging default value.

In general, Python programmers refer to this as passing a callable, a value that can be called as a func-
tion (though in some advanced uses of Python, you can encounter things that are callable but are not actually
functions).

There are some other cases, some of which you’ll see later in this book, where this distinction is impor-
tant and can lead to unexpected and subtle bugs in your applications, so always be careful to leave off the
parentheses in a situation where you want to pass a function and have it repeatedly called.

Authors, Comments, and Featured Entries
Because the weblog needs to support multiple authors, you need a way to mark the author of
each entry. In the last chapter, when you implemented search keywords, you saw that Django

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG56

provided the ForeignKey field for relating one model to another (and translates it into a foreign
key in the database). The obvious solution is to have a model representing authors and a for-
eign key on each entry tying it to an author.

This is a case where Django will help you out immensely. The bundled application
django.contrib.auth provides a User model. (This is the user account you created when run-
ning manage.py syncdb for the first time, which is stored in the database as an instance of the
User model.) This model lives in the module django.contrib.auth.models, so you’ll need to
add an import statement in the weblog’s models.py	file.	From	django.contrib.auth.models,
import User, and then add the foreign key to the Entry model:

 author = models.ForeignKey(User)

ADmoniTion: WHY noT SPeCiFY THe CurrenT uSer AS A DeFAulT?

After going to the trouble of setting up slugs to automatically populate and the pub_date field to default to
the current date and time, you might be wondering why I’m not using a default here to fill in the current user
when an entry is being written. The primary reason is that, in the administrative interface, Django assumes
you’ll grant access only to people you trust and therefore that they’ll fill in this sort of field correctly. You can,
if you know your way around Django’s administrative interface, set it up so that the field will be automatically
populated (and enforce various other restrictions, such as allowing users to edit only their own entries). But
generally it’s best not to use the admin interface for situations where you don’t completely trust someone.
Instead, you should set up your own view that can enforce whatever security or other behavior you’d like (in
Chapter 9 you’ll see an example of doing this).

Another	feature	that’s	easy	to	add is a per-entry way to allow or disallow comments. You
haven’t yet seen the code that will actually handle user-submitted comments (that will come
a bit later); however, you will need something on the Entry model that allows you to check
whether comments should be allowed. So let’s add a field for it:

 enable_comments = models.BooleanField(default=True)

A	BooleanField has only two possible values—True or False—and in web-based forms will
be represented by a check box. I give it a default value of True because most people will prob-
ably want comments on by default, but an entry’s author will be able to uncheck the box in the
admin interface to disable comments.

While you’re looking at BooleanField, remember that one of the features on your list is the
ability	to	mark	entries	as	“featured”	so	that	they	can	be	singled	out	for	special	presentation.	
That’s also easy to do with a BooleanField:

 featured = models.BooleanField(default=False)

This time, set the default to False, because only a few specific entries should be featured.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 57

Different Types of Entries
You also need to support entries that are marked	as	“drafts,”	which	aren’t	meant	to	be	shown	
publicly. This means you’ll need some way of recording an entry’s status. One way would be
to use another BooleanField, with a name like is_draft or, perhaps is_public. Then you could
just query for entries with the appropriate value, and authors could check or uncheck the box
to control whether an entry shows up publicly.

But it would be better to have something that you can extend later. If there’s ever a need
for even one more possible value, the BooleanField won’t work. The ideal solution would be
some way to specify a list of choices and allow the user to select from them; then if you ever
need more choices, you can simply add them to the list. Django provides an easy way to do
this via an option called choices. Here’s how you’ll implement it:

 STATUS_CHOICES = (
 (1, 'Live'),
 (2, 'Draft'),
)
 status = models.IntegerField(choices=STATUS_CHOICES, default=1)

Here you’re using IntegerField, which, as its name implies, stores a number—an integer—
in the database. But you’ve used the choices option and defined a set of choices for it. The value
passed to the choices option needs to be a list or a tuple, and each item in it also needs to be a
list or a tuple with the following two items:

	 •	 The	actual	value	to	store	in	the	database

	 •	 A	human-readable	name	to	represent	the	choice	

You’ve also specified a default value: the value associated with the Live status, which will
denote weblog entries to be displayed live on the site.

You can use choices with any of Django’s model field types, but generally it’s most useful
with IntegerField (where you can use it to provide meaningful names for a list of numeric
choices) and CharField (where, for example, you can use it to store short abbreviations in the
database, but still keep track of the full words or phrases they represent).

If you’ve used other programming languages that support enumerations, this is a similar
concept.	In	fact,	you	could	(and	probably	should)	make	it	look	a	little	bit	more	similar.	Edit	the	
Entry model so that it begins like this:

 class Entry(models.Model):
 LIVE_STATUS = 1
 DRAFT_STATUS = 2
 STATUS_CHOICES = (
 (LIVE_STATUS, 'Live'),
 (DRAFT_STATUS, 'Draft'),
)

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG58

Now instead of hard-coding the integer values anywhere you’re doing queries for specific
types of entries, you can instead refer to Entry.LIVE_STATUS or Entry.DRAFT_STATUS and know
that it’ll be the right value. The status field can also be updated:

 status = models.IntegerField(choices=STATUS_CHOICES, default=LIVE_STATUS)

And,	just	to	show	how	easy	it	is	to	add	new	choices,	let’s throw in a third option: hidden.
This common option offered by popular weblogging packages covers situations where an entry
isn’t really a draft but also shouldn’t be shown publicly. Now the relevant part of the Entry
model looks like this:

 LIVE_STATUS = 1
 DRAFT_STATUS = 2
 HIDDEN_STATUS = 3
 STATUS_CHOICES = (
 (LIVE_STATUS, 'Live'),
 (DRAFT_STATUS, 'Draft'),
 (HIDDEN_STATUS, 'Hidden'),
)

And	just	as	you	can	refer	to	Entry.LIVE_STATUS and Entry.DRAFT_STATUS, now you can also
refer to Entry.HIDDEN_STATUS.

ADmoniTion: Be CAreFul WiTH “mAgiC numBerS”

In general, any time you find yourself writing code that relies on a specific fixed value, like the status values
for the Entry class, it’s a good idea instead to create a variable that holds it and refer to that variable. (This
is sometimes referred to as a constant, though Python doesn’t have any special semantics for such a thing.)
Then if the value (many programmers call these sorts of values “magic numbers”) ever needs to be updated,
you’ll only need to make a single change in your code.

It’s conventional in Python (and in many other programming languages) for these sorts of constants to
have names that are entirely uppercase to indicate that they have a meaning different from other variables.
(You’ve already seen that Django’s settings all use uppercase names; this is why.)

Categorizing and Tagging Entries
You’ll remember that your feature list calls for two types of entry groups: categories (which
you’ve already laid some groundwork for in the form of the Category model) and tags. Setting
up the Entry model to use categories is easy:

 categories = models.ManyToManyField(Category)

ManyToManyField is another way of relating two models to each other. Whereas a foreign
key allows you to relate to only one specific object of the other model class, a ManyToManyField
allows you to relate to as many of them as you’d like. In the admin interface, this will be repre-
sented as a list of categories presented in an HTML <select multiple> element.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 59

ADmoniTion: HoW mAnY-To-mAnY relATionSHiPS Work

At the database level, a ManyToManyField is actually represented by a separate join table. Each row in that
table consists of two foreign keys: one to each side of the relationship. In this case, the table will be called
coltrane_entry_categories, and each row will have one foreign key pointing to the entries table and
one pointing to the categories table.

You probably won’t ever need to refer to this join table explicitly. However, it’s a good idea to know it’s
there and have an idea of how it works, if only to have a reminder that selecting or filtering on aspects of a
many-to-many relationship will always involve joining the extra table. (On the other hand, queries based on
a foreign key—depending on the exact parameters you’re using to do the query—sometimes don’t need to
perform a join at all.)

Tagging is a bit trickier because tags ultimately need to be applied to two different models:
the Entry model you’re writing now and the Link model you’ll write (in the next chapter) to
represent a link log. You could define two Tag models—one for entries and one for links—or
set up multiple many-to-many relationships to allow a single Tag model to suffice for both, but
Django provides a simpler solution in the form of a generic relation.

Generic relations actually involve two special field types, GenericForeignKey and
GenericRelation, that allow one model to have relationships with any other model installed in
your project. Because of the complexity necessary to make this work, they can be a bit tricky to
set up and use. You’re lucky in this particular case: there’s an open source Django application
that implements tags via generic relations and that has already done all the hard work.

The application is called django-tagging, and you can download it from http://code.
google.com/p/django-tagging/. Grab a copy and unpack it so that the tagging module it pro-
vides is on your Python path, then add tagging to your INSTALLED_APPS setting. To add tags to
your Entry model, you’ll need to import a custom field type defined in django-tagging, so add
the following import statement in the weblog’s models.py file:

 from tagging.fields import TagField

Next, add the following to the Entry model:

 tags = TagField()

This may feel a bit strange, but actually it’s the right way to handle tagging, for two reasons:

	 •	 Django	provides	a	lot	of	built-in	field	types	you	can	add	to	your	models,	but	there’s	
no way it could cover everything you might need to represent in a model class. So in
addition	to	the	built-in	fields,	Django	also	provides	an	API	for	writing	your	own	custom	
field types. The TagField provided by django-tagging is simply an example of this.

	 •	 Encapsulating	common	types	of	functionality	into	reusable,	“pluggable”	applications	
is precisely what Django tries to encourage. The fact that, in this case, the application
was written by someone else and isn’t bundled in django.contrib shouldn’t be a deter-
rent.	As	you	work	more	with	Django,	you’ll	likely	take	advantage	of	the	large	ecosystem	
of third-party applications that save you from having to reinvent the wheel with your
own implementations of a lot of common functions.

http://code

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG60

ADmoniTion: leArning more ABouT generiC relATionS

I’ve intentionally left out the details of how generic relations work because they’re somewhat complex and
require a slightly deeper understanding of Django than you’ve developed so far. If you would like to find
out more about them, the relevant code is in the django.contrib.contenttypes application bundled
with Django, and full details are available in the official Django documentation online at http://docs.
djangoproject.com/en/dev/ref/contrib/contenttypes/.

Writing Entries Without Writing HTML
The last important feature for the Entry model is the ability to write entries without having
to compose them in raw HTML. Most popular weblogging applications allow users to write
entries using a simpler syntax that will be automatically converted into HTML as needed.
There are a number of widely used systems that can take plain text with a little bit of special
syntax and perform the conversion. Textile, Markdown, BBCode, and reStructuredText are
the most popular.

One way you could handle this is with template	filters.	As	you	saw	in	the	last	chapter,	
Django’s template system allows you to apply filters to variables in your templates (as you did
when you used the escape filter to prevent cross-site scripting attacks). Django includes ready-
made template filters for applying Textile, Markdown, and reStructuredText to any piece of
text in a template, and that would be an easy solution. Unfortunately, it’s also an expensive
solution. Running a text-to-HTML converter every time you display an entry will needlessly
eat up CPU cycles on your server, especially because the resulting HTML will be the same each
time.	A	better	solution	would	be	to	generate	the	HTML	once—when	the	entry	is	saved	to	the	
database—and then retrieve it directly for display.

You could just store the generated HTML in the body and excerpt fields, but that would
remove	the	benefit	of	using	a	simpler	syntax	for	writing	entries.	As	soon	as	you	went	back	to	
edit an entry, you’d be presented with the HTML instead of the plain text it was generated
from. So what you really need is a separate pair of fields that will store the HTML and a bit of
code to generate it whenever an entry is saved. If you were worried earlier about database nor-
malization—the principle that information shouldn’t be needlessly duplicated—this is a good
example of where deliberate denormalization is useful. On most consumer-level web hosting,
disk space is far more abundant than processor time, so accepting a bit of redundancy in the
database in return for less processing on each page view is a good trade-off to make.

First,	let’s	add	the	fields:

 excerpt_html = models.TextField(editable=False, blank=True)
 body_html = models.TextField(editable=False, blank=True)

Like their plain-text counterparts, these both use TextField. Both of them also use the
blank option because you don’t want users to have to enter anything in these fields. They also
add the option editable=False. This tells Django not to bother displaying these fields when it
generates forms for the Entry model, because you’ll automatically generate the HTML to put
into them.

http://docs

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 61

Generating the HTML whenever an entry is saved is actually fairly easy. The base Model
class that all Django models inherit from defines a method named save(), and individual
models can override that method to provide custom behavior. The only hard part is choosing
a text-to-HTML converter to use. I like Markdown, so that’s what I’ll go with. There’s an open
source Python Markdown converter available, which you can download at https://sourceforge.
net/projects/python-markdown/. It provides a module named markdown, which contains the
markdown function for doing text-to-HTML conversion. This means you use one more import
statement:

 from markdown import markdown

The actual save() method inside the Entry model is fairly short:

 def save(self, force_insert=False, force_update=False):
 self.body_html = markdown(self.body)
 if self.excerpt:
 self.excerpt_html = markdown(self.excerpt)
 super(Entry, self).save(force_insert, force_update)

This runs Markdown over the body field and stores the resulting HTML in body_HTML. It
also does a similar conversion for the excerpt field (after checking whether an excerpt was
entered; remember that it’s optional), and then saves the entry. Note that the save() method
accepts a couple of extra arguments. Django uses these internally to force certain types of que-
ries when saving to your database. (In some cases, it’s necessary to force either an INSERT or an
UPDATE query. Normally, Django simply chooses one or the other based on whether it’s saving
a new object or updating an existing object.) The save() method must accept these arguments
and pass them on to the base implementation.

ADmoniTion: uSing super

Object-oriented languages that use subclassing typically need to provide a way to access features of a parent
class, even if those features are being overridden. Conventions for this vary from language to language, but in
Python the standard practice is to use super, as shown in the preceding code.

Finishing Touches
Now you have all the fields you’ll need to handle your feature list for entries. It’s taken a little
while to cover the full list, but if you look at the Entry model, you’ll notice that it’s only around
30	lines	of	actual	code.	Django	manages	to	pack	a	lot	of	functionality	into	a	very	small	amount	
of code. Before moving on, though, let’s add a few extra touches to this model to make it a bit
easier to work with.

You’ve already seen with the Category model that Django will try to pluralize the name of
the model when displaying it in the admin interface, sometimes with incorrect results. So let’s
add a plural name for the Entry model as well:

 class Meta:
 verbose_name_plural = "Entries"

https://sourceforge

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG62

While you’re at it, you can also add default ordering for the model. In this case, you want
the entries ordered by date with the newest entries coming first, so you’ll add an ordering
option inside the inner Meta class:

 ordering = ['-pub_date']

Now Django will use ORDER BY pub_date DESC when retrieving lists of entries.
Let’s also go ahead and add a __unicode__() method so you can get a simple string repre-

sentation of an entry:

 def __unicode__(self):
 return self.title

It’s also a good idea to add help_text to most of the fields. Use your judgment to decide
which fields need it, but feel free to compare with and borrow from the full version of the Entry
model included in this book.

Finally,	let’s	add	one	more	method:	get_absolute_url(). Remember	from	Chapter	2	that	
it is standard convention in Django for a model to specify its own URL. In this case, you’ll
return a URL that includes the entry’s publication date and its slug:

 def get_absolute_url(self):
 return "/weblog/%s/%s/" % ➥

 (self.pub_date.strftime("%Y/%b/%d").lower(), self.slug)

Once again, you’re using Python’s standard string formatting. In this case, you’re interpo-
lating two values: the entry’s pub_date (with a little extra formatting provided by the strftime()
method available on Python datetime objects), and the entry’s slug. This particular formatting
string will result in a URL like /weblog/2007/oct/09/my-entry/. The %b character in strftime()
produces a three-letter abbreviation of the month (which you force into lowercase with the
lower() method in order to ensure consistently lowercase URLs). In general, I prefer that abbre-
viation to a numeric month representation because it’s a bit more readable. If you’d prefer the
month to be represented numerically, use %m instead of %b.

The Weblog models So Far
You’ve now got two of the three models you’ll need. Only the Link model still needs to be
written, and you’ll deal with it in the next chapter. The rest of this chapter will cover the views
and URLs for entries in the weblog. But before you move on to that, let’s pause to organize
the models.py file so it’ll be easier to understand and edit later on.

I’ve mentioned previously that Python has an official style guide. It’s a good idea to follow
that whenever you’re writing Python code because it will make your code clearer and more
understandable to anyone who needs to read it (including you). There’s also a (much shorter)
style guide for Django, which also provides some useful conventions for keeping your code
readable. The guideline for model classes is to lay them out in this order:

 1. Any	constants	and/or	lists	of	choices

 2. The full list of fields

 3. The Meta class, if present

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 63

 4. The __unicode__() method

 5. The save() method, if it’s being overridden

 6. The get_absolute_url() method, if present

 7. Any	additional	custom	methods

For	complex	models,	I	also	like	to	break up the field list into logical groups, with a short
comment explaining what each group is. In general, it’s easier to find things if you keep field
names and options alphabetized whenever possible. So with that in mind, here’s the full
models.py file so far, organized and formatted so that it’s clear and readable:

import datetime

from django.contrib.auth.models import User
from django.db import models

from markdown import markdown
from tagging.fields import TagField

class Category(models.Model):
 title = models.CharField(max_length=250,
 help_text='Maximum 250 characters.')
 slug = models.SlugField(unique=True, help_text="➥

Suggested value automatically generated from title. Must be unique")
 description = models.TextField()

 class Meta:
 ordering = ["title"]
 verbose_name_plural = "Categories"

 def __unicode__(self):
 return self.title

 def get_absolute_url(self):
 return "/categories/%s/" % self.slug

class Entry(models.Model):
 LIVE_STATUS = 1
 DRAFT_STATUS = 2
 HIDDEN_STATUS = 3
 STATUS_CHOICES = (
 (LIVE_STATUS, 'Live'),
 (DRAFT_STATUS, 'Draft'),
 (HIDDEN_STATUS, 'Hidden'),
)

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG64

 # Core fields.
 title = models.CharField(max_length=250,
 help_text="Maximum 250 characters.")
 excerpt = models.TextField(blank=True,
 help_text="A short summary of the entry. Optional.")
 body = models.TextField()
 pub_date = models.DateTimeField(default=datetime.datetime.now)

 # Fields to store generated HTML.
 excerpt_html = models.TextField(editable=False, blank=True)
 body_html = models.TextField(editable=False, blank=True)

 # Metadata.
 author = models.ForeignKey(User)
 enable_comments = models.BooleanField(True)
 featured = models.BooleanField(default=False)
 slug = models.SlugField(unique_for_date='pub_date',
 help_text="Suggested value automatically generated ➥

 from title. Must be unique.")
 status = models.IntegerField(choices=STATUS_CHOICES, default=LIVE_STATUS,
 help_text="Only entries with live status ➥

 will be publicly displayed.")

 # Categorization.
 categories = models.ManyToManyField(Category)
 tags = TagField(help_text="Separate tags with spaces.")

 class Meta:
 ordering = ['-pub_date']
 verbose_name_plural = "Entries"

 def __unicode__(self):
 return self.title

 def save(self, force_insert=False, force_update=False):
 self.body_html = markdown(self.body)
 if self.excerpt:
 self.excerpt_html = markdown(self.excerpt)
 super(Entry, self).save(force_insert, force_update)

 def get_absolute_url(self):
 return "/weblog/%s/%s/" % (self.pub_date.strftime("%Y/%b/%d").lower(),
 self.slug)

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 65

Go ahead and run manage.py syncdb in the project directory. It’ll add the new Entry mod-
el’s table (and the join table for its many-to-many relationship to the Category model), plus
a couple of tables for models from the tagging application you’re using. Next, use the admin-
istrative interface to add a couple of test entries to the weblog; you’re about to start writing
views for them, so you’ll need some entries to work with.

Writing the First views
Open the views.py file you created inside the coltrane directory and add a couple of import
statements at the top to include things that you’ll need for these views:

 from django.shortcuts import render_to_response
 from coltrane.models import Entry

The first line you’ve seen already: render_to_response() is the shortcuts function that
handles loading and rendering a template, as well as returning an HttpResponse. The second
line imports the Entry model you just created, so you’ll be able to retrieve entries from the
database for display.

For	your	first	view,	start	with	a	simple	index	that	displays	all	of	the	“live”	entries.	Here’s	
the code:

 def entries_index(request):
 return render_to_response('coltrane/entry_index.html',
 { 'entry_list': Entry.objects.all() })

Next create a coltrane directory in your templates directory (the directory you set up for
the cms project’s templates), and place an entry_index.html	file	in	it.	Add	the	following	HTML	
to the file:

 <html>
 <head>
 <title>Entries index</title>
 </head>
 <body>
 <h1>Entries index</h1>
 {% for entry in entry_list %}
 <h2>{{ entry.title }}</h2>
 <p>Published on {{ entry.pub_date|date:"F j, Y" }}</p>
 {% if entry.excerpt_html %}
 {{ entry.excerpt_html|safe }}
 {% else %}
 {{ entry.body_html|truncatewords_html:"50"|safe }}
 {% endif %}
 <p>Read full entry</p>
 {% endfor %}
 </body>
 </html>

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG66

Note that you’re using a filter to show the excerpt here. You’ll remember that Django’s
template	system	automatically	“escapes”	the	contents	of	variables	to	prevent	cross-site	
scripting attacks. While you want to have that protection most of the time, you know that the
contents of these variables are safe because they come from data that was entered into the
admin interface by a trusted user. The safe filter lets you tell Django that you trust a particular
variable and that it doesn’t need any escaping.

Finally,	you’ll	need	to	set	up	a	URL.	Open	the urls.py file in the cms directory and, in the
list of URL patterns, add the following pattern before the catch-all pattern for the flat pages:

 (r'^weblog/$', 'coltrane.views.entries_index'),

At	that	point,	you	should	be	able	to visit http://127.0.0.1:8000/weblog/. You’ll see all the
entries you’ve created so far, displayed using the template you just created. There are a few
things worth noting about the template:

	 •	 You’re	using	a	new	filter: date. It’s the first one you’ve seen that takes an argument,
in this case a formatting string describing how to present a date. The syntax for this is
similar to the syntax for the strftime() method, except that it doesn’t use percent signs
to	mark	formatting	characters.	“October	10,	2007”	is	an	example	of	a	result	produced	
by this formatting string.

	 •	 You’re	using	the	if tag to test whether there’s an excerpt on each entry. If there is, then
it’s	displayed.	If	there	isn’t,	then	the	first	50	words	of	the	entry’s	body	will	be	displayed.

	 •	 When	there	is	no	excerpt,	the	entry’s body is cut off via the truncatewords_html fil-
ter. This filter’s argument tells it how many words to allow. When the limit has been
reached, the filter ends the text fragment with ellipses (. . .), indicating to the reader
that	there’s	more	text	in	the	full	entry.	As	the	name	implies,	the	truncatewords_html
filter knows how to recognize HTML tags and doesn’t count them as words. It also will
keep	track	of	open	tags	and	close	them	if	it	cuts	off	the	text	before	a	closing	tag.	(A	sep-
arate filter, truncatewords, simply cuts off at the specified number of words and pays
no attention to HTML.)

Displaying an index of all the entries is a nice first step, but it’s only the beginning. You’ll
also need to be able to display individual entries, and you’ll need to query for them based on
information you can read from the URL. In this case, the get_absolute_url() method on the
Entry model will give a URL that contains the (formatted) pub_date and the slug of the entry.
Before you write the view that retrieves the entry, let’s take a look at the URL pattern for it. This
gives a clue to how you’ll get that information out of the URL:

 (r'^weblog/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(P?<slug>[-\w]+)/$',
 'coltrane.views.entry_detail'),

This is quite a bit more complicated than the URL patterns you’ve seen so far. The regular
expression is looking for several things and includes the strange ?P construct several times. So
let’s walk through it step by step.

http://127.0.0.1:8000/weblog/

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 67

First	of	all,	in	Python’s	regular-expression	syntax,	a	set	of	parentheses	whose	contents	
begin with ?P,	followed	by	a	name	in	brackets	and	a	pattern,	matches	a	“named	group.”	That	
is, any text that matches one of these parts of the URL will go into a dictionary, where the keys
are the bracketed names and the values are the parts of the text that matched. So this URL is
looking for four named groups: year, month, day, and slug.

The actual patterns used in these named groups are fairly simple once that hurdle is
cleared:

	 •	 The	\d{4} for year will match four consecutive digits.

	 •	 The	\w{3} for month will match three consecutive letters: the %b formatter you used in
the get_absolute_url()	method	will	return	the	month	as	a	three-letter	string	like	“oct”	
or	“jun.”

	 •	 The	\d{2} for day will match two consecutive digits.

	 •	 The	[-\w]+ for slug is somewhat tricky. It will match any sequence of consecutive char-
acters where each character is either a letter, a number, or a hyphen. This is precisely
the same set of characters Django allows in a SlugField.

When a URL matches this pattern, Django will pass the named groups to the specified
view function as keyword arguments. This means the entry_detail view will receive keyword
arguments called year, month, day, and slug, which will make the process of looking up the
entry much simpler. Let’s look at how that works by writing the entry_detail view:

 def entry_detail(request, year, month, day, slug):
 import datetime, time
 date_stamp = time.strptime(year+month+day, "%Y%b%d")
 pub_date = datetime.date(*date_stamp[:3])
 return render_to_response('coltrane/entry_detail.html',
 { 'entry': Entry.objects.get(pub_date__year=➥

 pub_date.year,
 pub_date__month=pub_date.month,
 pub_date__day=pub_date.day,
 slug=slug) })

The only complex bit here is parsing the date.	First	you	use	the	strptime function in
Python’s standard time module. This function takes a string representing a date or time, as
well as a format string like the one passed to strftime(), and parses the result into a time
tuple.	All	you	need	to	do,	then,	is	concatenate	the	year,	month,	and	day	together	and	supply	
the same format string used in the get_absolute_url() method. Then you can pass the first
three items of that result into datetime.date to get a date object.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG68

ADmoniTion: unDerSTAnDing PYTHon FunCTion ArgumenTS

Functions and methods in Python can pass and receive arguments in two forms: positional arguments, where
the meaning is determined by the order in which the arguments are passed, and keyword arguments, whose
names are included directly with the values.

This corresponds quite neatly to Python’s built-in list and dictionary types, so two shortcuts are provided
to make argument passing easier. Passing a list as an argument and prefixing it with a single asterisk (*) will
cause each item of the list, in order, to be used as a separate positional argument. Passing a dictionary and
prefixing it with two asterisks (**) will cause the keys of the dictionary to be used as names for separate key-
word arguments and the dictionary’s values to become the values of these arguments.

When a Python function needs to accept arbitrary sets of optional arguments, or to accept many differ-
ent arguments based on different situations, it’s common to define it like this:

 def my_func(*args, **kwargs):

The function will then have access to a list named args containing all the positional arguments passed
to it and a dictionary named kwargs containing all the keyword arguments passed to it. The function can
then look at those variables to work out what it needs to do.

This is how the Django ORM is able to accept lookup arguments based on your model’s fields. Its meth-
ods don’t have fixed argument signatures; instead, the methods accept arbitrary sets of keyword arguments
defined as **kwargs and then looks at those arguments to work out which fields to query on.

Finally,	you	return	a	response	where	the	template	context	will	be	the	entry.	The	entry	is	
retrieved via the lookup arguments, which look for entries matching the year, month, day, and
slug from the URL.

Because you used unique_for_date on the slug field, this combination is enough to
uniquely identify any entry in the database. The get method you’re using here is also new.
filter returns a QuerySet representing the set of all objects that match the query, but get tries
to return one, and only one, object. (If no objects match your query, or if more than one object
matches, it will raise an exception.)

Go ahead and create the template coltrane/entry_detail.html and fill it in any way you’d
like. Then add the new URL pattern to the project’s urls.py file if you haven’t already, reload
the entries index page in your browser, and click the link to one of them to see the new view in
action.

The view isn’t perfect, though. If you try a properly formatted URL for a nonexistent entry
(say, /weblog/1946/sep/12/no-entry-here/), you’ll get an error message and a traceback.
The exception is Entry.DoesNotExist, which is Django’s way of telling you that there wasn’t
an	entry	matching	your	criteria.	It	would	be	nice	to	return	an	HTTP	404	“Page	Not	Found”	
error in this case. You could do that manually by wrapping the query in a try block, catch-
ing the DoesNotExist exception, and then returning an appropriate response. But that would
be repetitive work. Trying to retrieve something that may or may not exist, and returning a
404	if	it	doesn’t,	is	something	you	need	to	do	a	lot	in	web	development.	So	instead	of	doing	it	
manually, you can use a helper function Django provides for this exact purpose: get_object_
or_404().	First,	change	the	import statement at the top of views.py to this:

 from django.shortcuts import get_object_or_404, render_to_response

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 69

Then you can rewrite the view like this:

 def entry_detail(request, year, month, day, slug):
 import datetime, time
 date_stamp = time.strptime(year+month+day, "%Y%b%d")
 pub_date = datetime.date(*date_stamp[:3])
 entry = get_object_or_404(Entry, pub_date__year=pub_date.year,
 pub_date__month=pub_date.month,
 pub_date__day=pub_date.day,
 slug=slug)
 return render_to_response('coltrane/entry_detail.html',
 { 'entry': entry })

The get_object_or_404() shortcut will use the same get() lookup you just tried, but it will
catch the DoesNotExist exception and re-raise the exception django.http.Http404. Django’s
HTTP-processing code recognizes this	exception	and	will	turn	it	into	an	HTTP	404	response.

using Django’s generic views
So far you’ve written only two views—an index of entries and a detail view for them—but already
it looks like this could get tedious and boring. You’re going to need views for the latest entries;
for	browsing	them	by	day,	month,	and	year;	and	for	browsing	them	by	categories	and	tags.	And	
what’s worse, a lot of it will be awfully repetitive: doing a query based on a date and returning one
or more entries as a result. Wouldn’t it be nice if you could avoid doing all that work by hand?

As	it	turns	out,	you	can,	by	using	Django’s	built-in	generic	views.	There	are	several	
extremely common patterns of views that web applications need, regardless of the type of con-
tent they’re presenting. So Django includes several sets of views, which are designed to work
with any model and which take care of these common tasks. Broadly speaking, these tasks
break down into four groups:

	 •	 Performing	simple	redirects	and	just	rendering	a	template	based	on	a	URL

	 •	 Displaying	lists	of	objects	and	individual	objects

	 •	 Creating	date-based	archives

	 •	 Creating,	retrieving,	updating,	and	deleting	(sometimes	called	CRUD)	objects

The weblog will rely heavily on date-based archives, so I’ll show you how that works. Go
into the urls.py file and remove the pattern that routes to your entry_detail view. Replace it
with this:

 (r'^weblog/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(?<slug>[-\w]+)/$,
 'django.views.generic.date_based.object_detail', entry_info_dict),

This makes use of a variable named entry_info_dict, which you haven’t defined. So
above the list of URL patterns (but below the import statements), define it like this:

 entry_info_dict = {
 'queryset': Entry.objects.all(),
 'date_field': 'pub_date',
 }

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG70

Now, make one change to the entry_detail.html	template.	Anywhere	there’s	a	reference	
to the variable entry (which your view was supplying), change it to object. You can also delete
the entry_detail view you previously wrote because it’s no longer needed. Next, go back and
click through to an entry’s URL in your browser. It will be retrieved properly from the database
and	displayed	as	specified	in	your	template.	URLs	for	nonexistent	entries	will	return	a	404,	just	
as your entry_detail view did once you started using get_object_or_404().

How did Django do that? The answer is actually pretty simple. The generic view wants to
receive a couple of arguments that tell it what it needs to do, and from there it can rely on the
fact	that	the	Django	database	API	and	template	system	work	the	same	way	in	all	situations.

The queryset argument is	the	key	here	because	(as	you’ll	remember	from	Chapter	3)	
many of Django’s database-querying methods actually return a special type of object called
a QuerySet, which can be further filtered and modified before it performs its actual query. In
this case, you pass the generic view Entry.objects.all(), which is a QuerySet representing all
the entries in the database. You also give it the argument date_field, which tells the generic
view which field on the model represents the date you want to filter on. The remainder of the
required arguments are all in the URL: year, month, day, and slug are received by the generic
view the same way they were received by the entry_detail view, and it performs the same
database query you were doing.

But because you can reuse the generic view with different sets of arguments, you can use
it to create date-based archives for any model, meaning you don’t have to write all the repeti-
tive code over and over. (Particularly, you can reuse the generic view with a different value for
the queryset argument and possibly date_field	and/or	slug_field—used if the model’s slug
field isn’t named slug.)	All	you	need	to	do	is	set	up	the	right	URL	pattern	and	hand	it	the	nec-
essary set of arguments in a dictionary.

The date-based generic views all live in the module django.views.generic.date_based.
There are seven of them, but you’ll need to use only five for your weblog functionality:

	 •	 object_detail: Provides a view of an individual object (as you’ve already seen).

	 •	 archive_day: Provides a view of all the objects on a given day.

	 •	 archive_month: Provides a view of all the objects in a given month.

	 •	 archive_year: Provides a list of all the months that have objects in them in a given year,
and optionally, a full list of all the objects in that year. (This is optional because it might
be an extremely large list.)

	 •	 archive_index: Provides a list of the latest objects.

So let’s rewrite the urls.py file to use generic views for entries. It’ll end up looking like
the following code (but for simplicity’s sake, I’m still using the cms project that’s already been
created):

 from django.conf.urls.defaults import *
 from django.contrib import admin
 admin.autodiscover()

 from coltrane.models import Entry

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 71

 entry_info_dict = {
 'queryset': Entry.objects.all(),
 'date_field': 'pub_date',
 }

 urlpatterns = patterns('',
 (r'^admin/', include(admin.site_urls)),
 (r'^search/$', 'cms.search.views.search'),
 (r'^weblog/$', 'django.views.generic.date_based.archive_index',
 entry_info_dict),
 (r'^weblog/(?P<year>\d{4}/$',
 'django.views.generic.date_based.archive_year',
 entry_info_dict),
 (r'^weblog/(?P<year>\d{4}/(?P<month>\w{3})/$',
 'django.views.generic.date_based.archive_month',
 entry_info_dict),
 (r'^weblog/(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/$',
 'django.views.generic.date_based.archive_day',
 entry_info_dict),
 (r'^weblog/(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/➥

(?P<slug>[-\w]+)/$',
 'django.views.generic.date_based.object_detail',
 entry_info_dict),
 (r'', include('django.contrib.flatpages.urls')),
)

You’ll need to create templates for	each	view.	All	of	the	generic	views	accept	an	optional	
argument to specify the name of a custom template to use (the argument, appropriately
enough, is called template_name), but by default they’ll use the following:

	 •	 archive_index will use coltrane/entry_archive.html.

	 •	 archive_year will use coltrane/entry_archive_year.html.

	 •	 archive_month will use coltrane/entry_archive_month.html.

	 •	 archive_day will use coltrane/entry_archive_day.html.

	 •	 object_detail will use coltrane/entry_detail.html.

ADmoniTion: HoW THe TemPlATe nAmeS Are DeTermineD

The default template names used by Django’s generic views are all based on two pieces of information: the
model the generic view is working with, and the application that model lives in. In this case, the model is the
Entry class, and the application is coltrane. For consistency purposes, Django lowercases both when gen-
erating the default template name.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG72

The object_detail view, as you’ve already seen, makes the entry available in a variable
named object. In the daily and monthly archive views, you’ll get a list of entries as the vari-
able object_list. In both cases, you can customize these views through an optional argument
called template_object_name. The yearly archive will—as previously explained—default to
simply giving you a list of months in which entries have been published. This will be the vari-
able date_list in the template. The archive_index view will supply its template with a variable
called latest,	which	will	contain	the	latest	entries	(up	to	a	maximum	of	15).	You	can	use	the	
for tag in the appropriate templates (just as you did previously in your hand-rolled entry
index) to loop through these lists.

The daily, monthly, and yearly archives also give the template an extra variable represent-
ing the date or date range they’re working with: day, month, and year,	respectively.	As	you’ve	
seen already in the templates for the entry views you wrote by hand, you can use the date tem-
plate filter to format the dates displayed in your templates however you’d like.

ADmoniTion: Filling ouT THe enTrY TemPlATeS

If you’re interested in seeing a full set of (simple) example templates, check out the sample code for this book
(downloadable from the Apress web site). Be aware that they do make use of some features that haven’t been
introduced yet, but you should be able to understand most of what’s going on in them.

Decoupling the urls
At	this	point,	between	the	models	you’ve	defined,	Django’s administrative interface, and the
date-based generic views, you’ve got a pretty good weblog application. But already there’s a
big	problem—it’s	really	not	reusable	because	its	URLs	are	“coupled”	to	the	particular	setup	
you’ve put together:

	 •	 The	set	of	URL	patterns	for	the	entries	are	sitting	in	the	project’s	urls.py file, which
means you would need to copy them into any other project that needs a weblog.

	 •	 The	URL	patterns	and	the	Entry and Category models’ get_absolute_url() methods
(though you haven’t set up views for categories yet) are all hard-coded and assume
a particular URL layout for the site. It’s a fairly sensible layout, but some users might
want a different setup (for example, /blog/ as the weblog root instead of /weblog/).

Let’s	fix	that.	First	of	all,	you’ve	already	seen	that	Django	offers the include() function for
plugging in a set of URLs at a specific point in a project (as you’ve done with the administrative
application). So let’s create a reusable set of URLs that lives inside the weblog application. Go
into its directory and create a file named urls.py, then copy the appropriate import statements
and URL patterns into it:

 from django.conf.urls.defaults import *

 from coltrane.models import Entry

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 73

 entry_info_dict = {
 'queryset': Entry.objects.all(),
 'date_field': 'pub_date',
 }

 urlpatterns = patterns('',
 (r'^$', 'django.views.generic.date_based.archive_index', entry_info_dict),
 (r'^(?P<year>\d{4}/$', 'django.views.generic.date_based.archive_year',
 entry_info_dict),
 (r'^(?P<year>\d{4}/(?P<month>\w{3})/$',
 'django.views.generic.date_based.archive_month',
 entry_info_dict),
 (r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/$',
 'django.views.generic.date_based.archive_day',
 entry_info_dict),
 (r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/➥

(?P<slug>[-\w]+)/$',
 'django.views.generic.date_based.object_detail',
 entry_info_dict),
)

In the project’s urls.py file, you can remove the import of the Entry model and the entry_
info_dict variable, as well as the URL patterns for the entries (the ones starting with ^weblog/).
You can replace them all with one URL pattern:

 (r'^weblog/', include('coltrane.urls')),

Notice that the URLConf module inside the weblog application doesn’t include the
weblog/ prefix on any of its URL patterns. It’s relying on the project to decide where to put this
set of URLs.

You can also cut down on some repetitive typing here: all the views used in the weblog’s
URLConf start with django.views.generic.date_based, which isn’t fun to type out over and
over again. Meanwhile, there’s a conspicuous empty string as the first thing in the list. That
empty string isn’t a URL. It’s a special parameter that lets you specify a view prefix, in case all
the view functions have identical module paths. Let’s take advantage of that:

 urlpatterns = patterns('django.views.generic.date_based',
 (r'^$', 'archive_index', entry_info_dict).
 (r'^(?P<year>\d{4}/$', 'archive_year', entry_info_dict),
 (r'^(?P<year>\d{4}/(?P<month>\w{3})/$', 'archive_month', entry_info_dict),
 (r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/$',
 'archive_day',
 entry_info_dict),
 (r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$',
 'object_detail',
 entry_info_dict),
)

Now Django will automatically prepend django.views.generic.date_based to all of these
view function names before it tries to load them, which is much nicer.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG74

Now you need to deal with the problem of the get_absolute_url() methods. On the Entry
model, get_absolute_url() returns a URL with /weblog/ hard-coded into it, and that’s no
good. Somebody might plug these URLs into a different part of their site’s URL layout. The
solution is a pair of features in Django: one lets you give names to your URL patterns, and the
other lets you specify that a function like get_absolute_url() should actually return a value by
looking for URL patterns with particular names.

First,	you	need	to	make one more change to the weblog URLConf:

 urlpatterns = patterns('django.views.generic.date_based',
 (r'^$', 'archive_index', entry_info_dict, 'coltrane_entry_archive_index'),
 (r'^(?P<year>\d{4}/$', 'archive_year', entry_info_dict, ➥

'coltrane_entry_archive_year'),
 (r'^(?P<year>\d{4}/(?P<month>\w{3})/$', 'archive_month', entry_info_dict, ➥

'coltrane_entry_archive_month'),
 (r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2}/)$', 'archive_day', ➥

entry_info_dict, 'coltrane_entry_archive_day'),
 (r'^(?P<year>\d{4}/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$', ➥

'object_detail', entry_info_dict, 'coltrane_entry_detail'),
)

You’ve added a name to each one of these URL patterns. The names are made up of your
application’s name (to avoid name collisions with URL patterns in other applications) and a
description of what the view is for.

Now you can rewrite the get_absolute_url() method on the Entry model:

 def get_absolute_url(self):
 return ('coltrane_entry_detail', (), { 'year': self.pub_date.strftime("%Y"),
 'month': self.pub_date. ➥

 strftime("%b").lower(),
 'day': self.pub_date.strftime("%d"),
 'slug': self.slug })
 get_absolute_url = models.permalink(get_absolute_url)

The get_absolute_url() method now returns a tuple, whose elements are as follows:

	 •	 The	name	of	the	URL	pattern	you	want	to	use

	 •	 A	tuple	of	any	positional	arguments	to	be	included	in	the	URL	(in	this	case,	there	aren’t	
any)

	 •	 A	dictionary	of	any	keyword	arguments	to	be	included	in	the	URL

The last line is a new concept: a decorator. Decorators are special functions that do noth-
ing on their own but can be used to change the behavior of other functions. The permalink
decorator you’re using here (which lives in django.db.models) will actually rewrite the get_
absolute_url() function to do a reverse URL lookup. It will scan the project’s URLConf to look
for the URL pattern with the specified name, then use that pattern’s regular expression to create
the correct URL string and fill in the proper values for any arguments that need to be embedded
in the URL.

Chapter 4 ■ a DJaNGO-pOWereD WeBLOG 75

Based on the URLConf you’ve set up for this project, the permalink decorator will find
the /weblog/ prefix and follow the include() to coltrane.urls, where it will find the pattern
named coltrane_entry_detail	and	fill	in	the	regular	expression	with	the	correct	values.	For	
an	entry	published	on	October	10,	2007,	with	the	slug	test-entry, this process will generate
the URL /weblog/2007/oct/10/test-entry/. If you changed the root URLConf to include the
weblog URLs under blogs/ instead, you’d generate /blogs/2007/oct/10/test-entry/.

ADmoniTion: PYTHon DeCorATor SYnTAx

It’s also possible to use a slightly different syntax for decorators in Python. You can place them directly above
the function or method’s definition and prefix them with an at (@) symbol. In this case, that would have meant
placing @models.permalink directly above this line:

 def get_absolute_url(self):

This syntax was introduced in Python 2.4, so if you’re using 2.4 or a later version, it will work. I gener-
ally avoid it in my Django applications, though, because Django also works with Python 2.3, where the only
available syntax is to call the decorator below the function or method definition. In general, it’s a good idea to
write your code so that it’s compatible with the largest possible number of Python versions.

And	now	you’ve	completely	decoupled	the	entry	URLs	from	the	project	and	from	any	
assumptions about particular site URL layouts. These URLs can be plugged into any project
at any point in its URL hierarchy, and between include() and the permalink() decorator, the
generated URLs will always be correct.

looking Ahead
Once again, you’ve accomplished a lot without writing much actual code. The biggest hurdle
in	the	weblog	application	so	far	has	simply	been	getting	a	handle	on	the	layout	of	a	first	“real”	
Django application and all of the assorted options Django provides to cut down on tedious
and	repetitive	code.	And	it	is	flexible	enough	to	be	reused	in	any	project	where	you	need	a	
blog.

At	this	point,	you’ve	got	a	large	number	of	Django’s	most	important	concepts	under	your	
belt—the	basic	model/URL/view/template	architecture,	the	syntax	of	each	component,	and	
the	general	principles	of	decoupling	and	code	reuse	(sometimes	called	DRY,	short	for	“Don’t	
Repeat	Yourself,”	a	software-development	guideline	that	says	whenever	possible	you	should	
have one, and only one, authoritative version of a piece of data or functionality). You might
want to pause here and review what you’ve written so far because you’re going to start picking
up the pace and writing code much more quickly. Once you feel comfortable with the concepts
and features introduced up to this point, move on to the next chapter. There you’ll finish up the
weblog models by writing the Link	class,	and	then	fill	in	the	rest	of	the	basic	views.	After	that,	
you’ll delve a bit deeper into Django’s templating system and some more advanced features.

mailto:@models.permalink

C h a p t e r 5

expanding the Weblog

So far you’ve written two models for your weblog application—Category and Entry—and set
up views that will display the entries in the weblog. You still have some work to do to set up all
the different views you’ll want for the entries; however, before you do that, let’s go back and
finish up the weblog’s data models by adding the final model class.

Writing the Link Model
Just as the fields on the Entry model logically broke down into groups according to how they
would be used, the model you’ll use to represent links—a class called Link—will need fields for
several different purposes:

	 •	 Core fields representing the link: A title, a description, and of course, the URL to link to.

	 •	 Metadata: This includes the date the link was posted and the name of the user who
posted it, as well as whether to allow comments for the link.

	 •	 Categorization: You’ll accomplish this with tags.

	 •	 Integration with an external link-posting service: In this case, you’ll use Delicious
(http://delicious.com).

Let’s begin with the basic core fields for the model (as with the Category and Entry mod-
els, this code goes in coltrane/models.py). Just as before, you’ll build it up incrementally (so
don’t run syncdb yet):

 class Link(models.Model):
 title = models.CharField(max_length=250)
 description = models.TextField(blank=True)
 description_html = models.TextField(blank=True)
 url = models.URLField(unique=True)

There’s one new field type here: URLField. As the name suggests, it’s meant to store a URL.
In the database, it will simply be a VARCHAR column like most other text-based field types, but
in automatically generated forms (like the ones displayed by the admin interface), additional
validation will be performed for this field:

77

http://delicious.com

Chapter 5 ■ eXpaNDING the WeBLOG78

	 •	 The	value	entered	will	be	checked	against	the	syntax	of	an	HTTP	URL,	so	for	example,	
it must start with http:// or https://.

	 •	 You	won’t	be	able	to	enter	a	nonexistent	or “broken” URL. By default, Django will issue
an	HTTP	request	to	the	URL	during	validation	and	will	refuse	to	accept	the	URL	if	it	
returns	an	HTTP	error	status	(such	as	“404	Not	Found”	or	“500	Internal	Server	Error”).	
You can disable this verification by using the keyword argument verify_exists=False
when setting up the URLField.

Also, note the keyword argument unique=True.	As	mentioned	in	Chapter	4,	this	will	gen-
erate a UNIQUE constraint at the database level and will be enforced by Django as well. This
keyword argument will prevent users from posting the same link repeatedly.

Finally,	the	link	description	is	optional—you	might	not	always	want	to	enter	one.	And	it	
uses two fields, just as the excerpt and body on the Entry model did. In a moment, you’ll add a
customized save() method to apply	text-to-HTML	conversion.

You already saw on the Entry model how to add a foreign key to a user to represent the
person who posted an entry, and you can do the same with the Link model:

 posted_by = models.ForeignKey(User)

Similarly,	you	can	add	a	publication date and a slug:

 pub_date = models.DateTimeField(default=datetime.datetime.now)
 slug = models.SlugField(unique_for_date='pub_date')

You can add tagging just as you did with the Entry model:

 tags = TagField()

and two Boolean fields: one for determining if comments should be allowed and one for deter-
mining whether to post the link to an external service. In both cases, you’ll default them to True:

 enable_comments = models.BooleanField(default=True)
 post_elsewhere = models.BooleanField('Post to Delicious', default=True)

I use Delicious as my link-aggregation service, so I’ve put that into the field’s label; but
later on, if you decide you want to use a different service, you should feel free to change it.
When you write the custom save() method for this model, you’ll see how to send the link to
the external service.

Finally,	let’s	add	a	couple	more	fields to get a little bit of extra metadata. It’s fairly com-
mon to make a note of where you spotted a useful link, and you could use the description
for	that	(that	is,	you	might	enter	“Link	found	via	Slashdot”),	but	it’s	often	handier	to	model	
that	directly.	So	you’ll	add	two	more	fields:	one	for	storing	the	name	of	the	person	or	site	who	
pointed you to the link, and one for storing the URL where you spotted the link. You’ll make
both of these optional so that they don’t have to be filled in when they’re not applicable:

 via_name = models.CharField('Via', max_length=250, blank=True,
 help_text='The name of the person whose site you➥

 spotted the link on. Optional.')
 via_url = models.URLField('Via URL', blank=True,
 help_text='The URL of the site where you spotted the➥

 link. Optional.')

http://or

Chapter 5 ■ eXpaNDING the WeBLOG 79

You can also add a default ordering by the pub_date field:

 class Meta:
 ordering = ['-pub_date']

and a __unicode__() method so that each Link will have a useful string representation. Just as
with entries, you’ll use the title field for this:

 def __unicode__(self):
 return self.title

And finally, you’ll add a customized save() method, which needs to do two things:

	 •	 If	anything	was	filled	in	for	the	description	field,	save()	should	run	Markdown	over	it	
and store the result in the description_html field.

	 •	 If	the	post_elsewhere field is True and this is the first time the link is being saved, the
save() method should post it to Delicious as well.

The first part is easy, and you can handle it in much the same way as you handled the
optional excerpt on entries:

 def save(self):
 if self.description:
 self.description_html = markdown(self.description)
 super(Link, self).save()

The second part is a bit trickier. You’ll need some way of communicating with the public
link-posting	API	that	Delicious	provides.	Fortunately,	you	can	do	this	using	an	open	source	
Python	module	called	pydelicious; download it from http://code.google.com/p/pydelicious/.

AdMonition: inStAlling third-PArty Python ModuleS

Python provides a mechanism for packaging and installing modules so you can easily distribute and reuse
them. Most third-party Python modules and Django applications you’ll encounter will work this way, so you’ll
be able to download a package, open it up, and, inside the resulting directory, type python setup.py
install to install it.

The pydelicious module actually	implements	quite	a	few	useful	methods	from	the	Deli-
cious	API,	but	the	only	one	you	need	here	is	the	one	to	publish	a	link.	This	is	implemented	in	
pydelicious as a function called add(), which takes five arguments:

	 •	 The	username	of	the	account	to	post	the	link	to

	 •	 The	password	of	the	account	to	post	the	link	to

	 •	 The	URL	of	the	link

	 •	 The	title	of	the	link

	 •	 The	tags	for	the	link,	as	a	string	with	tags	separated	by	spaces

http://code.google.com/p/pydelicious/

Chapter 5 ■ eXpaNDING the WeBLOG80

It would be tempting to simply hard-code your own account information for the user-
name and password parts, but that would cause problems down the line: you couldn’t share
the blog application with others (because they would get your username and password in the
code), and you wouldn’t be able to reuse the application with multiple blogs that post to dif-
ferent accounts.

One	good	solution	to	that	problem	is	to	require	a	username	and	password	to	be	placed	in	
the Django settings file. This way, each site that uses the blog application can specify a differ-
ent username and password. And you won’t have to worry about security because you won’t
be distributing your settings file anyway (it has other sensitive information, like your database
credentials). You’ll call these settings DELICIOUS_USER and DELICIOUS_PASSWORD to clearly indi-
cate what they mean.

So	add	a	line	at	the	top	of	models.py to import the Django settings you’re using:

 from django.conf import settings

AdMonition: AcceSSing SettingS

You can access your Django settings file the same way you would access any other Python module—by
importing it from its location on your computer (using import cms.settings, for example). However, it’s
generally a better idea to use from django.conf import settings. This will enable a feature in Django
that automatically supplies default values for many settings if you haven’t filled them in.

If it feels weird to be making up new settings, don’t worry. Defining and making use of
additional settings is a perfectly normal and encouraged practice for Django applications (as
long	as	each	application	documents	any	additional	settings	it	requires).	Plus,	keeping	all	con-
figuration for a Django project in one place—the settings file—makes it easier to understand
and manage a project than having “Django” settings and “application” settings spread out
over multiple locations.

There’s just one more thing I need to cover before you can write the finished save()
method. Django will represent the URL, title, and tags as Unicode strings. Ordinarily, Django’s
practice of ensuring that strings stored in model fields are Unicode is a good thing: it removes
a lot of the headaches of dealing with character encodings. But in this case, it’s slightly prob-
lematic as well because Unicode strings don’t translate directly into a series of binary bytes, so
they	aren’t	suitable	to	be	sent	out	“over	the	wire”	in	a	web-based	API	call.

So	you’ll	need	to	convert	the	values of these fields into byte-based strings before passing
them	to	the	Delicious	API.	Django provides a helper function, django.utils.encoding.smart_
str(),	which	will	do	this.	In	a	lot	of	cases,	you	could	probably	also	use	Python’s	built-in	str()
function	and	get	away	with	it.	However,	Django’s	smart_str() can handle some situations that
str()	can’t,	and	it	also	defaults	to	encoding	the	result	in	UTF-8	instead	of	ASCII	(which	is	the	
default	for	most	Python	installations).

So	now	you	can	add	the appropriate code to the save() method, and you’re done:

Chapter 5 ■ eXpaNDING the WeBLOG 81

 def save(self):
 if self.description:
 self.description_html = markdown(self.description)
 if not self.id and self.post_elsewhere:
 import pydelicious
 from django.utils.encoding import smart_str
 pydelicious.add(settings.DELICIOUS_USER, settings.DELICIOUS_PASSWORD,
 smart_str(self.url), smart_str(self.title),
 smart_str(self.tags))
 super(Link, self).save()

The if not self.id and self.post_elsewhere are important to note because they work
out all the logic to determine if the link should be posted externally. The check for self.id is
the key because that tells you if the link is being saved for the first time (reposting the link over
and over again every time it’s saved wouldn’t be useful). Remember that if you don’t specify
a primary key for a model, Django adds one automatically in a field named id.	So	if	that	field	
doesn’t have a value, it must not have been saved to the database yet.

As a finishing touch to the Link model, you’ll add a get_absolute_url() method. Just as
you did with the Entry model, you’ll use the permalink decorator to enable it to do a reverse
lookup in the project’s URLConf module:

 def get_absolute_url(self):
 return ('coltrane_link_detail', (), { 'year': self.pub_date.strftime('%Y'),
 'month': self.pub_date.strftime('%b')➥

.lower(),
 'day': self.pub_date.strftime('%d'),
 'slug': self.slug })
 get_absolute_url = models.permalink(get_absolute_url)

You haven’t yet defined any URL patterns for links, so there isn’t a pattern named
coltrane_link_detail. You’ll add that in a moment.

At this point, you’ve got the Link model fully written, and you can run manage.py syncdb
to install its database table. For	reference,	here’s	the	full	model	definition	with	the	fields	neatly	
organized and some additional help_text mixed in, as you saw for the Entry	model	in	Chapter	4:

 class Link(models.Model):
 # Metadata.
 enable_comments = models.BooleanField(default=True)
 post_elsewhere = models.BooleanField('Post to del.icio.us',
 default=True,
 help_text='If checked, this link will➥

 be posted both to your weblog and to your del.icio.us account.')
 posted_by = models.ForeignKey(User)
 pub_date = models.DateTimeField(default=datetime.datetime.now)
 slug = models.SlugField(
 unique_for_date='pub_date',
 help_text='Must be unique for the publication date.')

Chapter 5 ■ eXpaNDING the WeBLOG82

 title = models.CharField(max_length=250)

 # The actual link bits.
 description = models.TextField(blank=True)
 description_html = models.TextField(editable=False, blank=True)
 via_name = models.CharField('Via', max_length=250, blank=True,
 help_text='The name of the person whose site you➥

 spotted the link on. Optional.')
 via_url = models.URLField('Via URL', verify_exists=False, blank=True,
 help_text='The URL of the site where you spotted➥

 the link. Optional.')
 tags = TagField()
 url = models.URLField('URL', unique=True)

 class Meta:
 ordering = ['-pub_date']

 def __unicode__(self):
 return self.title

 def save(self):
 if not self.id and self.post_elsewhere:
 import pydelicious
 pydelicious.add(settings.DELICIOUS_USER,
 settings.DELICIOUS_PASSWORD,
 smart_str(self.url),
 smart_str(self.title),
 smart_str(self.tags))
 if self.description:
 self.description_html = markdown(self.description)
 super(Link, self).save()

 def get_absolute_url(self):
 return ('coltrane_link_detail', (),
 { 'year': self.pub_date.strftime('%Y'),
 'month': self.pub_date.strftime('%b').lower(),
 'day': self.pub_date.strftime('%d'),
 'slug': self.slug })
 get_absolute_url = models.permalink(get_absolute_url)

Also, go ahead and enable the administrative interface for the Link	model.	See	if	you	can	
work out for yourself how to do this, setting up the automatically prepopulating slugs as you’ve
done previously. If you get stumped, check out the source code for this chapter (downloadable
from	the	Source	Code/Download	area	of	the	Apress	web	site).

Chapter 5 ■ eXpaNDING the WeBLOG 83

Views for the Link Model
You saw in the last chapter that Django’s built-in generic views provide an easy way to handle
common types of views. By passing the right parameters into a generic view, you can often
save	quite	a	bit	of	time	and	code	when	all	you	want	is,	for	example,	to	display	a	list	of	model	
objects or a detail of a single object.

The situation is no different with the Link model. You want to have a detail view of each
individual link and a date-based archive for browsing through all of the links in the database.
So	open	up	the	urls.py file inside the weblog application, and change this line

 from coltrane.models import Entry

to read

 from coltrane.models import Entry, Link

Then, just as with the Entry model, you’ll need to define a dictionary with arguments for
the generic views:

 link_info_dict = {
 'queryset': Link.objects.all(),
 'date_field': 'pub_date',
 }

Next,	you	can	add	a	new	set of URL patterns to the existing list:

 (r'^links/$',
 'archive_index', link_info_dict,
 'coltrane_link_archive_index'),
 (r'^links/(?P<year>\d{4})/$',
 'archive_year', link_info_dict,
 'coltrane_link_archive_year'),
 (r'^links/(?P<year>\d{4})/(?P<month>\w{3})/$',
 'archive_month', link_info_dict,
 'coltrane_link_archive_month'),
 (r'^links/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$',
 'archive_day', link_info_dict,
 'coltrane_link_archive_day'),
 (r'^links/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/➥

(?P<slug>[-\w]+)/$',
 'object_detail', link_info_dict,
 'coltrane_link_detail'),

When you used them for the Entry model, the template names for the views were (in order):

	 •	 coltrane/entry_archive.html

	 •	 coltrane/entry_archive_year.html

	 •	 coltrane/entry_archive_month.html

Chapter 5 ■ eXpaNDING the WeBLOG84

	 •	 coltrane/entry_archive_day.html

	 •	 coltrane/entry_detail.html

Now	that	you’re	also	using	generic views for the Link model, you’ll need a slightly differ-
ent set of templates:

	 •	 coltrane/link_archive.html

	 •	 coltrane/link_archive_year.html

	 •	 coltrane/link_archive_month.html

	 •	 coltrane/link_archive_day.html

	 •	 coltrane/link_detail.html

The variable names available in these templates will be the same as before, so you should
be	able	to	work	with	them	easily.	For	example,	in	the	detail	view,	the	Link object will be avail-
able in a variable named object. If you’d like to, go ahead and set up the templates for now, but
in the next chapter you’ll take a more detailed look at Django’s template system and how it can
greatly reduce the amount of repetitive work involved in writing templates.

Setting up Views for categories
At this point, you’ve got most of the weblog’s features set up. The models are written, and
thanks to generic views, you have an easy way to view date-based archives of entries and links,
as well as individual Entry and Link objects on their own detail pages. But there are still two
groups of views you need to handle:

	 •	 Views	for	browsing	entries	by	categories

	 •	 Views	for	browsing	entries	and	links	by	tags

Let’s start with categories. You’ll need two views for categories: one to display a list of all
the	categories	in	use,	and	another	to	display	the	list	of	entries	in	a	specific	category.	So	open	
up the views.py file in the weblog application and add the following at the top, after the exist-
ing import statements:

 from coltrane.models import Category

Writing the view that shows a list of categories is pretty easy. All you have to do is retrieve
the	list	from	the	database	and	hand	it	off	to	the	template.	For	the	sake	of	consistency	with	
how the generic views do things, you’ll pass the list of categories to the template in a variable
named object_list, and you’ll use the template name coltrane/category_list.html (for rea-
sons that will soon become clear):

 def category_list(request):
 return render_to_response('coltrane/category_list.html',
 { 'object_list': Category.objects.all() })

Chapter 5 ■ eXpaNDING the WeBLOG 85

Displaying a list of entries in a particular category is only slightly more complex. Because
each category has a SlugField suitable for use in a URL, you’ll assume that the URL matches
an argument called slug. You’ll use that to look up the category (using get_object_or_404() to
return	a	“404	Not	Found”	error	if	there	isn’t	a	category	matching	the	slug	given	in	the	URL).

And once you have the Category object, accessing the list of entries is easy. Django knows
about the relationship set up by the ManyToManyField on Entry, and it will ensure that each
Category will have an attribute called entry_set, which can be used to access the entries that
have been assigned to it. This attribute behaves much like the objects attribute on the Entry
model. It has all the same methods—all() and filter(), for example—as Entry.objects,
except it returns only entries assigned to that particular Category.

Following	is	the	view,	using coltrane/category_detail.html as the template name, and
again, using the name object_list for the variable that holds the list of entries:

 def category_detail(request, slug):
 category = get_object_or_404(Category, slug=slug)
 return render_to_response('coltrane/category_detail.html',
 { 'object_list': category.entry_set.all(),
 'category': category })

Next,	you	can	just	add	a	couple more patterns in the weblog application’s urls.py file.
The only tricky thing here is that you’ve already specified a prefix of django.views.generic.
date_based for the URL patterns there, and these two views live in coltrane.views. You could
remove the prefix and manually add django.views.generic.date_based to all those views
again, but there’s an easier way to solve this problem. Notice	how	the	list	of	patterns	begins	
like this:

 urlpatterns = patterns('django.views.generic.date_based',

This line calls a function named patterns(), which is imported from django.conf.urls.
defaults (as you can see if you look at the top of the file). The function parses each pattern
passed into it, and then returns a list of URL patterns in a standardized format that Django
can work with. That list ends up in a variable named urlpatterns. Because the end result is
just	an	ordinary	Python	list,	you	can	continue	working	with	it.	In	this	case,	you’re	going	to	take	
advantage	of	the	fact	that	you	can	add	together	Python	lists	using	the	plus	sign	(+) operator.
You simply call patterns() a second time and add the result onto the urlpatterns variable you
already	have.	However,	this	time	you’ll	use	a	different	prefix:	coltrane.views.

So	add	the	following	code at the bottom of urls.py (you’re actually using += instead of just
+ because it means a slightly shorter piece of code):

 urlpatterns += patterns('coltrane.views',
 (r'^categories/$', 'category_list'),
 (r'^categories/(?P<slug>[-\w]+)/$', 'category_detail'),
)

Now	you	have	views	and	URLs	set	up.	You’ll	deal	with	templates	for	them	in	the	next	
chapter.	For	now,	let’s focus on some ways you can improve what you’ve got here.

Chapter 5 ■ eXpaNDING the WeBLOG86

using generic Views (Again)
This is really more work than you need to do. You’ve already seen how generic views make it
easy to set up date-based archives, and they’re also pretty handy at handling non-date-based
lists of objects. The module django.views.generic.list_detail contains two views, which
produce non-date-based results:

	 •	 object_list simply takes the queryset argument you’ve already seen and fetches a list
of objects.

	 •	 object_detail (which is worth mentioning, although you won’t be using it in this
application) takes the queryset argument, and either an object_id argument cor-
responding to an object’s primary key or a combination of slug_field and slug
arguments, and returns a detail view of a single object.

So	you	don’t	actually	need	the	category_list view. The object_list generic view will do
the same thing. Go back to the urls.py file and make one more change to the import statement
that pulls in the weblog models. Change it from

 from coltrane.models import Entry, Link

to

 from coltrane.models import Category, Entry, Link

Then go back to the extra set of patterns you just added for the categories and change it to
this:

 urlpatterns += patterns('',
 (r'^categories/$',
 'django.views.generic.list_detail.object_list',
 { 'queryset': Category.objects.all() }),
 (r'^categories/(?P<slug>[-\w]+)/$',
 'coltrane.views.category_detail'),
)

The object_list generic view, by default, uses a template name of coltrane/category_list.
html (which is why it was a good idea to choose that from the start for the original category_list
view) and passes in the list of categories in a variable named object_list. This has the same
effect as your manually written view (which you can now delete).

You might be wondering at this point whether it’s possible to use a generic view for the
list of entries in a category. It doesn’t seem as if there’s any way to tell the generic view to also
filter the entries based on the categories they belong to, because the exact filtering that needs
to be done will vary according to which category you’re looking at.

But there is a way to use a generic view here. The trick is to remember that, in Django, a
view	is	simply	a	Python	function	that	accepts	an	HttpRequest object (and potentially a set of
additional arguments) and returns an HttpResponse object. This means that it’s possible to
write one view that imports and calls another view, as well as returns its response.

If that sounds confusing, here’s how you could write a variation of the category_detail
view that uses the object_list generic view:

Chapter 5 ■ eXpaNDING the WeBLOG 87

 from django.views.generic.list_detail import object_list

 def category_detail(request, slug):
 category = get_object_or_404(Category, slug=slug)
 return object_list(request, queryset=category.entry_set.all(),
 extra_context={ 'category': category }))

Let’s break down what’s happening here:

 1. You import the object_list generic view from django.views.generic.list_detail
(the other things you’ll be using, like the Category model and the get_object_or_404()
shortcut, have already been imported inside the views.py file).

 2. You define your view function, category_detail,	to	accept	the	HTTP	request	and	a	slug.

 3. You use get_object_or_404() to either get the Category corresponding to the slug
argument	or	return	a	“404	Not	Found”	error.

 4. You call the object_list	generic	view	directly,	passing	along	the	HTTP	request	and	set-
ting its queryset argument to the set of entries in this specific category, and return the
response directly.

 5. You pass an extra argument, extra_context.	Most	of	Django’s	generic	views	accept	this	
argument, which lets you specify extra variables and values to make available to the
template. In this case, you’re adding the Category object.

In effect, you’re “wrapping” up the generic view inside another view function that does
some preliminary work to filter the eventual QuerySet it will use.

Given how simple the original category_detail view was, this might seem like a strange
way of doing things, and for this specific case wrapping a generic view is probably not worth
the effort. But this is an extremely powerful pattern to keep in the back of your mind. There
will be many times when you’ll need something like a generic view, but with a little bit of extra
filtering or processing. Using this sort of wrapper can, in more complex cases, often lead to a
significant reduction in the amount of code you have to write by hand.

Views for tags
You still need a set of views to handle browsing entries and links by their tags. As it turns out,
though, you don’t have to write them. The tagging application you’re using provides a model
called Tag to represent the tags, and you can simply use the object_list generic view to show
a list of them.

Add one more import statement at the top of the urls.py file:

 from tagging.models import Tag

And add another set of URL patterns at the bottom:

 urlpatterns += patterns('',
 (r'^tags/$',
 'django.views.generic.list_detail.object_list',
 { 'queryset': Tag.objects.all() }),
)

Chapter 5 ■ eXpaNDING the WeBLOG88

The tagging application also provides one view—written in the same general style as
Django’s built-in generic views—for showing all the objects from a particular model that have
a particular tag. This view is tagging.views.tagged_object_list, and you need to give it three
arguments:

	 •	 queryset_or_model: This will be the model class or QuerySet whose objects you want to
view, and you’ll pass it in directly in the URL pattern.

	 •	 tag: This can be either a Tag object or the name of a tag, and you’ll set up the pattern so
that it’s read out of the URL.

	 •	 template_name: This is the name of the template that the view will use. If it’s not speci-
fied, it will default to tagging/tag_list.html, so you’ll use something descriptive to
make it easier to keep track of what’s going on.

So	all	you	need	to	do	is add two more patterns: one for browsing entries by tag, and one
for browsing links by tag. You start with the pattern you already set up for the tag list:

 urlpatterns += patterns('',
 (r'^tags/$',
 'django.views.generic.list_detail.object_list',
 { 'queryset': Tag.objects.all() }),
)

and then add the two new patterns:

 urlpatterns += patterns('',
 (r'^tags/$',
 'django.views.generic.list_detail.object_list',
 { 'queryset': Tag.objects.all() }),
 (r'^tags/entries/(?P<tag>[-\w]+)/$',
 'tagging.views.tagged_object_list',
 { 'queryset_or_model': Entry,
 'template_name': 'coltrane/entries_by_tag.html' }),
 (r'^tags/links/(?P<tag>[-\w]+)/$',
 'tagging.views.tagged_object_list',
 { 'queryset_or_model': Link,
 'template_name': 'coltrane/links_by_tag.html' }),
)

The tagged_object_list view is actually a wrapper around the object_list generic view,
like the one you saw previously for the category_detail view but slightly more complex.
(This is a case where wrapping a generic view does significantly reduce the amount of code.)
Because of this, the tagged_object_list view will provide the list of objects to the template in a
variable named object_list, making it nice and consistent with all of your other views.

cleaning up the urlconf Module
By this point, the urls.py file in the weblog application is starting to get unwieldy. Currently, it
looks like the following:

Chapter 5 ■ eXpaNDING the WeBLOG 89

 from django.conf.urls.defaults import *

 from coltrane.models import Category, Entry, Link
 from tagging.models import Tag

 entry_info_dict = {
 'queryset': Entry.objects.all(),
 'date_field': 'pub_date',
 }

 link_info_dict = {
 'queryset': Link.objects.all(),
 'date_field': 'pub_date',
 }

 urlpatterns = patterns('django.views.generic.date_based',
 (r'^$', 'archive_index', entry_info_dict, 'coltrane_entry_archive_index'),
 (r'^(?P<year>\d{4})/$', 'archive_year',
 entry_info_dict,
 'coltrane_entry_archive_year'),
 (r'^(?P<year>\d{4})/(?P<month>\w{3})/$',
 'archive_month', entry_info_dict,
 'coltrane_entry_archive_month'),
 (r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$',
 'archive_day',
 entry_info_dict,
 'coltrane_entry_archive_day'),
 (r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$',
 'object_detail',
 entry_info_dict,
 'coltrane_entry_detail'),
 (r'^links/$',
 'archive_index',
 link_info_dict,
 'coltrane_link_archive_index'),
 (r'^links/(?P<year>\d{4})/$',
 'archive_year',
 link_info_dict,
 'coltrane_link_archive_year'),
 (r'^links/(?P<year>\d{4})/(?P<month>\w{3})/$',
 'archive_month', link_info_dict, 'coltrane_link_archive_month'),
 (r'^links/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$',
 'archive_day', link_info_dict, 'coltrane_link_archive_day'),
 (r'^links/(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/➥

(?P<slug>[-\w]+)/$',

Chapter 5 ■ eXpaNDING the WeBLOG90

 'object_detail',
 link_info_dict,
 'coltrane_link_detail'),
)

 urlpatterns += patterns('',
 (r'^categories/$',
 'django.views.generic.list_detail.object_list',
 { 'queryset': Category.objects.all() }),
 (r'^categories/(?P<slug>[-\w]+)/$',
 'coltrane.views.category_detail'),
)

 urlpatterns += patterns('',
 (r'^tags/$', 'django.views.generic.list_detail.object_list',
 { 'queryset': Tag.objects.all() }),
 (r'^tags/entries/(?P<tag>[-\w]+)/$',
 'tagging.views.tagged_object_list',
 { 'queryset_or model': Entry,
 'template_name': 'coltrane/entries_by_tag.html' }),
 (r'^tags/links/(?P<tag>[-\w]+)/$',
 'tagging.views.tagged_object_list',
 { 'queryset_or_model': Link,
 'template_name': 'coltrane/links_by_tag.html' }),
)

All together, you’ve got four models, two dictionaries of keyword arguments for generic
views, and three sets of URL patterns that get added together to make up the final set. This
makes it a bit tricky to follow exactly what’s going on, so let’s reorganize a bit.

Inside the weblog application’s directory, create a directory called urls, and inside it
create five files:

	 •	 __init__.py	(to	signify	that	this	will	be	a	Python	module)

	 •	 categories.py

	 •	 entries.py

	 •	 links.py

	 •	 tags.py

What you’re going to do is break up the current mess into four logical groups of URL pat-
terns,	each	inside	its	own	file.	From	there,	you’ll	be	able	to	use	include() directives to add any
or all of these URL patterns to any site that happens to be using the weblog application. Let’s
look at how this breaks down in each file.

categories.py should contain this content:

 from django.conf.urls.defaults import *

 from coltrane.models import Category

Chapter 5 ■ eXpaNDING the WeBLOG 91

 urlpatterns = patterns('',
 (r'^$', 'django.views.generic.list_detail.object_list',
 { 'queryset': Category.objects.all() }),
 (r'^(?P<slug>[-\w]+)/$', 'coltrane.views.category_detail'),
)

Note	that	the	third	line	starts	with	urlpatterns = patterns('', not urlpatterns +=
patterns(''. There will be only one set of patterns per file, so you don’t need to add patterns
together as you did when they were all in one file. Also, the URLs no longer have the
“categories/” string in them. Because the categories.py file is now intended to be accessed
by an include() directive somewhere else, you can gain a little more flexibility by not
requiring	that the URLs contain the “categories/” string.

Here’s	what	the	new	entries.py file should contain:

 from django.conf.urls.defaults import *

 from coltrane.models import Entry

 entry_info_dict = {
 'queryset': Entry.objects.all(),
 'date_field': 'pub_date',
 }

 urlpatterns = patterns('django.views.generic.date_based',
 (r'^$', 'archive_index', entry_info_dict, 'coltrane_entry_archive_index'),
 (r'^(?P<year>\d{4})/$',
 'archive_year', entry_info_dict,
 'coltrane_entry_archive_year'),
 (r'^(?P<year>\d{4})/(?P<month>\w{3})/$',
 'archive_month',
 entry_info_dict,
 'coltrane_entry_archive_month'),
 (r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$',
 'archive_day',
 entry_info_dict,
 'coltrane_entry_archive_day'),
 (r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$',
 'object_detail',
 entry_info_dict,
 'coltrane_entry_detail'),
)

And put this in links.py:

 from django.conf.urls.defaults import *

 from coltrane.models import Link

Chapter 5 ■ eXpaNDING the WeBLOG92

 link_info_dict = {
 'queryset': Link.objects.all(),
 'date_field': 'pub_date',
 }

 urlpatterns = patterns('django.views.generic.date_based',
 (r'^$', 'archive_index', link_info_dict, 'coltrane_link_archive_index'),
 (r'^(?P<year>\d{4})/$',
 'archive_year',
 link_info_dict,
 'coltrane_link_archive_year'),
 (r'^(?P<year>\d{4})/(?P<month>\w{3})/$',
 'archive_month', link_info_dict,
 'coltrane_link_archive_month'),
 (r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/$', 'archive_day',
 link_info_dict,
 'coltrane_link_archive_day'),
 (r'^(?P<year>\d{4})/(?P<month>\w{3})/(?P<day>\d{2})/(?P<slug>[-\w]+)/$',
 'object_detail',
 link_info_dict,
 'coltrane_link_detail'),
)

Just as you did with the category URLs, you’ve removed the “links/” bit from these
patterns.

And insert this content into tags.py:

 from django.conf.urls.defaults import *
 from coltrane.models import Entry, Link
 from tagging.models import Tag

 urlpatterns = patterns('',
 (r'^$',
 'django.views.generic.list_detail.object_list',
 { 'queryset': Tag.objects.all() }),
 (r'^entries/(?P<tag>[-\w]+)/$',
 'tagging.views.tagged_object_list',
 { 'queryset_or_model': Entry,
 'template_name': 'coltrane/entries_by_tag.html' }),
 (r'^links/(?P<tag>[-\w]+)/$',
 'tagging.views.tagged_object_list',
 { 'queryset_or_model': Link,
 'template_name': 'coltrane/links_by_tag.html' }),
)

Again, as with the categories and links, the “tags/” bit has gone away.
Once you’ve set up these files, you should delete the original urls.py from the weblog

application’s folder.

Chapter 5 ■ eXpaNDING the WeBLOG 93

Now	you	can	go	back	to	the	project’s root URLConf module, which had a pattern like this:

 (r'^weblog/', include('coltrane.urls')),

and then pull in the individual bits where you want them:

 (r'^weblog/categories/', include('coltrane.urls.categories')),
 (r'^weblog/links/', include('coltrane.urls.links')),
 (r'^weblog/tags/', include('coltrane.urls.tags')),
 (r'^weblog/', include('coltrane.urls.entries')),

Although you now have several URLConf files inside the weblog application, and you need
multiple include() directives to use them all, you’ve gained two big advantages:

	 •	 The	weblog	URLs	are	now	much	more	manageable	because	they’re	broken	up	into	
small units that contain only sets of URLs that logically belong together.

	 •	 Because	they’re	no	longer	jumbled	together	into	one	file,	it’s	easy	to	use	include() to
put a specific group of patterns at any spot in a site’s URL hierarchy. This means you’re
no longer tied to specific prefixes such as “links/” or “tags/” if you don’t want them.

As a general rule, any application whose URL patterns logically fall into related groups like
these should have them broken up into multiple separate files for precisely these reasons. The
benefits far outweigh the downside of having to deal with several files.

handling live entries
Before you move on to the last part of the weblog—templating and comments, which I’ll cover
in the next chapter—let’s add one more missing feature.

You’ll recall that when you set up the Entry model, you gave it a field called status, which
allows entries to be marked as Live, Draft, or Hidden. At the moment, none of your views are
taking that into account. If you add an entry with a status other than Live, you’ll notice that it
still shows up in all of the archive and detail views.

You’ve already seen that you can use the filter() method to get only the objects that
match certain specific criteria. At first, that seems like an easy way to handle this. Anywhere
you’re using this:

 Entry.objects.all()

you could just replace it with this:

 Entry.objects.filter(status=Entry.LIVE_STATUS)

Remember that you defined named constants for the different status values to make
these	kinds	of	queries	easier.	But	this	is	going	to	involve	an	awful	lot	of	typing.	You’ll	need	to	
remember	to	type	that	extra	query	argument	anywhere	you’re	querying	for	entries.	It	would	be	
much	nicer	if	you	could	have	a	separate	way	of	querying	entries	that	returns	only	objects	with	
the status field set to Live, maybe something like Entry.live.all() instead of Entry.objects.
all().	This	is	actually	pretty	easy	to	do,	but	it	requires	the	introduction	of	one	more	major	fea-
ture of Django’s model system: managers.

Chapter 5 ■ eXpaNDING the WeBLOG94

Up until now, I’ve been glossing over how	Django	actually	does	database	queries.	I’ve	just	
been discussing things like Entry.objects.all() or FlatPage.objects.filter() without really
talking about that special attribute called objects or where it comes from.

The objects attribute is an instance of a special class (django.db.models.Manager), which is
meant to be “attached” to a particular model class, and which knows how to perform all sorts of
database	queries.	In	addition	to	the	methods	you’ve	already	seen—all() and filter()—it has
a large number of other methods that can return single specific objects, return lists of objects,
return other data structures corresponding to data stored by a model, change the ordering used
to return results, and handle a variety of other useful tasks.	Full	documentation	of	the	database	
API	and	all	of	its	methods	and	options	is	available	online	at	http://docs.djangoproject.com/
en/dev/topics/db/models/.

If you don’t specify a manager for your model, Django adds one and calls it objects (this
happens automatically for any class that subclasses django.db.models.Model).	However,	you’re	
free to attach a manager with any name you like, and if you do, Django won’t bother with the
automatic default objects	manager.	For	example,	you	could	define	a	model	like	this:

 class MyModel(models.Model):
 name = models.CharField(max_length=50)

 object_fetcher = models.Manager()

Then instead of using MyModel.objects.all(), for example, you would use MyModel.
object_fetcher.all().	All	of	the	standard	querying	methods	will	be	there,	just	in	an	attribute	
with the name you’ve specified.

The most important thing about managers, however, is that you can easily define your
own manager classes and give them customized behavior by writing a subclass of django.
db.models.Manager and overriding the methods you want to customize. In this case, you want
to write a manager that, when attached to the Entry model, will return only entries whose
status is Live. You can do this by writing a subclass of Manager and overriding one method,
get_query_set(), which returns the initial QuerySet object that all(), filter(), and all the
other	querying	methods	will	use.	Doing	this	is	surprisingly	easy:

 class LiveEntryManager(models.Manager):
 def get_query_set(self):
 return super(LiveEntryManager, self).get_query_set().filter(➥

status=self.model.LIVE_STATUS)

The only tricky bit here is that you’re using self.model.LIVE_STATUS as the value to filter
on.	Every	Manager that’s been attached to a model can access that model class through the
attribute self.model.

Place	the	preceding	code	in	the	weblog	application’s	models.py file, somewhere above the
definition of the Entry model. Then add the following lines inside the Entry model:

 live = LiveEntryManager()
 objects = models.Manager()

http://docs.djangoproject.com/

Chapter 5 ■ eXpaNDING the WeBLOG 95

This gives the Entry model two managers. One is called objects and is just the standard
manager every model normally gets. The other is an instance of LiveEntryManager, which
means you can now write

 Entry.live.all()

and	it	will	do	precisely	what	you	want	it	to	do.	Note	that	you	have	to	define	objects manually.
When a model has a custom manager, Django doesn’t automatically set up the objects man-
ager for you.

Now	you	can	simply	perform	a	search-and-replace	on	the	weblog	code,	changing	any	use	
of Entry.objects to Entry.live.	That	will	take	care	of	any	situations	where	you’re	querying	for	
entries (only one so far, but if you had gone much further it could easily have been more).

There are two other places, though, where you’ll need to worry about filtering for only live
entries—when	you	retrieve	entries	for	a	specific	category	or	tag.	For	categories,	you	can	solve	
this fairly easily by adding a method on the Category model:

 def live_entry_set(self):
 from coltrane.models import Entry
 return self.entry_set.filter(status=Entry.LIVE_STATUS)

And now, anywhere you used the entry_set attribute of a Category, you can simply replace
it with a call to live_entry_set().	So,	for	example,	the	category_detail view will now look like
this:

 def category_detail(request, slug):
 category = get_object_or_404(Category, slug=slug)
 return render_to_response('coltrane/category_detail.html',
 { 'object_list': category.live_entry_set() })

With tags it’s a bit trickier, but you can still make it work. Remember that the tagged_
object_list view receives an argument called queryset_or_model. This means you can pass
the view either a model class, like Link, or a QuerySet.	So	where	you’re	using	the	tagged_
object_list view with the Entry model as an argument, change it to use Entry.live.all()
instead.

looking Ahead
The weblog application is almost complete now. You have only a couple features left to add, and
for them you’ll use applications bundled with Django plus a few customizations. I’ll cover those
in Chapter 7, but in the next chapter you’ll take a much more detailed look at Django’s template
system, writing templates for the blog and even writing a couple of custom template tags.

If you’d like to pause for a little while and play with the weblog application before moving
on	to	Chapter	6,	feel	free	to	do	so.	Even	without	the	comment	system	and	template	techniques	
you’ll cover in the next chapter, this weblog application is already a pretty solid piece of soft-
ware that offers a significant subset of the functionality of popular off-the-shelf weblog systems
like	WordPress	(but	with	significantly	less	code).	

C h a p t e r 6

templates for the Weblog

Your weblog application is almost complete. Over the last two chapters, you’ve implemented
entries, links, and nearly all the attendant functionality you wanted to have with them. There
are only two features left to implement—a comment system and syndication feeds—and
Django is going to give you quite a bit of help with those, as you’ll see in the next chapter.

But so far, you’ve focused almost exclusively on the “back end” of the site—the Python
code that models your data, retrieves it from the database, lays out your URL structure, and so
on—at the expense of the “front end,” or the actual HTML you’ll show to your site’s visitors.
You’ve seen how Django’s generic views expose your database objects for use in templates
(through the object_list variable in the date-based archives, for example). However, it’s a big
step from that to an attractive and usable weblog. Let’s take a deeper look at Django’s template
system, and how you can use it to make the front end as easy as the back.

Dealing with Repetitive Elements: The Power of
Inheritance
You’re using Django’s generic views to show both entries and links. Whether you’re looking
at the detail view of an Entry or of a Link, the actual Python code involved is the date-based
object_detail generic view, which provides a variable named object to the template and
represents the database object it retrieved. The biggest difference is that the generic view will
use a template named coltrane/entry_detail.html for an Entry and one named coltrane/
link_detail.html for a Link.

Because the contexts are so similar, the templates will end up looking very much alike; for
example, a simple entry_detail template might look like the following:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>Weblog: {{ object.title }}</title>
 </head>
 <body>
 <h1>{{ object.title }}</h1>
 {{ object.body_html|safe }}
 </body>
 </html>

97

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 6 ■ teMpLateS FOr the WeBLOG98

And a simple link_detail might look like this:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>Weblog: {{ object.title }}</title>
 </head>
 <body>
 <h1>{{ object.title }}</h1>
 {{ object.description_html|safe }}
 <p>Visit site</p>
 </body>
 </html>

Of course, for a finished site you’d want to do quite a bit more, but already it’s apparent that
there’s a lot of repetition. There’s all sorts of HTML boilerplate, which is the same in both tem-
plates, and even things like the <title> element and the <h1> heading have the same contents.
Typing all of that over and over again is going to be awfully tedious, especially as the HTML
gets more complex. And if you ever make changes to the HTML structure of a site, you’ll have to
make them in every single template. Django’s been great so far at helping you avoid this sort of
tedious and repetitive work on the Python side of things, so naturally it would be nice if it could
do the same on the HTML side as well.

And it can. Django’s template system supports a concept of template inheritance, which
works similarly to the way subclassing works in normal Python code. Essentially, the Django
template system lets you write a template with placeholders (called blocks) for sections of
a page. These blocks will vary from one template to the next. Then you’ll write templates to
“extend” that template and fill in the placeholders.

To see template inheritance in action, let’s work through a simple example. Create a file
in the root template directory for the project and name it base.html. Using this name isn’t
required, but it’s a common practice and will help others understand the file’s purpose. In that
file, put the following code:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>Weblog: {{ object.title }}</title>
 </head>
 <body>
 <h1>{{ object.title }}</h1>
 {% block content %}
 {% endblock %}
 </body>
 </html>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 6 ■ teMpLateS FOr the WeBLOG 99

Now, edit the coltrane/entry_detail.html template so that it contains nothing but this:

 {% extends "base.html" %}

 {% block content %}
 {{ object.body_html|safe }}
 {% endblock %}

Next, edit coltrane/link_detail.html so that it contains nothing but this:

 {% extends "base.html" %}

 {% block content %}
 {{ object.description_html|safe }}
 <p>Visit site</p>
 {% endblock %}

Finally, fire up the development server and visit a link or entry in the weblog, and then view
the HTML source of the page. You’ll see all the HTML boilerplate that’s in base.html; note that
the area containing an empty content block will be filled in by the appropriate results, accord-
ing to whether you’re looking at an entry or a link.

This is just a simple example. As your templates get more complex, the ability to factor out
repetitive pieces like this is going to become a lifesaver. It’ll cut down on both the time needed
to put templates together and the time needed to change them later (because a change in a
single “base” template will automatically show up in any templates that extend it).

How Template Inheritance Works
Template inheritance revolves around the two new tags seen in the previous example:
{% block %} and {% extends %}. Essentially, the {% block %} tag lets you carve out a section of
a template and give it a name, and possibly even some default content. The {% extends %} tag
lets you specify the name of another template—which should contain one or more blocks—
and then just fill in content for any blocks you want to use. The rest of the content, including
default content from any blocks you didn’t override, will automatically be filled in from the
template you’re extending. Additionally, within a block, you’ll have access to the content that
would have gone there if you weren’t supplying your own. This content is stored in a special
variable named block.super. So if you had a base template that contained this:

 {% block title %}My weblog:{% endblock %}

you could write a template that extended it, and fill in your own content:

 {% block title %}My page{% endblock %}

Using block.super, you could access the default content from the parent block to get a
final value of My weblog: My page:

 {% block title %}{{ block.super }} My page{% endblock %}

Chapter 6 ■ teMpLateS FOr the WeBLOG100

Limits of Template Inheritance
As you start to work with inheritance in templates, you’ll want to keep a few caveats in mind:

	 •	 If	you	use	the	{% extends %} tag, it must be the first thing in the template. Django
needs to know up front that you’re going to be extending another template.

	 •	 Each	named	block,	if	used,	can	appear	only	once	in	a	given	template.	Just	as	HTML	
permits you to have only a single element with a given ID inside a single page, Django’s
template system permits you to have only a single block with a given name inside a
single template.

	 •	 A	template	can	directly	extend	only	one	other	template—multiple	uses	of	{% extends %}
in the same template are invalid. However, the template being extended can, in turn,
extend another template, leading to a chain of inheritance down through multiple
templates.

This ability to “chain” inherited templates is key to a common pattern in template devel-
opment. Often, a site will have multiple sections or areas that don’t vary much from one
another, so the templates end up forming a three-layered structure:

 1. A single base template containing the common HTML of all pages.

 2. Section-specific base templates that fill in appropriate navigation and/or theming.
These extend the base template.

 3. The “actual” templates that will be loaded and rendered by the views. These extend the
appropriate section-specific templates.

In fact, this pattern is so common and so useful that you’re going to use it for your blog’s
templates. Let’s get started.

Defining the Base Template for the Blog
Building up a useful base template for a site largely consists of determining what the site’s
overall look and feel will be, writing out the appropriate HTML to support it, and then deter-
mining which areas will need to vary from page to page and turning them into blocks.

For this blog, let’s go with a common visual layout—a header at the top of the page with
room for a site logo, and two columns below it. One column will contain the page’s main con-
tent, and the other column will have a sidebar with navigation, metadata, and other useful
information.

In HTML terms, this works out to three div elements: one for the header area, one for the
content area, and one for the sidebar. The structure looks like this:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title></title>
 </head>

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 6 ■ teMpLateS FOr the WeBLOG 101

 <body>
 <div id="header"></div>
 <div id="content"></div>
 <div id="sidebar"></div>
 </body>
 </html>

Note that I’ve gone ahead and filled in some HTML id attributes on these div tags so that
it’ll be easy to set up the layout with cascading style sheets (CSS).

Now, one thing that jumps out is the fact that the title element is empty. This is definitely
something that will vary, according to which part of the site you’re in and what you’re looking
at, so let’s go ahead and put a block there:

 <title>My weblog {% block title %}{% endblock %}</title>

When you extend this template, you’ll add more things here. The final effect will be to get
a title like My weblog | Entries | February 2008, as you’ll see in a moment.

Now let’s fill in the header. It probably won’t change a lot, so you don’t need a block here:

 <div id="header">
 <h1 id="branding">My weblog</h1>
 </div>

Again, I’ve added an id attribute so you can easily use CSS to style the header later. For
example, you could use an image-replacement technique to replace the text of the h1 with a
logo.

Because the main content will vary quite a bit, you’ll make it a block:

 <div id="content">
 {% block content %}
 {% endblock %}
 </div>

All that’s left is the sidebar. The first thing you’ll need there is a list of links to different
weblog features so that visitors can easily navigate around the site. You can do that easily
enough (again, using id attributes makes it easy to come back later and style the sidebar):

 <div id="sidebar">
 <h2>Navigation</h2>
 <ul id="main-nav">
 <li id="main-nav-entries">
 Entries
 <li id="main-nav-links">
 Links
 <li id="main-nav-categories">
 Categories
 <li id="main-nav-tags">Tags

 </div>

Chapter 6 ■ teMpLateS FOr the WeBLOG102

But one thing stands out: you have hard-coded URLs here. They match what you’ve set
up in your URLConf module. But after you went to all the trouble to modularize and decouple
the URLs on the Python side, it would be a shame to just turn around and hard-code them into
your templates.

A better solution is to use the {% url %} template tag, which—like the permalink decorator
you used on the get_absolute_url() methods of your models—can perform a reverse lookup
in your URLConf to determine the appropriate URL. This tag offers quite a few options, but the
one you care about right now is pretty simple: you can feed it the name of a URL pattern, and
it will output the correct URL.

Using the {% url %} tag, you can rewrite your navigation list like this:

 <ul id="main-nav">
 <li id="main-nav-entries">
 Entries

 <li id="main-nav-links">
 Links

 <li id="main-nav-categories">
 Categories

 <li id="main-nav-tags">
 Tags

Now you won’t have to make changes to your templates if you decide to shuffle some
URLs around later.

While you’re dealing with the navigation, let’s add a block inside the body tag:

 <body class="{% block bodyclass %}{% endblock %}">

A common technique in CSS-based web design is to use a class attribute on the body tag
to trigger changes to a page’s style. For example, you’ll have a list of navigation options in the
sidebar, representing different parts of the blog—entries, links, and so forth—and it would be
nice to highlight the part a visitor is currently looking at. By changing the class of the body tag
in different parts of the site, you can easily use CSS to highlight the correct item in the naviga-
tion list.

For the rest of the sidebar’s content, you might want to have a little explanation of what a
visitor is looking at, such as “An entry in my blog, published on February 7, 2008” or “A list of
entries in the category ‘Django.’” You can add a block for that as well:

 <h2>What is this?</h2>
 {% block whatis %}
 {% endblock %}

You’re done with the base template—for now. (You’ll add a few things to it later on.)
Here’s what it looks like:

Chapter 6 ■ teMpLateS FOr the WeBLOG 103

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 <head>
 <title>My weblog {% block title %}{% endblock %}</title>
 </head>
 <body class="{% block bodyclass %}{% endblock %}">
 <div id="header">
 <h1 id="branding">My weblog</h1>
 </div>
 <div id="content">
 {% block content %}
 {% endblock %}
 </div>
 <div id="sidebar">
 <h2>Navigation</h2>
 <ul id="main-nav">
 <li id="main-nav-entries">
 Entries

 <li id="main-nav-links">
 Links

 <li id="main-nav-categories">
 Categories

 <li id="main-nav-tags">
 Tags

 <h2>What is this?</h2>
 {% block whatis %}
 {% endblock %}
 </div>
 </body>
 </html>

Setting Up Section Templates
Now let’s set up some templates that will handle the different main areas of the blog. You’ll
want one each for entries, links, tags, and categories. You’ll call the template for entries base_
entries.html, and all you really need to do is extend the base template and fill in a couple of
blocks:

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 6 ■ teMpLateS FOr the WeBLOG104

 {% extends "base.html" %}

 {% block title %}| Entries{% endblock %}

 {% block bodyclass %}entries{% endblock %}

If you were to use this template all by itself, you’d get the output from base.html, but with
two changes:

	 •	 The	title tag’s contents would be My weblog | Entries.

	 •	 The	body tag’s class attribute would have a value of entries, which means it would be
easy to highlight the Entries item in the navigation sidebar.

The rest of the section templates are pretty easy to fill in. For example, you can write a
base_links.html like this:

 {% extends "base.html" %}

 {% block title %}| Links{% endblock %}

 {% block bodyclass %}links{% endblock %}

You’ll also need a base_tags.html template and a base_categories.html template; you
can fill them in using the pattern I just described. These templates are slightly repetitive, and
probably always will be, but the use of template inheritance means you’ve boiled down the
repetitive bits to a bare minimum—you’re specifying only the things that change, not the
things that stay the same.

Displaying Archives of Entries
For displaying entries, you need five templates:

	 •	 The	main	(home)	page	showing	the	latest	entries

	 •	 A	yearly	archive

	 •	 A	monthly	archive

	 •	 A	daily	archive

	 •	 An	individual	entry

These correspond directly to the generic views you’re using.

Entry Index
Let’s start with the main index of entries. You’ll recall that the generic view will look for the
template coltrane/entry_archive.html and will provide a variable named latest containing a
list of the latest entries. So you can fill in the template coltrane/entry_archive.html as follows
(remembering to extend base_entries.html instead of base.html):

Chapter 6 ■ teMpLateS FOr the WeBLOG 105

 {% extends "base_entries.html" %}

 {% block title %}{{ block.super }} | Latest entries{% endblock %}

 {% block content %}
 {% for entry in latest %}
 <h2>{{ entry.title }}</h2>
 <p>Published on {{ entry.pub_date|date:"F j, Y" }}</p>
 {% if entry.excerpt_html %}
 {{ entry.excerpt_html|safe }}
 {% else %}
 {{ entry.body_html|truncatewords_html:"50"|safe }}
 {% endif %}
 <p>Read full entry. . .</p>
 {% endfor %}
 {% endblock %}

 {% block whatis %}
 <p>This is a list of the latest {{ latest.count }} entries published in
 my blog.</p>
 {% endblock %}

Most of this should be pretty familiar. You’re using the {% for %} tag to loop over the
entries and display each one. And in the sidebar, you just have a short paragraph describing
what’s being shown on this page. The code relies on the count() method of a Django QuerySet
to find out how many entries were passed to the template in the latest variable.

There are a couple of new things here worth noting, though:

	 •	 The	use	of	the	date filter to format each entry’s pub_date: This filter accepts a format-
ting string, similar to the strftime() method you’ve already seen, and outputs the date
accordingly. In this case, the date will print out in the form February 6, 2008.

	 •	 The	use	of	the	truncatewords_html filter: This filter takes a number as its argument and
outputs that number of words from the variable it’s applied to, adding an ellipsis (. . .)
at the end. This is useful for generating a short excerpt when the entry doesn’t have its
excerpt field filled in.

Yearly Archive
The generic view that generates the yearly archive will provide two variables:

	 •	 year: The year being displayed.

	 •	 date_list: A list of Python datetime objects representing months in that year that have
entries.

This generic view is going to look for the template coltrane/entry_archive_year.html,
which you can fill in as follows:

Chapter 6 ■ teMpLateS FOr the WeBLOG106

 {% extends "base_entries.html" %}

 {% block title %}{{ block.super }} | {{ year }}{% endblock %}

 {% block content %}

 {% for month in date_list %}

 {{ month|➥
date:"F" }}

 {% endfor %}

 {% endblock %}

 {% block whatis %}
 <p>This is a list of months in {{ year }} in which I published entries in
 my blog.</p>
 {% endblock %}

Here you’re looping over the date_list and, for each month, showing a link to the archive
for that month.

But there’s a problem here: you can build up the URLs by using Django’s built-in date filter,
but once again you’re hard-coding a URL. Previously, you got around that by using the {% url %}
tag with the name of a URL pattern. You can do that again, but this time you’ll need to supply
some extra data: the year and month needed to generate the correct URL for a monthly archive.
All you have to do is pass the {% url %} tag a second argument containing a comma-separated list
of the values it needs, and you can even use filters to make sure the URLs are correctly formatted:

 {{ month|date:"F" }}

With the current URL setup, this HTML will correctly output URLs like /weblog/2008/jan/,
/weblog/2008/feb/, and so on.

Monthly and Daily Archives
The generic views that generate the monthly and daily archives are extremely similar. Both will
provide a list of entries in a variable named object_list, and the only real difference is that
one will have a variable called month (representing the month for a monthly archive) and the
other will have a variable called day (representing the day for a daily archive).

Here’s the monthly-archive template, which will be coltrane/entry_archive_month.html:

 {% extends "base_entries.html" %}

 {% block title %}
 {{ block.super }} | Entries in {{ month|date:"F, Y" }}
 {% endblock %}

Chapter 6 ■ teMpLateS FOr the WeBLOG 107

 {% block content %}
 {% for entry in object_list %}
 <h2>{{ entry.title }}</h2>
 <p>Published on {{ entry.pub_date|date:"F j, Y" }}</p>
 {% if entry.excerpt_html %}
 {{ entry.excerpt_html|safe }}
 {% else %}
 {{ entry.body_html|truncatewords_html:"50"|safe }}
 {% endif %}
 <p>Read full entry. . .</p>
 {% endfor %}
 {% endblock %}

 {% block whatis %}
 <p>This is a list of entries published in my blog in
 {{ month|date:"F, Y" }}.</p>
 {% endblock %}

Except for a couple of changes to variable names and the use of the date filter to format
the month (it will print in the form February, 2008), this isn’t too different from what you’ve
already seen. The daily-archive template (coltrane/entry_archive_day.html) will be almost
identical except for the use of the variable day and the appropriate formatting, so go ahead and
fill that in. (You can find a full list of available date-formatting options in the Django template
documentation online at www.djangoproject.com/documentation/templates/.)

Entry Detail
The generic view that shows a single entry uses the template coltrane/entry_detail.html and
provides one variable, object, which will be the entry. The first part of this template is easy:

 {% extends "base_entries.html" %}

 {% block title %}{{ block.super }} | {{ object.title }}{% endblock %}

 {% block content %}
 <h2>{{ object.title }}</h2>
 {{ object.body_html|safe }}
 {% endblock %}

The sidebar is a bit trickier. You can start out by showing the entry’s pub_date:

 {% block whatis %}
 <p>This is an entry posted to my blog on
 {{ object.pub_date|date:"F j, Y" }}.</p>

Now, it would be nice to show the categories by displaying text such as, “This entry is part
of the categories ‘Django’ and ‘Python.’” But there are several things to take into account here:

http://www.djangoproject.com/documentation/templates/

Chapter 6 ■ teMpLateS FOr the WeBLOG108

	 •	 For	an	entry	with	one	category,	you	want	to	say	“part	of	the	category.”	But	for	an	entry	
with more than one category, you need to say “part of the categories.” And for an entry
with no categories, you need to say, “This entry isn’t part of any categories.”

	 •	 For	an	entry	with	more	than	two	categories,	you’ll	need	commas	between	category	
names and the word “and” before the final category. But for an entry with two catego-
ries, you don’t need the commas, and for an entry with only one category, you don’t
need commas or the “and.”

If there aren’t any categories for an entry, {{ object.categories.count }} will be 0, which
is False inside an {% if %} tag, so you can start with a test for that:

 {% if object.categories.count %}
 . . .you'll fill this in momentarily. . .
 {% else %}
 <p>This entry isn't part of any categories.</p>
 {% endif %}

Now you need to handle the difference between “category” and “categories.” Because this
is a common problem, Django includes a filter called pluralize that can take care of it. The
pluralize filter, by default, outputs nothing if applied to a variable that evaluates to the num-
ber 1, but outputs an “s” otherwise. It also accepts an argument that lets you specify other text
to output. In this case, you want a “y” for the singular case and “ies” for the plural, so you can
write this:

 {% if object.categories.count %}
 <p>This entry is part of the
 categor{{ object.categories.count|pluralize:"y,ies" }}

You’ll get “category” when there’s only one category and “categories” otherwise.
Finally, you need to loop over the categories. One option would be to join the list of cat-

egories using commas. In Python code, you’d write this:

 ', '.join(object.categories.all())

And Django’s template system provides a join filter, which works the same way:

 {{ object.categories.all|join:", " }}

But you want to have the word “and” inserted before the final category in the list, and join
can’t do that. The solution is to use the {% for %} tag and to take advantage of some useful
variables it makes available. Within the {% for %} loop, the following variables will automati-
cally be available:

	 •	 forloop.counter: The current iteration of the loop, counting from 1. The fourth time
through the loop, for example, this will be the number 4.

	 •	 forloop.counter0: Same as forloop.counter, but starts counting at 0 instead of 1. The
fourth time through the loop, for example, this will be the number 3.

	 •	 forloop.revcounter: The number of iterations left until the end of the loop, counting
down to 1. When there are four iterations left, for example, this will be the number 4.

	 •	 forloop.revcounter0: Same as forloop.revcounter, but counts down to 0 instead of 1.

Chapter 6 ■ teMpLateS FOr the WeBLOG 109

	 •	 forloop.first: A boolean value—it will be True the first time through the loop and
False the rest of the time.

	 •	 forloop.last: Another boolean—this one is True the last time through the loop and
False the rest of the time.

Using these variables, you can work out the proper presentation. Expressed in English, the
logic works like this:

 1. Display a link to the category.

 2. If this is the last time through the loop, don’t display anything else.

 3. If this is the next-to-last time through the loop, display the word “and.”

 4. Otherwise, display a comma.

And here it is in template code:

 {% for category in object.categories.all %}
 {{ category.title }}
 {% if forloop.last %}{% else %}
 {% ifequal forloop.revcounter0 1 %}and {% else %}, {% endifequal %}
 {% endif %}
 {% endfor %}

There are two important bits here:

	 •	 {% if forloop.last %}{% else %}: This does absolutely nothing if you’re in the last
trip through the loop.

	 •	 {% ifequal forloop.revcounter0 1 %}: This determines whether you’re in the next-to-
last trip through the loop in order to print the “and” before the final category.

Here’s the full sidebar block so far:

 {% block whatis %}
 <p>This is an entry posted to my blog on
 {{ object.pub_date|date:"F j, Y" }}.</p>

 {% if object.categories.count %}
 <p>This entry is part of the
 categor{{ object.categories.count|pluralize:"y,ies" }}
 {% for category in object.categories.all %}
 {{ category.title }}
 {% if forloop.last %}{% else %}
 {% ifequal forloop.revcounter0 1 %}and {% else %}, {% endifequal %}
 {% endif %}
 {% endfor %}
 </p>
 {% else %}
 <p>This entry isn't part of any categories.</p>
 {% endif %}
 {% endblock %}

Chapter 6 ■ teMpLateS FOr the WeBLOG110

Handling tags will work much the same way. {{ object.tags }} will return the tags for
the Entry, and a similar bit of template code can handle them. And with that, you have a pretty
good entry-detail template:

 {% extends "base_entries.html" %}

 {% block title %}{{ block.super }} | {{ object.title }}{% endblock %}

 {% block content %}
 <h2>{{ object.title }}</h2>
 {{ object.body_html }}
 {% endblock %}

 {% block whatis %}
 <p>This is an entry posted to my blog on
 {{ object.pub_date|date:"F j, Y" }}.</p>

 {% if object.categories.count %}
 <p>This entry is part of the
 categor{{ object.categories.count|pluralize:"y,ies" }}
 {% for category in object.categories.all %}
 {{ category.title }}
 {% if forloop.last %}{% else %}
 {% ifequal forloop.revcounter0 1 %}and {% else %}, {% endifequal %}
 {% endif %}
 {% endfor %}
 </p>
 {% else %}
 <p>This entry isn't part of any categories.</p>
 {% endif %}
 {% endblock %}

Defining Templates for Other Types of Content
The templates for displaying links in the blog aren’t much different from the templates that
display the blog entries. They’ll extend base_links.html instead of base_entries.html, of
course, but the variable names available in the various templates will be the same. The only
difference is that the link templates will have access to Link objects, so they should display
the links based on the fields you’ve defined on the Link model. Here’s an example of what
coltrane/link_detail.html might look like:

 {% extends "base_links.html" %}

 {% block title %}{{ block.super }} | {{ object.title }}{% endblock %}

 {% block content %}
 <h2>{{ object.title }}</h2>
 {{ object.description_html }}

Chapter 6 ■ teMpLateS FOr the WeBLOG 111

 <p>Visit site</p>
 {% endblock %}

 {% block whatis %}
 <p>This is a link posted to my blog on {{ object.pub_date|date:"F j, Y" }}.</p>

 {% if object.tags.count %}
 <p>This link is tagged with
 {% for tag in object.categories.all %}
 {{ tag.title }}
 {% if forloop.last %}{% else %}
 {% ifequal forloop.revcounter0 1 %}and {% else %}, {% endifequal %}
 {% endif %}
 {% endfor %}
 </p>
 {% else %}
 <p>This link doesn't have any tags.</p>
 {% endif %}
 {% endblock %}

Note that because links have tags instead of categories, this template just loops through
the tags the same way coltrane/entry_detail.html loops through categories.

Similarly, the category and tag templates are easy to set up at this point. They just need
to extend the correct template for the part of the site they represent and use the correct fields
from the Category and Tag models, respectively (though remember that the detail view of cat-
egories and tags will actually return lists of Entry or Link objects for a particular Category or
Tag). You can find full examples in the book’s sample code, available from the Apress web site.

Extending the Template System with Custom Tags
Right now, the only thing in your blog’s sidebar will be the list of navigation links and the short
“What is this?” blurb for each page. While this is simple and usable, it would be nice to emulate
what a lot of popular prebuilt blogging packages do—display a list of recent entries and recent
links farther down in the sidebar so that visitors can quickly find fresh content.

But that poses a dilemma: it seems like you’d need to go back and rewrite every one of
your views to also query for, say, the latest five entries and the latest five links, and then make
them available to the template. That would be awfully cumbersome and repetitive, and it
would get even worse if you ever wanted to change the number of recent items displayed or
add new types of content to your blog. Once again, it feels like Django should provide some
easy way to handle this without lots of repetitive code.

And it does. In fact, Django provides two easy ways to do this. One is a mechanism for
writing a function—called a context processor—that can add extra variables to any template’s
context. The other way is to extend Django’s template system to add the ability to fetch recent
content using a custom template tag. Using this approach, you could simply use the appropri-
ate tag in the base.html template, and all the other templates would have that automatically,
courtesy of template inheritance.

Chapter 6 ■ teMpLateS FOr the WeBLOG112

For this situation, let’s go ahead and use a custom template tag to get a feel for how you
can extend Django’s template system when you need to add new features to it.

ADmOnITIOn: SEPARATIOn Of COnCERnS

What you’re about to do—write a template tag that retrieves items from the database for display—might feel
strange, considering how cleanly Django separates major functions like data retrieval and HTML display from
each other. However, it’s not always a bad thing to blur that distinction a bit.

In this case, you want to retrieve these items solely for presentational purposes. You also want them to
appear everywhere, so writing the functionality as an extension of Django’s template system—which handles
presentation of content—and taking advantage of template inheritance is a good way to handle it. Not every-
thing is best done as an extension to the template system, though, so you should evaluate decisions like this
one on a case-by-case basis as you’re developing.

How a Django Template Works
Before you can dive into writing your own custom extensions to Django’s template system, you
need to understand the actual mechanism behind it. Knowing how things work “under the
hood” makes the process of writing custom template functionality much simpler.

The process Django goes through when loading a template works—roughly—like this:

 1. Read the actual template contents: Most often this means reading out of a template
file on disk, but that’s not always the case. Django can work with anything that hands
over a string containing the contents you want it to treat as a template.

 2. Parse through the template, looking for tags and variables: Each tag in the template,
including all of Django’s built-in tags, will correspond to a particular Python function
defined somewhere (inside django/template/defaulttags.py in the case of the built-in
tags). You’ll see in a moment how to tell Django that a particular tag maps to a par-
ticular function. Typically this function is referred to as the tag’s compilation function
because it’s called while Django is compiling a list of the eventual template contents.

 3. For each tag, call the appropriate function, passing in two arguments: One argument
is the parsing class that is reading the template (useful for doing tricky things with the
way the template gets processed), and the other is a string containing the contents
of the tag. So, for example, the tag {% if foo %} results in Django passing a function
(called do_if(), in Django’s default tag library) an instance of the parsing class and an
object that holds the tag contents “if foo.”

 4. Make a note of the return value of the Python function called for each tag: Each func-
tion is required to return an instance of a special class—django.template.Node—or a
subclass of it, and choosing an appropriate Node subclass based on the particular tag.

The result is an instance of the class django.template.Template, which contains a list of
Node instances (or instances of Node subclasses). This is the actual “thing” that will be rendered
to produce the output. Each Node is required to have a method named render(), which accepts
a copy of the current template context (the dictionary of variables available to the template) and
returns a string. The output of the template comes from concatenating those strings together.

Chapter 6 ■ teMpLateS FOr the WeBLOG 113

A Simple Custom Tag
Extending Django’s template system with a custom template tag can be a bit tricky at first, so
let’s start simply. You’ll write a tag that fetches the latest five entries and puts them into a tem-
plate variable named latest_entries.

To start, you’ll need to create a place for this tag’s code to live. In the coltrane application
directory, add a new directory called templatetags. In that, create two empty files: __init__.
py (remember, this is necessary to tell Python that a directory contains loadable Python code)
and coltrane_tags.py, which will be the file where your library of custom template tags lives.
Next, inside coltrane_tags.py, add a couple of import statements at the top:

 from django import template
 from coltrane.models import Entry

Writing the Compilation Function
The custom tag is going to be called get_latest_entries—so that in templates you’ll eventu-
ally be able to do {% get_latest_entries %}—but you can name its compilation function (and
its Node class) anything you’d like. It’s generally a good idea to give the function a meaningful
name for the tag it goes with, though, so call it do_latest_entries():

 def do_latest_entries(parser, token):

The two arguments to this function are the template parser and a token. (You won’t be
using the template parser now, but in Chapter 10 you’ll write a tag that uses it to implement
more advanced features.) token is an object representing part of the template that’s being
parsed. You also won’t need that just yet, but later in this chapter when you expand this tag’s
functionality, you’ll use it to work out the arguments passed to the tag from the template.

The only thing this function is required to do is return an instance of django.template.
Node, or a subclass of Node. You’ll define the Node for this tag in a moment, but it’s going to be
called LatestEntriesNode, so go ahead and fill that in:

 def do_latest_entries(parser, token):
 return LatestEntriesNode()

Writing the Node
Next, you need to write the LatestEntriesNode class. This must be a subclass of
django.template.Node, and it must have a method named render(). Django places two
requirements on this method:

	 •	 It	must	accept	a	template	context—the	dictionary	of	variables	available	to	the	tem-
plate—as an argument.

	 •	 It	must	return	a	string,	even	if	the	string	doesn’t	contain	anything.	For	a	tag	that	pro-
duces its output directly, the returned string is the mechanism by which the output
gets into the final template output.

So you can start writing your Node as follows:

 class LatestEntriesNode(template.Node):
 def render(self, context):

Chapter 6 ■ teMpLateS FOr the WeBLOG114

This tag will simply fetch the five latest entries and add them to the context as the variable
latest_entries, so it doesn’t have any direct output. All it does is add the new item to the con-
text dictionary, then return an empty string:

 class LatestEntriesNode(template.Node):
 def render(self, context):
 context['latest_entries'] = Entry.live.all()[:5]
 return ''

Note that even when a tag doesn’t directly output anything, the render() method of its
Node must return a string.

registering the New tag
Finally, you need to tell Django that the compilation function should be used when the
{% get_latest_entries %} tag is encountered in a template. To do this, you create a new
library of template tags and register your function with it, like this:

 register = template.Library()
 register.tag('get_latest_entries', do_latest_entries)

The syntax for this is simple. Once you create a new Library, you just call its tag() method
and pass in the name you want to give your tag and the function that will handle it.

Here’s what the full coltrane_tags.py file looks like now:

 from django import template
 from coltrane.models import Entry

 def do_latest_entries(parser, token):
 return LatestEntriesNode()

 class LatestEntriesNode(template.Node):
 def render(self, context):
 context['latest_entries'] = Entry.live.all()[:5]
 return ''

 register = template.Library()
 register.tag('get_latest_entries', do_latest_entries)

Using the New tag
Now your new tag is ready for use. Open up the base.html template and go to the sidebar portion
of it, which still looks like this:

 <div id="sidebar">
 <h2>Navigation</h2>
 <ul id="main-nav">
 <li id="main-nav-entries">
 Entries

Chapter 6 ■ teMpLateS FOr the WeBLOG 115

 <li id="main-nav-links">
 Links

 <li id="main-nav-categories">
 Categories

 <li id="main-nav-tags">
 Tags

 <h2>What is this?</h2>
 {% block whatis %}
 {% endblock %}
 </div>

Now add the list of latest entries just below the “What is this?” block:

 {% load coltrane_tags %}
 <h2>Latest entries in the weblog</h2>

 {% get_latest_entries %}
 {% for entry in latest_entries %}

 {{ entry.title }},
 posted {{ entry.pub_date|timesince }} ago.

 {% endfor %}

Here’s what’s going on:

	 •	 The	{% load coltrane_tags %} tag tells Django you want to load a custom template tag
library named coltrane_tags. When Django sees this, it will look through all of your
installed applications for a templatetags directory containing a file named coltrane_
tags.py, and it will load any tags defined there.

	 •	 Once	your	tag	library	has	been	loaded,	the	{% get_latest_entries %} tag can be called.
This tag creates the new template variable, latest_entries, containing the five latest
entries.

	 •	 Then	you	just	loop	through	latest_entries using the {% for %} tag, displaying a link to
each and showing when it was posted. Here you’re using a new filter called timesince.
Built into Django, this filter formats a date and time according to how long ago something
occurred. The result (with the word “ago” added afterward) will be something like “3 days,
10 hours ago,” and will give a visitor an idea of how recently the blog has been updated.

Writing a More Flexible Tag with Arguments
Now, you also want to show the latest links posted in the blog. You could do this by writing
a new {% get_latest_links %} tag and having it add a latest_links variable to the template

Chapter 6 ■ teMpLateS FOr the WeBLOG116

context. However, that’s the start of a long and tedious path of writing a new tag every time
you add a new type of content to your site, so it would be better to turn your existing
{% get_latest_entries %} tag into a slightly more generic {% get_latest_content %} tag,
which can fetch any of several types of content.

And while you’re at it, it would be nice to add a bit more flexibility to the tag by letting it
take arguments to specify how many items to retrieve, as well as the name of the variable to
put them in. That way, you could have several lists of recent content that don’t trample all over
one another’s variables. What you’re going to end up with is a tag that works like this:

 {% get_latest_content coltrane.link 5 as latest_links %}

which will, as the syntax indicates, fetch the five most recently published Link objects in the
coltrane application and place them in a template variable named latest_links.

Writing the Compilation Function for the New Tag
You can start out the same way you did with the first version of the custom tag. That is, define
a compilation function for your new tag:

 def do_latest_content(parser, token):

But now you’ll need to read some arguments. The full contents, residing in token.contents,
will be a string of the form get_latest_content coltrane.link 5 as latest_links. So you can
use Python’s built-in string-splitting function, which defaults to splitting on spaces, to turn the
string into a list of arguments:

 def do_latest_content(parser, token):
 bits = token.contents.split()

Or you can use split_contents, a method of the token object that knows how to split the
arguments. This method works much like Python’s split() method, but it knows how to take
a few special cases into account:

 def do_latest_content(parser, token):
 bits = token.split_contents()

Now the variable bits should contain a list that looks like ["get_latest_content",
"coltrane.link", "5", "as", "latest_links"]. Because that’s five arguments in all, you
can check the length of bits and raise a template syntax error if you don’t find the right
number of arguments:

 def do_latest_content(parser, token):
 bits = token.split_contents()
 if len(bits) != 5:
 raise template.TemplateSyntaxError("'get_latest_content'➥

 tag takes exactly four arguments")

This ensures that you never try to render a malformed use of the tag. Note that the syntax
error says “four arguments,” not “five arguments.” Although bits has five items in it, the first
item is the name the tag was called with, not an argument. (Sometimes it’s useful to write a
single compilation function and register it multiple times under different names, allowing it to
represent a family of similar tags and tell them apart by the tag name it receives.)

Chapter 6 ■ teMpLateS FOr the WeBLOG 117

Next you want to return a Node. It will be called LatestContentNode, and you’ll need to pass
some information to it: the model to retrieve content from, the number of items to retrieve,
and the variable name to store the results in. When you write LatestContentNode in a moment,
you’ll set up its constructor to accept this information:

 def do_latest_content(parser, token):
 bits = token.split_contents()
 if len(bits) != 5:
 raise template.TemplateSyntaxError("'get_latest_content'➥

 tag takes exactly four arguments")
 return LatestContentNode(bits[1], bits[2], bits[4])

Note that because Python lists have indexes starting at 0, the model name—although it’s
the second item in bits—is bits[1], the number of items is bits[2], and so on.

ADmOnITIOn: HOw mUCH ERROR CHECkIng IS TOO mUCH?

You could also add a test to ensure that the fourth item in bits is the word “as,” and raise a syntax error if
you don’t see it. But in this case, it’s okay not to. For a simple tag like this, just checking the number of argu-
ments is usually fine, and checking for the “as” would just add more code that probably won’t be needed. For
more complex tags, however, it’s a good idea to write your compilation function to ensure the tag was used
properly before trying to return anything from it.

Now you need to determine the model to retrieve content from. In the original
{% get_latest_entries %} tag, you simply imported the Entry model and referenced it
directly. Your new tag, however, is going to get an argument like coltrane.link or coltrane.
entry, so you will need to import the correct model class dynamically.

Python provides a way to do this through a special built-in function named __import__(),
which takes strings as arguments. But loading a model class dynamically is a common enough
need that Django provides a helper function to handle it more concisely. This function is
django.db.models.get_model(), and it takes two arguments:

	 •	 The	name	of	the	application	the	model	is	defined	in,	as	a	string

	 •	 The	name	of	the	model	class,	as	a	string

It’s customary to make both of these strings entirely lowercase because Django maintains
a registry of installed models with the names normalized to lowercase. If you want to, you can
pass mixed-case names to get_model(), but because they’ll just be lowercased anyway, it’s
often easier to start with them that way.

To see how get_model() works, go to your project directory and run the command python
manage.py shell. This will start a Python interpreter. In it, type the following:

 >>> from django.db.models import get_model
 >>> entry_model = get_model('coltrane', 'entry')

Chapter 6 ■ teMpLateS FOr the WeBLOG118

The get_model() function will retrieve the Entry model from the coltrane application
and assign it to the variable entry_model. From there, you can query against the same way you
would if you’d imported it normally. To verify this, type the following into the interpreter:

 >>> entry_model.live.all()[:5]

You’ll see that this returns the latest five live entries.
Let’s go ahead and change the do_latest_content compilation function to use the

get_model() function and retrieve the model class. One obvious way to do this would be
as follows:

 from django.db.models import get_model

 def do_latest_content(parser, token):
 bits = token.split_contents()
 if len(bits) != 5:
 raise template.TemplateSyntaxError("'get_latest_content'➥

 tag takes exactly four arguments")
 model_args = bits[1].split('.')
 model = get_model(model_args[0], model_args[1])
 return LatestContentNode(model, bits[2], bits[4])

This code has a couple of problems, though:

	 •	 If	the	first	argument	isn’t	an	application	name/model	name	pair	separated	by	a	dot	(.),
or if it has too few or too many parts, this code might retrieve the wrong model or no
model at all.

	 •	 If	the	arguments	you	pass	to	get_model() don’t actually correspond to any model class,
get_model() will return the value None, and that will trip up the LatestContentNode
when it tries to retrieve the content.

So you need a little bit of error checking. You want to verify the following:

	 •	 When	split	on	the	dot	(.) character, the first argument becomes a list of exactly two
items.

	 •	 These	items,	when	passed	to	get_model(), do indeed return a model class.

You can do that in only a few lines of code:

 model_args = bits[1].split('.')
 if len(model_args) != 2:
 raise template.TemplateSyntaxError("First argument to➥

 'get_latest_content' must be an 'application name'.'model name' string")
 model = get_model(*model_args)
 if model is None:
 raise template.TemplateSyntaxError("'get_latest_content'➥

 tag got an invalid model: %s" % bits[1])

If you’re wondering about this line:

 model = get_model(*model_args)

Chapter 6 ■ teMpLateS FOr the WeBLOG 119

remember that the asterisk (*) is special Python syntax for taking a list (the result of calling
split()) and turning in a set of arguments to a function. Here’s the finished compilation
function:

 def do_latest_content(parser, token):
 bits = token.split_contents()
 if len(bits) != 5:
 raise template.TemplateSyntaxError("'get_latest_content'➥

 tag takes exactly four arguments")
 model_args = bits[1].split('.')
 if len(model_args) != 2:
 raise template.TemplateSyntaxError("First argument to➥

 'get_latest_content' must be an 'application name'.'model name' string")
 model = get_model(*model_args)
 if model is None:
 raise template.TemplateSyntaxError("'get_latest_content'➥

 tag got an invalid model: %s" % bits[1])
 return LatestContentNode(model, bits[2], bits[4])

Writing the LatestContentNode
You already know that LatestContentNode needs to accept three arguments in its constructor:

	 •	 The	model	to	retrieve	items	from

	 •	 The	number	of	items	to	retrieve

	 •	 The	name	of	a	variable	to	store	the	items	in

So you can start by writing its constructor (remember that a Python object’s constructor is
always called __init__()) and simply storing those arguments as instance variables:

 class LatestContentNode(template.Node):
 def __init__(self, model, num, varname):
 self.model = model
 self.num = int(num)
 self.varname = varname

Notice that you force num to be an int here. All the arguments to the tag came in as strings,
so before you can use num to control the number of items to retrieve, you need to convert it to
an actual number. Here’s a simple way you could write the render() method to accomplish
that:

 def render(self, context):
 context[self.varname] = self.model.objects.all()[:self.num]
 return ''

At first, this looks fine, but it’s got a hidden problem. When you call the template tag like
this:

 {% get_latest_content coltrane.entry 5 as latest_entries %}

Chapter 6 ■ teMpLateS FOr the WeBLOG120

the query it performs will be the equivalent of

 Entry.objects.all()[:5]

which isn’t what you want. This will return any entry, including entries that aren’t meant to be
publicly displayed. Instead, you want it to do the equivalent of the following:

 Entry.live.all()[:5]

You could write special-case code to see when you’re working with the Entry model, but
that’s not good practice. If you later need to use this tag on other models with similar needs,
you’ll have to keep adding new pieces of special-case code.

The solution is to ask Django to use the model’s default manager. The first manager
defined in a model class is given special status. It becomes the default manager for that model,
in addition to the name it was defined with. It will also be available as the attribute _default_
manager, so you can actually write this as:

 def render(self, context):
 context[self.varname] = self.model._default_manager.all()[:self.num]
 return ''

Because the live manager was defined first in the Entry model, this will do the right thing.

ADmOnITIOn: USIng DEfAUlT mAnAgERS

Whenever you don’t know in advance which model you’ll be working with (as in this case, and in most cases
when you’re using get_model()), it’s a good idea to use _default_manager. When a model has mul-
tiple managers, or defines a single custom manager that’s not named objects, trying to query through the
objects attribute can be dangerous. That might not be the manager that queries should go through (as in
the case of Entry with its special live manager), and in fact, objects might not even exist. Remember
that when a model has a custom manager, Django doesn’t automatically set up the objects manager on it,
so trying to access objects might raise an exception.

Registering and Using the New Tag
Now you can simply register your new tag, and it’s ready to go. The final coltrane_tags.py file
looks like this:

 from django.db.models import get_model
 from django import template

 def do_latest_content(parser, token):
 bits = token.split_contents()
 if len(bits) != 5:
 raise template.TemplateSyntaxError("'get_latest_content'➥

 tag takes exactly four arguments")
 model_args = bits[1].split('.')

Chapter 6 ■ teMpLateS FOr the WeBLOG 121

 if len(model_args) != 2:
 raise template.TemplateSyntaxError("First argument to➥

 'get_latest_content' must be an 'application name'.'model name' string")
 model = get_model(*model_args)
 if model is None:
 raise template.TemplateSyntaxError("'get_latest_content'➥

 tag got an invalid model: %s" % bits[1])
 return LatestContentNode(model, bits[2], bits[4])

 class LatestContentNode(template.Node):
 def __init__(self, model, num, varname):
 self.model = model
 self.num = int(num)
 self.varname = varname

 def render(self, context):
 context[self.varname] = self.model._default_manager.all()[:self.num]
 return ''

 register = template.Library()
 register.tag('get_latest_content', do_latest_content)

So you can rewrite the sidebar in the base.html template, like this:

 <div id="sidebar">
 <h2>Navigation</h2>
 <ul id="main-nav">
 <li id="main-nav-entries">
 Entries

 <li id="main-nav-links">
 Links

 <li id="main-nav-categories">
 Categories

 <li id="main-nav-tags">
 Tags

 <h2>What is this?</h2>
 {% block whatis %}
 {% endblock %}
 {% load coltrane_tags %}
 <h2>Latest entries in the weblog</h2>

 {% get_latest_content coltrane.entry 5 as latest_entries %}
 {% for entry in latest_entries %}

Chapter 6 ■ teMpLateS FOr the WeBLOG122

 {{ entry.title }},
 posted {{ entry.pub_date|timesince }} ago.

 {% endfor %}

 <h2>Latest links in the weblog</h2>

 {% get_latest_content coltrane.link 5 as latest_links %}
 {% for link in latest_links %}

 {{ link.title }},
 posted {{ link.pub_date|timesince }} ago.

 {% endfor %}

 </div>

This will ensure that every page has the list of the latest five entries and links, and it offers
two big advantages over the original {% get_latest_entries %} tag:

	 •	 When	you	add	new	types	of	content	to	the	blog	(in	the	next	chapter	you’ll	add	comments),	
you don’t have to write a new tag. You can just reuse get_latest_content with different
arguments.

	 •	 If	you	decide	to	change	the	number	of	entries	or	links	to	show,	or	the	variables	you	
want to use for them, it’s just a matter of sending different arguments to the
{% get_latest_content %} tag. You won’t have to rewrite the tag to change this.

looking Ahead
In the next chapter, you’ll wrap up the weblog by adding comments, moderation, and RSS
feeds. For now, though, feel free to play with the template system and get the blog looking
exactly how you want it. A sample style sheet that implements the two-column layout is
included with the sample code for this book (downloadable from the Apress web site), so
feel free to try it out. To get Django to serve this as a plain file, add the following URL pattern
in the project’s root URLConf module (once again using the static file-serving view you saw
in Chapter 3):

 (r'^media/(?P<path>.*)$',
 'django.views.static.serve',
 { 'document_root': '/path/to/stylesheet/directory' }),

Simply fill in the path to the directory where the style-sheet file resides on your computer,
and Django will serve it. (Although note that for production deployment of Django, it’s best
not to have Django serve static files like this.)

C h a p t e r 7

Finishing the Weblog

Now that you’ve got a solid set of templates and, more important, a solid understanding of
Django’s template system, it’s time to finish up the weblog with the final two features: a com-
ments system with moderation and syndication feeds for entries and links.

Although Django provides applications—django.contrib.comments and django.contrib.
syndication—that handle the basic functionality for both of these features, you’re going to go
beyond that a bit, customizing and extending their features as you go. This will involve a bit of
Python code and a bit of templating, but as you’ll see, it’s nowhere near as much code as you’d
have to write to implement these features from scratch. So let’s dive right in.

Comments and django.contrib.comments
You’ve already seen that django.contrib contains some useful applications. Both the adminis-
trative interface and the authentication system you’re using come from applications in contrib,
as well as the flat-pages application you used in your simple CMS. In general, it’s a good idea to
look there before starting to write something on your own. As I write this, django.contrib con-
tains 17 applications, and there are plans to expand it to include more open source applications
from the Django community. Even if something in contrib doesn’t do exactly what you need,
you’ll often find something that you can augment or something that can make a tricky bit of
code simpler.

Commenting is no exception to this. The baseline comments system you’re going to
build on is bundled as django.contrib.comments. It supports the basic features you’ll need
to get a commenting system up and running, and it provides a foundation for building addi-
tional features.

Implementing Model Inheritance and Abstract
Models
Included in django.contrib.comments is a pair of models—BaseCommentAbstractModel and
Comment—that represent a useful pattern in Django development: abstract models with
concrete subclasses.

123

Chapter 7 ■ F IN IShING the WeBLOG124

So far, you’ve been writing models that are subclasses of Django’s built-in basic model
class, but Django also supports models that subclass from other model classes. It allows you to
use either of two common patterns when you’re doing such subclassing:

	 •	 Concrete	inheritance: This is what many people think of when they imagine how sub-
classing a model works. In this pattern, one model that subclasses another will create
a new database table that links back to the original “parent” class’s table with a foreign
key. Instances of the subclassed model will behave as if they have both the fields defined
on the “parent” model and the fields defined on the subclassed model itself (under the
hood, Django will pull information from both tables as needed).

	 •	 Abstract	inheritance:	When	you	define a new model class and fill in its options using
the inner class Meta declaration, you can add the attribute abstract=True.	When	you	
do this, Django will not create a table for that model, and you won’t be able to directly
create or query for instances of that model. However, any subclasses of that model (as
long as they don’t also declare abstract=True) will create their own tables, and will add
columns for the fields from the abstract model as well.

In other words, concrete inheritance creates one table for each model, as usual. Abstract
inheritance creates only one table, the table for the subclass, and places all of the fields inside
it.

Generally, concrete inheritance is useful when you want to extend the fields or features of
a preexisting model. Abstract inheritance, on the other hand, is useful when you have a set of
common fields or methods (or both) that you’d like to have on multiple models without defin-
ing them over and over again.

Django’s bundled comments application takes advantage of abstract inheritance to pro-
vide a basic model—BaseCommentAbstractModel—that defines a set of common fields needed
for nearly any type of commenting, and declares it to be abstract. It also provides a second
model—Comment—that subclasses this abstract model and fleshes it out with a specific set of
features.

Installing the Comments Application
Installing the comments system is easy. Open up your Django project’s settings file (settings.py),
and add the following line in the INSTALLED_APPS list:

'django.contrib.comments',

Next run python manage.py syncdb, and Django will install its models. If you fire up the
development server and visit the administrative interface, you’ll see a new Comments section
listing the Comment model. (Because the abstract model it subclasses can’t be directly instanti-
ated or queried, there’s no admin interface for it.)

In the project’s root URLConf file (urls.py), add one new URL pattern:

(r'^comments/', include('django.contrib.comments.urls')),

You’ve seen this pattern several times now, and in general, this is the hallmark of a well-
built Django application. Installing it shouldn’t involve any more work than the following:

Chapter 7 ■ F IN IShING the WeBLOG 125

 1. Add it to INSTALLED_APPS and run syncdb.

 2. Add a new URL pattern to route to its default URLConf.

 3. Set up any needed templates.

Writing	an	application	to	work	this	way	out	of	the	box	is	an	extremely	powerful	technique	
because it allows even very complex sites to be built quickly out of reusable applications, with
each supplying one particular piece of functionality. Keeping this pattern in mind as you write
your own applications will help you produce high-quality, useful applications. In Chapter 11,
you’ll look at some techniques for building in configurability and flexibility beyond this style of
basic setup.

Performing Basic Setup
To get started with the comments application, you’ll need to show a comment form for visitors
to fill out. Let’s start with that.

Open up the entry-detail template—coltrane/entry_detail.html—and go to the main
content block, which looks like this:

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}
{% endblock %}

Go ahead and add a header that will distinguish the comment form:

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}

<h2>Post a comment</h2>

{% endblock %}

Now you just need to display the form. The comments system includes a custom template-
tag library that, among other things, can do that for you. The tag library is called comments, so
you’ll need to load it with the {% load %} tag:

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}

<h2>Post a comment</h2>

{% load comments %}

{% endblock %}

Chapter 7 ■ F IN IShING the WeBLOG126

Now, the tag you want is called {% render_comment_form %}, and its syntax looks like this:

{% render_comment_form for object %}

In other words, this tag just wants a variable containing the specific object that the com-
ment will be attached to, which will be available in the entry_detail template as the variable
{{ object }}. So you can fill in the tag like this:

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}

<h2>Post a comment</h2>

{% load comments %}

{% render_comment_form for object %}

{% endblock %}

Note that you don’t put the braces around object here. The braces, as in {{ object }}, are
used only when you want to output the value of the variable. They’re not needed in a template
tag, and in fact, they’ll cause an error. Template tags can resolve variables on their own (as
you’ll see in Chapter 10 when you write a few tags that do that).

Now, go visit an entry, and you’ll see the comment form show up. If you fill in a comment
and click the Preview button, you’ll see a preview of your comment, displayed via a default
template included with Django. In fact, django.contrib.comments includes enough basic default
templates to support everything you’ll be doing for now; templates are included for previewing
and posting comments, and also for more advanced features like comment moderation.

But when you start deploying live Django applications, you’ll want to customize these
templates to match your site’s layout. The default templates are bundled with the comments
application, and reside in the directory contrib/comments/templates/comments inside your
copy of Django.

To get a feel for how this customization will work, make a new directory named comments
inside your project’s templates directory, and copy the preview.html template from the Django
comments application into this directory.

Most of this template’s contents are concerned with displaying the comment form and
any submission problems. For example, some fields in the form are required, and this tem-
plate will display an error message if they’re left blank (you’ll learn more about Django’s
form-handling system in Chapter 9). There’s one section, though, that displays the actual pre-
view of the comment (if there were no errors from the form). It looks like this:

<h1>{% trans "Preview your comment" %}</h1>
 <blockquote>{{ comment|linebreaks }}</blockquote>
<p>
{% trans "and" %} <input type="submit" name="submit" class="submit-post" value="➥

{% trans "Post your comment" %}" id="submit" /> {% trans "or make changes" %}:
</p>

Chapter 7 ■ F IN IShING the WeBLOG 127

There’s an unfamiliar tag here—trans—but you won’t need to worry about it yet. Django
includes what’s known as “internationalization” facilities, which allow pieces of text to be
marked for translation into other languages. If translations are available and a visitor’s web
browser indicates a preferred language, they’ll be substituted in automatically. The trans tag
performs this function for templates.

The actual comment’s contents are displayed through a filter called linebreaks, which
simply translates line breaks in the comment’s text into HTML paragraph tags. Because you’re
already using Markdown to process the weblog’s content, it’d be nice to let visitors use it for
their comments as well. Django provides a built-in template filter that can handle this.

To enable the filter, you’ll need to add one more entry to your INSTALLED_APPS setting:
django.contrib.markup, which contains tools for working with common text-to-HTML transla-
tion systems (including Markdown). You won’t need to run syncdb, because this application
provides no models; you just need to list the application in INSTALLED_APPS so that Django will
let you use the template filters it provides.

Once you’ve done that, change your copy of the preview.html template so that the portion
displaying the comment’s contents looks like this:

{% load markup %}
<blockquote>{{ comment|markdown: "safe" }}</blockquote>

This will apply Markdown to the comment’s contents, and will also enable Markdown’s
“safe mode,” which strips any raw HTML tags out of the comment before generating the final
HTML to display. This is important because Django’s normal automatic escaping won’t apply
with this filter; the markdown filter is meant to return HTML, so it disables automatic escaping
for its output. Using the safe mode means that any malicious HTML a user tries to submit will
still be removed, and will not result in a breach of your site’s security.

Retrieving Lists of Comments for Display
All you need to do now is retrieve the comments and display them. Just as django.contrib.
comments provides a custom template tag for showing the comment form, it provides a tag
that can handle comment retrieval. The syntax for it looks like this:

{% get_comment_list for object as comment_list %}

So you can make use of the tag in your entry_detail.html template like this:

<h2>Comments</h2>
{% load markup %}
{% get_comment_list for object as comment_list %}

{% for comment in comment_list %}

<p>On {{ comment.submit_date|date:"F j, Y" }},
{{ comment.name }} said:</p>

{{ comment.comment|markdown:"safe" }}
{% endfor %}

Chapter 7 ■ F IN IShING the WeBLOG128

Django’s default Comment model automatically sets up the attribute name to return the appro-
priate value; if the comment was posted by a logged-in user, name will be that user’s username.
If the comment was posted by someone who wasn’t logged in, name will be whatever name that
person supplied in the comment form.

So the full content block of your entry_detail.html template now looks like this:

{% block content %}
<h2>{{ object.title }}</h2>
{{ object.body_html|safe }}

<h2>Comments</h2>
{% load comments %}
{% load markup %}
{% get_comment_list for object as comment_list %}

{% for comment in comment_list %}

<p>On {{ comment.submit_date|date:"F j, Y" }},
{{ comment.name }} said:</p>

{{ comment.comment|markdown:"safe" }}
{% endfor %}

<h2>Post a comment</h2>

{% render_comment_form for object %}

{% endblock %}

If you’d like to add a line in the sidebar to show the number of comments on the entry, the
get_comment_count tag will retrieve it for you. You might use it like this:

{% load comments %}
{% get_comment_count for object as comment_count %}

<p>So far, this entry has {{ comment_count }}
comment{{ comment_count|pluralize }}.</p>

AdMoNItIoN: the SCope of the {% load %} tAg

Due to the way Django’s template inheritance works, a custom tag or filter library loaded via the {% load
%} tag will be available only in the block in which it was loaded. If you need to reuse the same tag library in a
different block, you’ll need to load it again.

Chapter 7 ■ F IN IShING the WeBLOG 129

Moderating Comments
Out of the box, Django covers most of what you want for commenting: an easy way to let visi-
tors post comments and then pull out a list of the comments that are “attached” to a particular
object.	But	given	the	proliferation	of	comment	spam	around	the	Web	in	recent	years,	you’re	
still going to want some sort of automatic moderation system to screen incoming comments.
For that, you’ll need to write some code.

Both of the comment models in django.contrib.comments define a BooleanField called
is_public, and that’s what a moderation system should use. Now, there are a couple of very
effective ways to filter comment spam:

	 •	 Whenever	a	comment	is	posted	on	an	entry	that’s	more	than	a	certain	number	of	days	
old (say, 30), automatically mark it nonpublic. The vast majority of comment spam tar-
gets old content, partly because most content is old and partly because it’s less likely to
be noticed by a site administrator.

	 •	 Use	a	statistical	spam-detection	system.	Akismet (http://akismet.com/) is the gold
standard for this, with a history of more than five billion spam comments to draw on
for analysis. Best of all, Akismet offers a web-based API that estimates whether a com-
ment is spam or not.

On my personal blog, I get around six thousand spam comments a month. The combina-
tion of these two filtering techniques has, so far, prevented all but one or two of them from
showing up publicly.

So you want to find some way to hook into the comment-submission system and auto-
matically apply the two filtering techniques to set is_public=False on the new comment
whenever it looks like it’ll be spam. There are a couple of obvious ways to do this:

	 •	 Just	as	you’ve	defined	a	custom	save() method on some of our own models, you
could go to the comment models in Django and edit them to include a custom save()
method that does the spam filtering.

	 •	 You	could	edit	or	replace	the	view	that	handles	the	comment	submission	and	put	the	
spam filtering there.

But both of these methods have major drawbacks. Either you’re editing code that comes
with Django (which will make it harder to upgrade down the road and might cause debugging
problems because you’ll have a nonstandard Django codebase), or you’re duplicating code
Django has already provided in order to add a small modification.

Wouldn’t	it	be	nice	if	you	could	just	write	some	of	your	own	code,	and	then	hook	into	
Django somehow to make sure it runs at the right moment?

Using Signals and the Django Dispatcher
As it turns out, there is a way to do that. Django includes a module called django.dispatch that
provides two things:

	 •	 A	way	for	any	piece	of	code	in	Django,	or	in	one	of	your	own	applications,	to	advertise	
the fact that something happened

	 •	 A	way	for	any	other	piece	of	code	to	“listen”	for	a	specific	event	happening	and	take	
some action in response

http://akismet.com/

Chapter 7 ■ F IN IShING the WeBLOG130

The way this works is pretty simple: django.dispatch provides a class called Signal, which
represents the occurrence of some event. Each instance of Signal has two important methods:

	 •	 send: Calling this method means “this event has happened.”

	 •	 connect: Calling this method lets you register a function that will be called whenever
the signal is “sent.”

For a simple example, go to the cms project directory and start a Python interpreter by
typing python manage.py shell. Then type the following:

>>> from coltrane.models import Entry
>>> from django.db.models.signals import post_save
>>> def print_save_message(sender, instance, **kwargs):
. . . print "An entry was just saved!"
>>> post_save.connect(print_save_message, sender=Entry)

Now, query for an Entry and save it:

>>> e = Entry.objects.all()[0]
>>> e.save()

Your Python interpreter will suddenly print “An entry was just saved!” Here’s what
happened:

 1. You imported the dispatcher and an instance of Signal, defined in django.db.models.
signals.

 2. You wrote a function that prints the message. The arguments it receives—sender and
instance—will end up being the Entry model class (which is going to “send” the sig-
nal you’re listening for) and the specific Entry object being saved. You’re not doing
anything with these arguments, but when you build the comment-moderation system
you’ll see how they can be used. The function also accepts **kwargs, indicating that it
can accept any keyword arguments. This is necessary because different signals provide
different arguments.

 3. You registered the function using the signal’s connect() method, to be called when the
Entry model sends the post_save signal.

 4. When	the	Entry was saved, code within Django—built into the base Model class that all
your models inherit from—used the post_save signal’s send() method to send it.

 5. The dispatcher called your custom function.

Django defines about a dozen signals you can use immediately, and it’s easy to define and
use your own as well. You can also do some tricks with the dispatcher that are more complex,
but what you’ve seen so far is all you’ll actually need in order to build an effective comment
moderator.

Building the Automatic Comment Moderator
To build your comment-moderation system, you’ll write a function that knows how to look
at an incoming comment and figure out whether it’s spam. Then you’ll use the dispatcher to
ensure that function is called each time a new comment is about to be saved. Just as you used

Chapter 7 ■ F IN IShING the WeBLOG 131

the post_save signal in the previous example, there’s a pre_save signal you can use to run code
before an object is saved.

The first thing you want to do when you get a new comment is look at the entry it’s being
posted to. If that entry is more than, say, 30 days old, you’ll just set its is_public field to False
and not bother with any further checks. This is where the instance argument to your custom
function comes into play. From the new comment object that’s about to be saved, you can
determine the entry it’s being posted on. Here’s what the code looks like:

import datetime

def moderate_comment(sender, instance, **kwargs):
 if not instance.id:
 entry = instance.content_object
 delta = datetime.datetime.now() - entry.pub_date
 if delta.days > 30:
 instance.is_public = False

So far, this function is pretty straightforward. You only check things if the comment—
which will be the object in the instance argument—doesn’t yet have an id, meaning it hasn’t
been saved to the database. If it does have an id, presumably it’s already been checked. Check-
ing it again would make it hard for a site administrator to ever manually approve a comment,
because the comment would keep going through this process, being marked nonpublic on
each save.

First you use the instance argument to find the entry that the comment is being posted
on. Django’s comment model has an attribute called content_object, which returns the object
that the comment pertains to.

Next you subtract the entry’s pub_date from the current date and time. Python’s datetime
class is set up so that this will work, and the result is an instance of a class called timedelta,
which has attributes representing the number of days, hours, and so on between the two
datetime objects involved.

Next, you check the days attribute on that timedelta object. If it’s greater than 30, you set
the new comment’s is_public field to False.

At this point, you could already hook up the function, and it would do a good job of pre-
venting spam:

from django.contrib.comments.models import Comment
from django.db.models import signals

signals.pre_save.connect(moderate_comment, sender=Comment)

Adding Akismet Support
Now let’s add in the second layer of spam prevention: statistical spam analysis by the Akismet
web service. The first thing you’ll need is an Akismet API key—all access to Akismet’s service
requires this key. Luckily, it’s free for personal, noncommercial use. Just follow the instructions
on the Akismet web site (http://akismet.com/personal/) to get a key. Once you’ve got it, open
up the Django settings file for the cms project and add the following line to it:

AKISMET_API_KEY = 'your API key goes here'

http://akismet.com/personal/

Chapter 7 ■ F IN IShING the WeBLOG132

By making this a custom setting, you’ll be able to reuse the Akismet spam filtering on
other sites, even if they have different API keys.

Akismet is a web-based service. You send information about a comment to the service
using an HTTP request, and it sends back an HTTP response telling you whether Akismet
thinks that the comment is spam. You could build up the code necessary to do this, but—as
you’ll often find when working with Python—someone else has already done it and made the
code available for free.

In this case, it’s a module called akismet, which is available from the author, Michael Foord,
at his web site: www.voidspace.org.uk/python/akismet_python.html. Go ahead and download
and unpack it (it should come in a .zip file). This will give you a file named akismet.py that you
can put on your Python import path (ideally, in the same location as the coltrane directory that
holds the weblog application).

The akismet module includes a class called Akismet that handles the API. This class has
two methods you’ll be using: one called verify_key(), which ensures you’re using a valid API
key, and one called comment_check(), which submits a comment to Akismet and returns True if
Akismet thinks the comment is spam.

So the first thing you’ll need to do is import the Akismet class:

from akismet import Akismet

The Akismet API requires both the API key you’ve been assigned and the address of the
site you’re submitting the comment from. You could hard-code the URL of your site in here,
but that would hurt the reusability of the code. A better option is to use Django’s bundled
sites framework (it lives in django.contrib.sites), which provides a model that represents a
particular web site and knows which site is currently active.

You’ll recall that back in Chapter 2, when you set up the simple CMS, you edited a Site
object so it would “know” where you were running the development server. Whenever	you’re	
running with this database and settings file, you can get that Site object with the following:

from django.contrib.sites.models import Site
current_site = Site.objects.get_current()

This works because the Site model has a custom manager that defines the get_current()
method. The Site object it returns has a field called domain, which you can use to fill in the
information Akismet wants. This information is the keyword argument blog_url when you’re
creating an instance of the API (along with the API key, which comes from your settings file
and is the keyword argument key):

from django.conf import settings
from django.contrib.sites.models import Site

akismet_api = Akismet(key=settings.AKISMET_API_KEY,
 blog_url="http://%s/" %Site.objects.get_current().domain)

Then you can check your API key with the verify_key() method. If it’s valid, you can sub-
mit a comment for analysis with the comment_check() method. The comment_check() method
expects three arguments:

http://www.voidspace.org.uk/python/akismet_python.html

Chapter 7 ■ F IN IShING the WeBLOG 133

	 •	 The	text	of	the	comment	to	check

	 •	 Some	additional	“metadata”	about	the	comment,	in	a	dictionary

	 •	 A	boolean	(True or False) argument telling it whether to try to work out additional
metadata on its own

The text of the comment is easy enough to get, because it’s a field on the comment itself.
The dictionary of metadata needs to have at least four values in it, even if some of them are
blank (because you don’t necessarily know what they are). These values are the type of com-
ment (which, for simple uses like this, is simply the string comment), the HTTP Referer header
value, the IP address from which the comment was sent (also a field on the comment model),
and the HTTP User-Agent of the commenter. Finally, you’ll tell the akismet module to go ahead
and work out any additional metadata it can find. More information means better accuracy,
especially because the akismet module can, under some server setups, find some useful infor-
mation automatically. The code looks like this (Akismet’s comment_check() method returns
True if it thinks the comment is spam):

from django.utils.encoding import smart_str

if akismet_api.verify_key():
 akismet_data = { 'comment_type': 'comment',
 'referrer': '',
 'user_ip': instance.ip_address,
 'user-agent': '' }
 if akismet_api.comment_check(smart_str(instance.comment),
 akismet_data,
 build_data=True):
 instance.is_public = False

Remember that Django uses Unicode strings everywhere, so whenever you use an
external API, you should convert Unicode strings to bytestrings by using the helper function
django.utils.encoding.smart_str().

But there’s a problem here: you don’t know the values of the HTTP Referer and User-Agent
headers. Although they aren’t required, these values can help Akismet make a more accurate
determination of whether a comment is spam. Fortunately, there’s a way to get those values.

So far, you’ve just been using the standard signals—pre_save and post_save—sent by
Django any time a model is saved. But django.contrib.comments was designed with use cases
like this one in mind, so it also defines a couple of its own custom signals that provide more
information. The signal you’ll want to use here is django.contrib.comments.signals.comment_
will_be_posted, which passes along not only the model class (Comment) and the actual comment
object, but also the Django HttpRequest object in which the comment is being submitted.
This means that you’ll have access to all of the request headers and that you can fill out all the
information Akismet asks for.

To use this signal, first you’ll need to import it:

from django.contrib.comments.signals import comment_will_be_posted

Chapter 7 ■ F IN IShING the WeBLOG134

Then you’ll need to change the definition of the moderate_comment function to accommo-
date the arguments that this signal sends:

def moderate_comment(sender, comment, request, **kwargs):

Now you can rewrite the section of the code that sends the comment to Akismet for the
spam check:

if akistmet_api.verify_key():
 akismet_data = { 'comment_type': 'comment',
 'referrer': request.META['HTTP_REFERER'],
 'user_ip': comment.ip_address,
 'user-agent': request.META['HTTP_USER_AGENT'] }
 if akismet_api.comment_check(smart_str(instance.comment),
 akismet_data,
 build_data=True):
 comment.is_public = False

Note that because you’ve rewritten the function to accept an argument named comment,
you need to change anything that referred to it as instance. Also note that the values for the
HTTP headers reside in request.META, which is a dictionary. You can identify most HTTP head-
ers in request.META by converting their names to uppercase and prefixing them with HTTP_. This
means, for example, that the HTTP Referer header becomes HTTP_REFERER in request.META.

Once you put it all together, the complete comment-moderation function, with both age-
based and statistical Akismet filtering, looks like this:

import datetime
from akismet import Akismet
from django.conf import settings
from django.contrib.comments.models import Comment
from django.contrib.comments.signals import comment_will_be_posted
from django.contrib.sites.models import Site
from django.utils.encoding import smart_str

def moderate_comment(sender, comment, request, **kwargs):
 if not comment.id:
 entry = comment.content_object
 delta = datetime.datetime.now() - entry.pub_date
 if delta.days > 30:
 comment.is_public = False
 else:
 akismet_api = Akismet(key=settings.AKISMET_API_KEY,
 blog_url="http:/%s/" ➥

%Site.objects.get_current().domain)
 if akismet_api.verify_key():
 akismet_data = { 'comment_type': 'comment',
 'referrer': request.META['HTTP_REFERER'],
 'user_ip': comment.ip_address,
 'user-agent': request.META['HTTP_USER_AGENT'] }

Chapter 7 ■ F IN IShING the WeBLOG 135

 if akismet_api.comment_check(smart_str(comment.comment),
 akismet_data,
 build_data=True):
 comment.is_public = False

comment_will_be_posted.connect(moderate_comment, sender=Comment)

The best place to put this is near the bottom of coltrane/models.py so that the connect()
line will be read and executed when the weblog’s models are imported. This also does away
with the need for at least one of the imports—the import datetime line—because it’s already
been imported in that file.

AdMoNItIoN: IMport pAthS ANd MultIple IMportS of A SINgle Module

When you import a Python module for the first time, all of the code inside it is parsed and executed. That’s
why the connect() line will be run whenever the weblog’s models are first imported. But this opens up a
subtle potential bug: Python does this once for each unique import path used to carry out the import. So, for
example, if you were importing the search-oriented models you wrote for the CMS back in Chapter 3, the
code in cms/search/models.py would be evaluated once if you did the import like this:

from cms.search import models

And it would be evaluated again if you later did another import like this:

from search import models

Django’s manage.py utility changes your Python import path for convenience, and in so doing, makes
both of the preceding lines work. So it’s not unusual that a project ends up having imports in both forms like
the ones shown. Unfortunately, this means that if you have a piece of code you want to run only once—like
the connect() line, because you only want that function to register once—it will instead be run once for
each different way the module gets imported.

It’s best to pick a single style of import and use it consistently. As a general rule, I typically stick to
the way the application is listed in my INSTALLED_APPS setting. For example, if I have cms.search in
INSTALLED_APPS, I always do the import as from cms.search import models.

Sending E-mail Notifications
A lot of weblogging and CMS systems that allow commenting also include a feature that
automatically notifies site administrators whenever a new comment is posted. This is useful
because it lets them keep up with active discussions, and also lets them spot any problems—a
troublemaking commenter, arguments that get out of hand, or just the occasional bit of spam
that slips through the filter. You’ve seen how easy it is to use Django’s dispatcher to add extra
functionality when a comment is posted, so let’s go ahead and add e-mail notifications as a
finishing touch.

Chapter 7 ■ F IN IShING the WeBLOG136

Sending e-mail from within Django is fairly easy to do, and breaks down into a few simple
steps:

 1. Fill in, at a minimum, the settings EMAIL_HOST and EMAIL_PORT in the Django settings
file. These will be used to determine the e-mail (SMTP) server Django connects to in
order to send mail. If your mail server requires a username and password to send mail,
fill in EMAIL_HOST_USER and EMAIL_HOST_PASSWORD as well. If your mail server requires a
secure TLS connection, set EMAIL_USE_TLS to True.

 2. Fill in the setting DEFAULT_FROM_EMAIL to serve as the default From address for automated
e-mail sending.

 3. Import an e-mail–sending function from django.core.mail and call it. Most often you’ll
use django.core.mail.send_mail(), which takes a subject, message, From address, and
list of recipients, in that order.

AdMoNItIoN: VerIfyINg e-MAIl–relAted SettINgS

Typically, your hosting provider or your Internet service provider (depending on who provides your e-mail
service) will be able to give you the correct values to fill in for settings like EMAIL_HOST. To double-check
them, you can use django.core.send_mail() manually in a Python interpreter (launched with python
manage.py shell in your project directory) to send yourself a test message. If the settings are correct,
you’ll receive an e-mail. If anything goes wrong, Python will report the error message to you in the interpreter.

If you’d like to suppress the reporting of errors, you can pass the keyword argument fail_
silently=True to any of Django’s mail-sending functions. Keep in mind, however, that this will completely
silence errors during the sending of the e-mail, which means you’ll have no way of knowing whether any
given message was sent successfully.

Now, you could use send_mail() and hard-code one or more recipients for comment noti-
fications. But once again, this would hurt the reusability of your code. Two different sites using
this application might want two different sets of people receiving comment notifications.

Fortunately, there’s an easy solution. In the Django settings file are two settings—ADMINS
and MANAGERS—that help you deal with situations like this. The ADMINS setting should be a list
of programmers or other technical people who should receive notifications about problems
with	your	site.	When	you	deploy	in	production,	Django	will	automatically	e-mail	debugging	
information to the people listed in ADMINS whenever a server error occurs. The MANAGERS set-
ting, on the other hand, should be a list of people who aren’t necessarily programmers, but
who are involved in the management of the site. Each of these settings expects a format like
the following:

MANAGERS = (('Alice Jones', 'alice@example.com'),
 ('Bob Smith', 'bob@example.com'))

In other words, it’s a tuple, or list of tuples, where each tuple contains a name and an
e-mail	address.	When	these	are	filled	in,	two functions in django.core.mail—mail_admins()
and mail_managers()—can be used as a shortcut to send an e-mail to those people.

mailto:alice@example.com
mailto:bob@example.com

Chapter 7 ■ F IN IShING the WeBLOG 137

So to add comment notification, you can do something like the following:

from django.core.mail import mail_managers
email_body = "%s posted a new comment on the entry '%s'."
mail_managers("New comment posted",
 email_body % (comment.name,
 comment.content_object))

This will send an e-mail to everyone listed in the MANAGERS setting, notifying them of the
new comment.

And so you have the final version of your moderate_comment function:

from akismet import Akismet
from django.conf import settings
from django.contrib.comments.models import Comment
from django.contrib.comments.signals import comment_will_be_posted
from django.contrib.sites.models import Site
from django.core.mail import mail_managers
from django.utils.encoding import smart_str

def moderate_comment(sender, comment, request, **kwargs):
 if not comment.id:
 entry = comment.content_object
 delta = datetime.datetime.now() - entry.pub_date
 if delta.days > 30:
 comment.is_public = False
 else:
 akismet_api = Akismet(key=settings.AKISMET_API_KEY,
 blog_url="http:/%s/" ➥

%Site.objects.get_current().domain)
 if akismet_api.verify_key():
 akismet_data = { 'comment_type': 'comment',
 'referrer': request.META['HTTP_REFERER'],
 'user_ip': comment.ip_address,
 'user-agent': request.META['HTTP_USER_AGENT'] }
 if akismet_api.comment_check(smart_str(comment.comment),
 akismet_data,
 build_data=True):
 comment.is_public = False
 email_body = "%s posted a new comment on the entry '%s'."
 mail_managers("New comment posted",
 email_body % (comment.name,
 comment.content_object))

comment_will_be_posted.connect(moderate_comment, sender=Comment)

Once this is in place, you won’t need to do anything further. The get_comment_list tag
you’re using to retrieve comments for display in your templates is smart enough to take the

Chapter 7 ■ F IN IShING the WeBLOG138

is_public field into account when it retrieves the comments, so any comment with is_public
set to False will be automatically excluded.

Using Django’s Comment-Moderation Features
At this point, you have a comment-moderation system that implements a particular set of
moderation rules, but unfortunately it suffers from a couple of major problems:

	 •	 It’s	heavily	tied	to	the	models	used	in	your	weblog	application.	For	example,	it	assumes	
the existence of a field named pub_date on the object that a comment will be attached
to. This means that if you ever add new models to your project (in either the weblog
application or another application) and allow comments on them, the moderation
system might break.

	 •	 The	particular	rules	you’re	using—moderate	all	comments	after	30	days,	submit	to	
Akismet, e-mail copies of comments to site administrators—are hard-coded into the
application. This means it’d be difficult to reuse this application in situations where
those rules aren’t appropriate.

What	would	be	ideal	is	some	sort	of	generic	system	that	lets	you	decide	which	comments	
get subjected to moderation rules and lets you specify the moderation rules on a per-model
basis. This would let you set up moderation for comments on weblog entries, for example, but
perhaps turn it off for other types of content. Such a system would also let you tailor the spe-
cific moderation rules to each particular type of content.

From what you’ve seen already in the moderation system you just built, you could proba-
bly work out how to build such a generic system. Mostly, it’d be a matter of checking what type
of content an incoming comment will “attach” to, and then applying the specific moderation
rules for that type of content. But because this is something that’s needed fairly often, Django
provides that infrastructure for you, allowing you to write only the code necessary to imple-
ment your own specific moderation rules.

The code for Django’s built-in moderation system resides in django.contrib.comments.
moderation, which provides two important bits of code:

	 •	 django.contrib.comments.moderation.moderator acts as a sort of central registry for all
the comment-moderation rules you’re using, and keeps track of which set of rules goes
with which type of content.

	 •	 django.contrib.comments.moderation.CommentModerator lets you specify the rules for
one particular type of content.

In many ways, Django’s moderation system works similarly to how its administrative
interface	works.	With	the	admin,	you	write	a	subclass	of	Django’s	ModelAdmin class, describe
the	options	you	want,	and	register	it	with	the	administrative	interface.	With	comment	modera-
tion, you write a subclass of CommentModerator, describe the options you want, and register it
with the moderation system.

For example, instead of using the comment-moderation system you just built, you could
place the following code at the bottom of coltrane/models.py, and Django’s moderation sys-
tem would automatically mark comments nonpublic 30 days after an entry’s publication and
automatically e-mail your site staff whenever a comment is posted on an entry:

Chapter 7 ■ F IN IShING the WeBLOG 139

from django.contrib.comments.moderation import CommentModerator, moderator

class EntryModerator(CommentModerator):
 auto_moderate_field = 'pub_date'
 moderate_after = 30
 email_notification = True

moderator.register(Entry, EntryModerator)

This will work because django.contrib.comments.moderation.moderator listens for the sig-
nals sent whenever a comment is submitted; it then looks up the appropriate rules and applies
them.

Currently (as of Django 1.1), the built-in moderation system doesn’t support Akismet, so
you’ll need a tiny bit of custom code to make that work. Here’s how it looks:

from akismet import Akismet
from django.conf import settings
from django.contrib.comments.moderation import CommentModerator, moderator
from django.utils.encoding import smart_str

class EntryModerator(CommentModerator):
 auto_moderate_field = 'pub_date'
 moderate_after = 30
 email_notification = True

 def moderate(self, comment, content_object, request):
 already_moderated = super(EntryModerator, ➥

self).moderate(comment, content_object)
 if already_moderated:
 return True
 akismet_api = Akismet(key=settings.AKISMET_API_KEY,
 blog_url="http:/%s/" % ➥

Site.objects.get_current().domain)
 if akismet_api.verify_key():
 akismet_data = { 'comment_type': 'comment',
 'referrer': request.META['HTTP_REFERER'],
 'user_ip': comment.ip_address,
 'user-agent': request.META['HTTP_USER_AGENT'] }
 return akismet_api.comment_check(smart_str(comment.comment),
 akismet_data,
 build_data=True)
 return False

moderator.register(Entry, EntryModerator)

Chapter 7 ■ F IN IShING the WeBLOG140

The preceding code defines a method named moderate() on your CommentModerator sub-
class. That method will be passed three arguments: the comment that’s being posted, the
content object that it will be attached to (in the case of a weblog entry), and the HTTP request
in which the comment is being posted. The first thing to do here is use super() to call the
moderate() method of the parent class (CommentModerator), because it might be able to deter-
mine that the comment should be moderated without having to send it to Akismet. The return
value of moderate() is either True or False; if it’s True, the comment is moderated (marked
nonpublic).

If the parent class’s moderate() method returns False, then you can send the comment
to Akismet and return whatever value comes back from Akismet’s comment_check() method
(because it also returns True when it thinks a comment is spam). But note the final line of
your moderate() method: it simply returns False. This is important because you might not get
a useful response from Akismet (if your API key is invalid, for example), but your moderate()
method is still required to return a value of either True or False. Choosing which to use as a
“last-resort” value for that sort of situation is up to you; this line of code will be executed only
if the Akismet verify_key() check fails.

Adding feeds
The last feature you want for your weblog is the ability to have RSS or Atom feeds of your
entries and links. You also want to have custom feeds that handle, for example, entries in a
specific category. Creating this functionality from scratch—by writing view functions that
retrieve a list of entries and render a template that creates the appropriate XML instead of an
HTML page—wouldn’t be too terribly hard. But because this is a common need for web sites,
Django again provides some help to automate the process via the bundled application django.
contrib.syndication. At its core, django.contrib.syndication provides two things:

	 •	 A	set	of	classes	that	represent	feeds	and	that	can	be	subclassed	for	easy	customization

	 •	 A	view	that	knows	how	to	work	with	these	classes	to	generate	and	serve	the	appropriate	
XML

To see how it works, let’s start by setting up an Atom feed for the latest entries posted to
the weblog.

Creating the LatestEntriesFeed Class
Go into the coltrane directory and create a new empty file, called feeds.py. At the top, add the
following lines:

from django.utils.feedgenerator import Atom1Feed
from django.contrib.sites.models import Site
from django.contrib.syndication.feeds import Feed
from coltrane.models import Entry

current_site = Site.objects.get_current()

Now you can start writing a feed class for the latest entries. Call it LatestEntriesFeed. It
will be a subclass of the django.contrib.syndication.feeds.Feed class you’re importing here.

Chapter 7 ■ F IN IShING the WeBLOG 141

First you need to fill in some required metadata. This is going to be an Atom feed, so sev-
eral elements are required. (RSS feeds require less metadata, but it’s a good idea to include this
information anyway, because additional metadata is more useful for people who want to col-
lect and process information from feeds.) Here’s an example:

class LatestEntriesFeed(Feed):
 author_name = "Bob Smith"
 copyright = "http://%s/about/copyright/" % current_site.domain
 description = "Latest entries posted to %s" % current_site.name
 feed_type = Atom1Feed
 item_copyright = "http://%s/about/copyright/" % current_site.domain
 item_author_name = "Bob Smith"
 item_author_link = "http://%s/" % current_site.domain
 link = "/feeds/entries/"
 title = "%s: Latest entries" % current_site.name

Go ahead and fill in appropriate information for your own name and relevant metadata.
Note that while most of the items here will automatically vary according to the current site,
I’ve hard-coded values into the author_name, item_author_name, and link fields.

For reusability across a wide variety of sites, you can subclass this feed class to override
only those values. Or, if you have a function that can determine the correct value for a given
site, you can fill that in. (For example, you might use a reverse URL lookup to get the link
field.) For a complete list of these fields and what you’re allowed to put in each one, check the
full documentation for django.contrib.syndication, which is online at www.djangoproject.
com/documentation/syndication_feeds/.

Now you need to tell the feed how to find the items it’s supposed to contain—the latest
15 live entries, in our case. You do this by adding a method named items() to the feed class,
which will return those entries:

def items(self):
 return Entry.live.all()[:15]

Each item needs to have a date listed in the feed. You accomplish that using a method
called item_pubdate(), which will receive an object as an argument and return a date or
datetime object to use for that object. (The Feed class will automatically format this appro-
priately for the type of feed being used.) In the case of an Entry, that’s just the value of the
pub_date field:

def item_pubdate(self, item):
 return item.pub_date

Each item also needs to have a unique identifier, called a GUID (short for globally unique
identifier). This can be the id field from the database, but it’s generally better to use something
less transient. If you were to migrate to a new server or a different database, the id values
might change during the transition, and the GUID for a particular entry would change in the
process.

For a situation like this, the ideal solution is something called a tag URI. A tag URI (uni-
form resource identifier) provides a standard way of generating a unique identifier for some
Internet resource, in a way that won’t change as long as that Internet resource continues to
exist at the same address. If you’re interested in the full details of the standard, tag URIs are

http://www.djangoproject

Chapter 7 ■ F IN IShING the WeBLOG142

specified by IETF RFC 4151 (www.faqs.org/rfcs/rfc4151.html), but the basic idea is that a tag
URI for an item consists of three parts:

 1. The tag: string

 2. The domain for the item, followed by a comma, followed by a relevant date for the
item, followed by a colon

 3. An identifying string that is unique for that domain and date

For the date, you’ll use the pub_date field of each entry. For the unique identifying string,
you’ll use the result of its get_absolute_url() method, because that’s required to be unique.

The result, for example, is that the entry at www.example.com/2008/jan/12/example-entry/
would end up with a GUID of

tag:example.com,2008-01-12:/2008/jan/12/example-entry/

This meets all the requirements for a feed GUID. To implement this, you simply define a
method on your feed class called item_guid(). Again, it receives an object as its argument:

def item_guid(self, item):
 return "tag:%s,%s:%s" % (current_site.domain,
 item.pub_date.strftime('%Y-%m-%d'),
 item.get_absolute_url())

One final thing you can add to your feed is a list of categories for each item. This will help
feed aggregators categorize the items you publish. You can do this by defining a method called
item_categories:

def item_categories(self, item):
 return [c.title for c in item.categories.all()]

A full example feed class, then, looks like this:

class LatestEntriesFeed(Feed):
 author_name = "Bob Smith"
 copyright = "http://%s/about/copyright/" % current_site.domain
 description = "Latest entries posted to %s" % current_site.name
 feed_type = Atom1Feed
 item_copyright = "http://%s/about/copyright/" % current_site.domain
 item_author_name = "Bob Smith"
 item_author_link = "http://%s/" % current_site.domain
 link = "/feeds/entries/"
 title = "%s: Latest entries" % current_site.name

 def items(self):
 return Entry.live.all()[:15]

 def item_pubdate(self, item):
 return item.pub_date

http://www.faqs.org/rfcs/rfc4151.html
http://www.example.com/2008/jan/12/example-entry/

Chapter 7 ■ F IN IShING the WeBLOG 143

 def item_guid(self, item):
 return "tag:%s,%s:%s" % (current_site.domain,
 item.pub_date.strftime('%Y-%m-%d'),
 item.get_absolute_url())

 def item_categories(self, item):
 return [c.title for c in item.categories.all()]

Now you can set up a URL for this feed. Go to the urls.py file in the cms project directory,
and add two things. First, near the top of the file (above the list of URL patterns), add the fol-
lowing import statement and dictionary definition:

from coltrane.feeds import LatestEntriesFeed

feeds = { 'entries': LatestEntriesFeed }

Next, add a new pattern to the list of URLs:

(r'^feeds/(?P<url>.*)/$',
 'django.contrib.syndication.views.feed',
 { 'feed_dict': feeds }),

This will route any URL beginning with /feeds/ to the view in django.contrib.syndication,
which handles feeds. The dictionary you set up maps between feed slugs, like entries, and spe-
cific feed classes.

One final thing you need to do is create two templates. django.contrib.syndication uses the
Django template system to render the title and main body of each item in the feed so that you can
decide how you want to present each type of item. So go to the directory where you’ve been keep-
ing templates for this project, and inside it create a new directory called feeds. Inside that create
two new files, called entries_title.html and entries_description.html. (The names to use come
from the combination of the feed’s slug—in this case, entries—and whether the template is for
the item’s title or its description.) Each of these templates will have access to two variables:

	 •	 obj: This is a specific item being included in the feed.

	 •	 site: This is the current Site object, as returned by Site.objects.get_current().

So for item titles, you can simply use each entry’s title. In the entries_title.html tem-
plate, place the following:

{{ obj.title }}

For the description, you’ll use the same trick that you used for the entry-archive templates
you set up in the last chapter. Display the excerpt_html field if it has any content; otherwise,
display the first 50 words of body_html. So in entries_description.html, fill in the following:

{% if obj.excerpt_html %}
{{ obj.excerpt_html|safe }}
{% else %}
{{ obj.body_html|truncatewords_html:"50"|safe }}
{% endif %}

Chapter 7 ■ F IN IShING the WeBLOG144

Remember that Django’s template system automatically escapes HTML in variables, so
you still have to use the safe	filter.	With	the	templates	in	place,	you	can	launch	the	develop-
ment server and visit the URL /feeds/entries/ to see the feed of latest entries in the weblog.

Writing	a	feed	for	the	latest	links	should	be	easy	at	this	point.	Try	writing	the	
LatestLinksFeed class yourself and set it up correctly. (Remember that links don’t have cat-
egories associated with them, so you should either leave out the item_categories() method
or rewrite it to return a list of tags.) A full example is in the sample code associated with this
book, so refer to it if you get lost (you can find the code samples for this chapter in the Source
Code/Download area of the Apress web site at www.apress.com).

Generating Entries by Category: A More Complex Feed Example
Now, you’d like to also offer categorized feeds so that readers who are interested in one or two
specific topics can subscribe to feeds that list only entries from the categories they like. But
this is a bit trickier because it raises two problems:

	 •	 The	list	of	items	in	the	feed	should,	of	course,	know	how	to	figure	out	which	Category
it’s looking at and ensure that it returns only entries from that category.

	 •	 Several	of	the	metadata	fields—the	title	of	the	feed,	the	link,	and	so	on—will	need	to	
change dynamically based on the category.

Django’s Feed class provides a way to deal with this, though. A Feed subclass can define a
method called get_object(), which will be passed an argument containing the bits of the URL
that came after the slug you registered the feed with, as a list. So, for example, if you registered
a feed with the slug categories and visited the URL /feeds/categories/django/, your feed’s
get_object() would be passed an argument containing the single-item list ["django"]. From
there you can look up the category.

Let’s start by adding two items to the import statements at the top of your feeds.py file so
that it now looks like this:

from django.core.exceptions import ObjectDoesNotExist
from django.utils.feedgenerator import Atom1Feed
from django.contrib.sites.models import Site
from django.contrib.syndication.feeds import Feed
from coltrane.models import Category, Entry

This gives you access to the Category model, as well as to ObjectDoesNotExist, an excep-
tion class that Django defines. You can use this if someone tries to visit a URL for a nonexistent
category’s	feed.	(When	you	raise	ObjectDoesNotExist, Django will return an HTTP 404 “File
Not Found” response.)

Now you can begin writing your feed class. Because a lot of it is similar to the existing
LatestEntriesFeed, you’ll just subclass it and change the parts that need to be changed:

class CategoryFeed(LatestEntriesFeed):
 def get_object(self, bits):
 if len(bits) != 1:
 raise ObjectDoesNotExist
 return Category.objects.get(slug__exact=bits[0])

http://www.apress.com

Chapter 7 ■ F IN IShING the WeBLOG 145

This will either raise ObjectDoesNotExist or return the Category you need to display
entries for. Now you can set up the feed’s title, description, and link, by defining methods with
those names that receive the Category object as an argument (Django’s feed system is smart
enough to recognize that it needs to pass that object when calling the methods):

def title(self, obj):
 return "%s: Latest entries in category '%s'" % (current_site.name,
 obj.title)

def description(self, obj):
 return "%s: Latest entries in category '%s'" % (current_site.name,
 obj.title)

def link(self, obj):
 return obj.get_absolute_url()

“plAIN” AttrIbuteS VS. MethodS oN feedS

In general, for any of the various bits of feed metadata—the title, description and link, and metadata for
individual items in the feed—you can either hard-code them using a plain attribute of the correct name or
generate them dynamically by defining a method of that name. For a feed like CategoryFeed that needs to
look up some object (in this case, a Category) through its get_object() method, you can define a method
that expects to receive that object.

Again, for a full list of the different fields you can use on a feed—each of which will work like this—
consult the full documentation for django.contrib.syndication at www.djangoproject.com/
documentation/syndication_feeds/.

You can change the items() method as well. Again, Django’s feed system is smart enough
to know that it needs to be passed the Category object, and it will make sure that happens:

def items(self, obj):
 return obj.live_entry_set()[:15]

Remember that you defined the live_entry_set() method on the Category model so that
it would return only entries with “live” status.

And that’s that. Now your feeds.py file should look like this:

from django.core.exceptions import ObjectDoesNotExist
from django.utils.feedgenerator import Atom1Feed
from django.contrib.sites.models import Site
from django.contrib.syndication.feeds import Feed
from coltrane.models import Category, Entry

current_site = Site.objects.get_current()

http://www.djangoproject.com/

Chapter 7 ■ F IN IShING the WeBLOG146

class LatestEntriesFeed(Feed):
 author_name = "Bob Smith"
 copyright = "http://%s/about/copyright/" % current_site.domain
 description = "Latest entries posted to %s" % current_site.name
 feed_type = Atom1Feed
 item_copyright = "http://%s/about/copyright/" % current_site.domain
 item_author_name = "Bob Smith"
 item_author_link = "http://%s/" % current_site.domain
 link = "/feeds/entries/"
 title = "%s: Latest entries" % current_site.name

 def items(self):
 return Entry.live.all()[:15]

 def item_pubdate(self, item):
 return item.pub_date

 def item_guid(self, item):
 return "tag:%s,%s:%s" % (current_site.domain,
 item.pub_date.strftime('%Y-%m-%d'),
 item.get_absolute_url())

 def item_categories(self, item):
 return [c.title for c in item.categories.all()]

class CategoryFeed(LatestEntriesFeed):
 def get_object(self, bits):
 if len(bits) != 1:
 raise ObjectDoesNotExist
 return Category.objects.get(slug__exact=bits[0])

 def title(self, obj):
 return "%s: Latest entries in category '%s'" % (current_site.name,
 obj.title)

 def description(self, obj):
 return "%s: Latest entries in category '%s'" % (current_site.name,
 obj.title)

 def link(self, obj):
 return obj.get_absolute_url()

 def items(self, obj):
 return obj.live_entry_set()[:15]

Chapter 7 ■ F IN IShING the WeBLOG 147

You can register this feed by changing the import line in your project’s urls.py file from

from coltrane.feeds import LatestEntriesFeed

to

from coltrane.feeds import CategoryFeed, LatestEntriesFeed

and by adding one line to the feeds dictionary. Change it from

feeds = { 'entries': LatestEntriesFeed }

to

feeds = { 'entries': LatestEntriesFeed,
 'categories': CategoryFeed }

Finally, you’ll want to set up the templates feeds/categories_title.html and feeds/
categories_description.html. Because they’re just displaying entries, feel free to copy and
paste the contents of the two templates you used for the LatestEntriesFeed.

Writing	feed	classes	that	display	entries	or	links	by	tag	will	follow	the	same	pattern.	Exam-
ples are included in the sample code you can download for this book, but again, I recommend
that you try it yourself before peeking to see how it’s done.

looking Ahead
And with that, you’ve implemented all the features you set out to have for your weblog. But,
more important, you’ve covered a huge amount of territory within Django: models, views, URL
routing, templating and custom template extensions, comments, and Django’s signal system
and syndication feeds. You should already be feeling a lot more comfortable working with
Django and writing what would—if you were developing from scratch without Django’s help—
be some fairly complex features.

So give yourself a pat on the back because you’ve got a lot of useful Django knowledge
under your belt now. Also take some time to work with the weblog application you’ve devel-
oped. Try to think of a feature you’d like to add, and then see if you can work out how to add it.

When	you’re	ready,	the	next	chapter	will	start	a	brand-new	application:	a	code-sharing	
site with some useful social features, which will highlight Django’s form-processing system for
user-submitted content and show off some advanced uses of the database API.

C h a p t e r 8

a Social Code-Sharing Site

So far you’ve been using Django to build content management applications. In these types
of applications, an administrator logs in to a special interface and posts some content, after
which the system displays that content publicly with little or no interaction from general site
visitors. While this sort of application covers a huge amount of common web-development
tasks, it doesn’t cover everything, and it’s not the limit of what Django can do.

So for your third Django application, I’ll show you how to build a user-driven application
with much more interactivity and some social-style features—specifically, a community-based
repository of useful, reusable code.

You can find a live example of this type of code-sharing site at www.djangosnippets.org/,
which is geared toward Django users. In the next few chapters, you’ll see how to build a similar
application that you can deploy any time you need a place for multiple users to share bits of
code with one another.

Compiling a Feature Checklist
As with the weblog application, the first thing you should do is get a rough idea of the features
you’d like to include. Use this feature list as a starting point:

	 •	 Snippets	of	code	with	full	descriptions	of	what	they	do

	 •	 Categorization	by	programming	language,	and	full	language-aware	syntax	highlighting	
of the rendered code

	 •	 A	bookmark	feature	so	that	users	can	easily	come	back	and	find	their	favorite	snippets

	 •	 A	rating	feature	that	lets	users	indicate	whether	a	particular	piece	of	code	was	useful	to	
them

	 •	 Tagging	for	organizing	snippets	and	finding	related	pieces	of	code

	 •	 Lists	of	the	most	popular	snippets	by	overall	rating	and	by	the	number	of	times	they’ve	
been bookmarked

	 •	 A	list	of	the	most	active	authors	(users	who’ve	submitted	the	most	snippets)

In	keeping	with	the	tradition	of	naming	applications	after	notable	jazz	musicians,	I’m	
going to call this application cab,	in	honor	of	the	singer/bandleader	Cab	Calloway.	Cab	was	
known for his skill at scat singing—singing with short syllables of sometimes nonsensical
words—which seems appropriate for an application focused on lots of short bits of code.

149

http://www.djangosnippets.org/

Chapter 8 ■ a SOCIaL CODe-SharING SIte150

Setting Up the Application
Once again, you’ll need to create a new Python module to hold the application code. It should
live directly on the Python import path, in the same directory as the coltrane application you
built for the weblog. Now that you know how to do this manually, let’s take a shortcut. Go into
the directory where you want to create the application and type the following:

django-admin.py startapp cab

Remember that on some systems, you’ll need to type out the full path to the
django-admin.py command.

Previously, you’ve encountered startapp only in the context of a specific project, where it
created a new application directory inside the project’s directory. However, it works just fine
for creating standalone application modules, and it takes some of the tedium out of starting
with a new application. Using the django-admin.py startapp command creates a new direc-
tory called cab and populates it with an empty __init__.py file and the basic models.py and
views.py files for a new Django application.

In time, you’ll end up replacing the views.py file with a views module containing several
files, but for simpler applications, this setup will be all you need.

Before you go any further, you need to set up one other thing. For syntax highlighting of
the code snippets, you’ll be using a Python library called pygments. Its official site is at http://
pygments.org/, which has documentation and interactive examples, but to download it, visit
http://pypi.python.org/pypi/Pygments, which is the page for the pygments project in the
Python	Package	Index	(formerly	known,	and	sometimes	still	referred	to,	as	the	Python	Cheese	
Shop, in honor of	a	famous	Monty	Python	comedy	sketch).

The	Python	Package	Index is an incredibly useful resource for Python programmers. Right
now it’s tracking more than 6,000 third-party libraries and applications written in Python, all
categorized	and	all	with	a	full	history	of	releases.	Any	time	you	find	yourself	wondering	if	Python	
has a library for something you need to do, you should try a search there—the odds are good that
someone’s already written at least some of the code you’ll need and listed it in the index.

As I’m writing this, the current version of pygments is 1.0, so you should be able to down-
load a package named Pygments-1.0.tar.gz. Once you’ve downloaded the package, open it up;
on	most	operating	systems,	you	can	just	double-click	the	file.	This	creates	a	directory	called	
Pygments-1.0. On a command line, go into that directory and type:

python setup.py install

This	installs	the	pygments library on your computer. Once that’s done, you should be able
to launch a Python interpreter and type import pygments without seeing any errors.

Building the Initial Models
Now that you’ve got your application module set up and the pygments library installed, you
can	start	building	your	models.	Logically,	you’re	going	to	want	a	model	to	represent	the	snip-
pets of code; let’s call this model Snippet. You’ll also want a model to represent the language
in which a particular code snippet is written. We’ll call that model Language.	This	will	make	it	
much easier to store some extra metadata, handle the syntax highlighting, and sort snippets by
language. I’ll cover the Language model first.

http://pygments.org/
http://pygments.org/
http://pypi.python.org/pypi/Pygments

Chapter 8 ■ a SOCIaL CODe-SharING SIte 151

The Language Model
Open up the models.py file in the cab	directory.	The	django-admin.py script has already filled
in an import statement that pulls in Django’s model classes, so you can start working immedi-
ately. Start with the Language model that represents the different programming languages. It’ll
need five fields:

	 •	 The	name	of	the	language

	 •	 A	unique	slug	to	identify	it	in	URLs

	 •	 A	language	code	that	pygments can use to load the appropriate syntax-highlighting
module

	 •	 A	file	extension	to	use	when	offering	a	snippet	in	this	language	for	download

	 •	 A	MIME	type	to	use	when	sending	a	snippet	file	in	this	language

Based on what you already know about Django’s model system, this is easy to set up:

class Language(models.Model):
 name = models.CharField(max_length=100)
 slug = models.SlugField(unique=True)
 language_code = models.CharField(max_length=50)
 mime_type = models.CharField(max_length=100)

Because	the	values	(all	strings)	that	go	into	these	fields	won’t be very long, I’ve kept the
field lengths fairly short.

Now, the most logical ordering for languages is alphabetical by name, so you can add that
and set up the string representation of a Language to be its name:

class Meta:
 ordering = ['name']

def __unicode__(self):
 return self.name

You can also define a get_absolute_url()	method.	Even	though	you	haven’t	yet	set	up	any	
views	or	URLs,	go	ahead	and	write	it	using	the	permalink	decorator,	so	it’ll	do	a	reverse	URL	
lookup	when	the	time	comes.	When	you	do	write	the	URLs,	the	name	for	the	URL	pattern	that	
corresponds to a specific Language is going to be cab_language_detail, and it’s going to take
the Language’s slug as an argument:

def get_absolute_url(self):
 return ('cab_language_detail', (), { 'slug': self.slug })
get_absolute_url = models.permalink(get_absolute_url)

You’ll want one more method on the Language model to help pygments with the syntax
highlighting. pygments	works	by	reading	through	a	piece	of	text	while	using	a	specialized	piece	
of code called a lexer, which knows the rules of the particular programming language the text
is	written	in.	The	pygments download includes lexers for a large set of languages, each one
identified by a code name, and pygments includes a function that, given the code name of a
language, returns the lexer for that language.

Chapter 8 ■ a SOCIaL CODe-SharING SIte152

AdMonItIon: URL PAtteRn nAMIng

Technically, the only requirements Django imposes on the name of a URL pattern is that it must be a string
and that it must be unique within a given project. However, as a general convention, I like to have the
names of my URLs follow a predictable pattern based on the name of the application, the name of the model
involved, and the action that the view will take. So the detail view of a Language in the cab application is
cab_language_detail, while the view to add a Snippet, for example, is cab_snippet_add.

While you don’t have to do this, I’ve found that it’s a great help to other people who need to read the
code, and sometimes even to me as I look back over a piece of my own code that I haven’t worked with
recently.

Let’s	add	a	method	to	the	Language model that uses that function to return the appropri-
ate	lexer	for	a	given	language.	The	function	you	want	is	pygments.lexers.get_lexer_by_name(),
which means you’ll need to add a new import statement at the top of your models.py file:

from pygments import lexers

Then	you	can	write	the	method:

def get_lexer(self):
 return lexers.get_lexer_by_name(self.language_code)

Now the Language model is done, and your models.py file looks like this:

from django.db import models
from pygments import lexers

class Language(models.Model):
 name = models.CharField(max_length=100)
 slug = models.SlugField(unique=True)
 language_code = models.CharField(max_length=50)
 mime_type = models.CharField(max_length=100)

 class Meta:
 ordering = ['name']

 def __unicode__(self):
 return self.name

 def get_absolute_url(self):
 return ('cab_language_detail', (), { 'slug': self.slug })
 get_absolute_url = models.permalink(get_absolute_url)

 def get_lexer(self):
 return lexers.get_lexer_by_name(self.language_code)

Chapter 8 ■ a SOCIaL CODe-SharING SIte 153

The Snippet Model
Now you can write the class that represents a snippet of code: Snippet. It will need to have
several fields:

	 •	 A	title	and	description.	You’ll	set	up	the	description	so	that	there	are	two	fields:	one	to	
store	the	raw	input,	and	one	to	store	an	HTML	version.	This	is	similar	to	the	way	you	
set up the excerpt and body fields for the Entry model in your weblog.

	 •	 A	foreign	key	pointing	at	the	Language the snippet is written in.

	 •	 A	foreign	key	to	Django’s	User model to represent the snippet’s author.

	 •	 A	list	of	tags,	for	which	you’ll	use	the	TagField you saw in the weblog application.

	 •	 The	actual	code,	which,	again,	you’ll	store	as	two	fields	so	that	you	can	keep	a	rendered,	
syntax-highlighted	HTML	version	separate	from	the	original	input.

	 •	 A	bit	of	metadata	that	includes	the	date	and	time	when	the	snippet	was	first	posted,	
and the date and time when it was last updated.

To	start,	you’ll	need	to import the TagField you’ve used previously:

from tagging.fields import TagField

You’ll also need Django’s User model:

from django.contrib.auth.models import User

Then	you	can	build out the basic fields:

class Snippet(models.Model):
 title = models.CharField(max_length=255)
 language = models.ForeignKey(Language)
 author = models.ForeignKey(User)
 description = models.TextField()
 description_html = models.TextField(editable=False)
 code = models.TextField()
 highlighted_code = models.TextField(editable=False)
 tags = TagField()
 pub_date = models.DateTimeField(editable=False)
 updated_date = models.DateTimeField(editable=False)

Note	that	you’ve	marked	several	of	these	fields	as	noneditable.	They’ll	be	filled	in	auto-
matically by the custom save() method that you’ll write in a moment.

The	logical	ordering	for	snippets is by the descending order of the pub_date field. You’ll
also want to give the Snippet	model	a	string	representation	(which	will	use	the	title	of	the	
snippet):

class Meta:
 ordering = ['-pub_date']

def __unicode__(self):
 return self.title

Chapter 8 ■ a SOCIaL CODe-SharING SIte154

Before you write the save() method, go ahead and add a method that knows how to apply
the syntax highlighting. For this, you’ll need two more items from pygments: the formatters
module, which knows how to output highlighted code in various formats; and the highlight()
function, which puts everything together to produce highlighted output. So change the import
line from this:

from pygments import lexers

to this:

from pygments import formatters, highlight, lexers

The	highlight() function from pygments takes three arguments: the code to highlight,
the	lexer	to	use,	and	the	formatter	to	generate	the	output.	The	code	comes	from	the	code field
on the Snippet model, and the lexer comes from the get_lexer() method you defined on the
Language	model.	Then	just	use	the	HTML	formatter	built	into	pygments as the output formatter:

def highlight(self):
 return highlight(self.code,
 self.language.get_lexer(),
 formatters.HtmlFormatter(linenos=True))

The	linenos=True argument to the formatter tells pygments to generate the output with
line numbers so that it’s easier to read the code and identify specific lines.

AdMonItIon: Why not hIghLIght dIReCtLy In save()?

It seems strange to be writing such a short method as this, when you could just put the syntax-highlighting
code directly into the model’s save() method. However, it’s often a good idea to break things like this out
into separate methods. Doing it this way means that you can highlight a Snippet without saving it, and it
also reduces the coupling to a specific method of syntax highlighting. If you ever want to switch to a different
syntax-highlighting system, for example, you would only have to rewrite this one method instead of potentially
tracking down every place that uses syntax highlighting and changing them all.

Before you write the save() method, go ahead and import the Python markdown module,
and	use	that	for	generating	the	HTML	version	of	the	description:

from markdown import markdown

You’re also going to need Python’s datetime module:

import datetime

Now you can write the save() method, which needs to perform the following actions:

	 •	 Convert	the	plain-text	description	to	HTML,	and	store	that	in	the	description_html field.

	 •	 Do	the	syntax	highlighting,	and	store	the	resulting	HTML	in	the	highlighted_code field.

Chapter 8 ■ a SOCIaL CODe-SharING SIte 155

	 •	 Set	the	pub_date to the current date and time if this is the first time the snippet is being
saved.

	 •	 Set	the	updated_date to the current date and time whenever the snippet is saved.

Here’s the code:

def save(self, force_insert=False, force_update=False):
 if not self.id:
 self.pub_date = datetime.datetime.now()
 self.updated_date = datetime.datetime.now()
 self.description_html = markdown(self.description)
 self.highlighted_code = self.highlight()
 super(Snippet, self).save(force_insert, force_update)

Finally, add a get_absolute_url() method. The	view	that	shows	a	particular	Snippet is
called cab_snippet_detail, and it takes the id of the Snippet as an argument:

def get_absolute_url(self):
 return ('cab_snippet_detail', (), { 'object_id': self.id })
get_absolute_url = models.permalink(get_absolute_url)

The	finished	model looks like this:

class Snippet(models.Model):
 title = models.CharField(max_length=255)
 language = models.ForeignKey(Language)
 author = models.ForeignKey(User)
 description = models.TextField()
 description_html = models.TextField(editable=False)
 code = models.TextField()
 highlighted_code = models.TextField(editable=False)
 tags = TagField()
 pub_date = models.DateTimeField(editable=False)
 updated_date = models.DateTimeField(editable=False)

 class Meta:
 ordering = ['-pub_date']

 def __unicode__(self):
 return self.title

 def save(self, force_insert=False, force_update=False):
 if not self.id:
 self.pub_date = datetime.datetime.now()
 self.updated_date = datetime.datetime.now()
 self.description_html = markdown(self.description)
 self.highlighted_code = self.highlight()
 super(Snippet, self).save(force_insert, force_update)

Chapter 8 ■ a SOCIaL CODe-SharING SIte156

 def get_absolute_url(self):
 return ('cab_snippet_detail', (), { 'object_id': self.id })
 get_absolute_url = models.permalink(get_absolute_url)

 def highlight(self):
 return highlight(self.code,
 self.language.get_lexer(),
 formatters.HtmlFormatter(linenos=True))

This	handles	the	core	of	the	application—code	snippets	organized	by	language—so	now	
you can pause and start working on some initial views to get a feel for how things will look.

Go ahead and create an admin.py file as well, and set up a basic administrative interface
for these models so you can use it to start interacting with the application.

testing the Application
As you build out these views and the rest of the cab code-sharing application, I’m going to
assume you’ve already got a Django project set up with a database and a template directory.
If you’d like, you can keep using the existing project you’ve worked with for the two previous
applications.	However,	this	application	isn’t	really	related	to	either	the	simple	CMS	or	the	
weblog, so if you’d like to start a new project now to work with this application, feel free to do
so. In either case, you’ll need to do three things:

 1. Add cab to the INSTALLED_APPS list of the project that you’ll use to test and work
with this application: If you’re starting a new project, you’ll also want to add django.
contrib.admin and tagging to the list.

 2. Run manage.py syncdb to install the models you’ve written so far:	Later,	when	you	
write the rest of the models, you can run	it	again	to	install	them.	The	syncdb command
knows how to figure out which models are already installed and sets up only the new
ones.

 3. Use the admin interface to create some Language objects and fill in some Snippets:
For a list of the languages pygments supports, and the language codes for the lexers,
read pygments’ lexer documentation online at http://pygments.org/docs/lexers/. In
the next chapter, you’ll see how to set up public-facing views that let ordinary users
submit snippets without having to use the admin interface.

Building Initial Views for Snippets and Languages
As you wrote the weblog application, you relied heavily on Django’s generic views to provide
the date-based archives and detail views of the entries and links. Using date-based browsing
doesn’t make as much sense for this application, but you can certainly benefit from using the
non–date-based generic views.

http://pygments.org/docs/lexers/

Chapter 8 ■ a SOCIaL CODe-SharING SIte 157

In the cab directory, create a new directory called urls, and in it create three files:

	 •	 __init__.py, to mark this directory as a Python module

	 •	 snippets.py,	which	will	have	the	URLs	for	the	snippet-oriented	views

	 •	 languages.py,	which	will	have	the	URLs	for	the	language-oriented	views

As	you	did	with	the	weblog’s	URLs,	you’ll	keep	each	group	of	URLs	for	this	application	in	
its	own	file.	This	means	you’ll	have	several	files	in	cab/urls, but the benefit in flexibility and
reusability is worth it.

In urls/snippets.py, fill in the following code:

from django.conf.urls.defaults import *
from django.views.generic.list_detail import object_list, object_detail
from cab.models import Snippet

snippet_info = { 'queryset': Snippet.objects.all() }

urlpatterns = patterns('',
 url(r'^$',
 object_list,
 dict(snippet_info, paginate_by=20),
 name='cab_snippet_list'),
 url(r'^(?P<object_id>\d+)/$',
 object_detail,
 snippet_info,
 name='cab_snippet_detail'),
)

This	sets	up two things:

	 •	 A list of snippets, in the order in which they were posted: Note the extra argument
you’ve passed here—paginate_by.	This	tells	the	generic	view	that	you’d	like	it	to	show	
only 20 snippets a t a time. You’ll see in a moment how to work with this pagination in
the templates.

	 •	 A detail view for individual Snippet objects:	This	is	simply	the	object_detail generic
view.

You should be able to set up the templates	for	this	pretty	easily.	The	list	template	gets	a	
variable called {{ object_list }}, which is a list of Snippet instances, and the detail template
gets a variable called {{ object }}, which is a specific Snippet.	The	generic	views	look	for	the	
cab/snippet_list.html and cab/snippet_detail.html templates.

The	only	tricky	thing	is	handling	the	pagination	of	snippets	in	the	list	view.	The	template	
gets only 20 snippets at a time, so you need to display Next and Previous links to let the user
navigate through them.

Chapter 8 ■ a SOCIaL CODe-SharING SIte158

To	handle	this,	the	generic	view	provides	two	extra	variables:

paginator:	This	is	an	instance of django.core.paginator.Paginator. It knows how many
total pages of snippets there are and how many total snippets are involved.

page_obj:	This	is	an	instance	of django.core.paginator.Page. It knows its own page
number and whether there’s a next or previous page.

In the snippet_list.html template, you could use something like this:

<p>{{ page }};
{% if page.has_previous %}
Previous page
{% endif %}
{% if page.has_next_page %}
Next page
{% endif %}</p>

You can find a full example in the	source	code	available	for	this	book	(downloadable	from	
the	Apress	web	site).

The	object_list generic view knows to look for the page	variable	in	the	URL’s	query	
string, and it adjusts the snippets it displays accordingly. Meanwhile, the Page object knows
how to print itself smartly; in the template, {{ page }} displays something like “Page 2 of 6.”

To	set	up	these	views,	add	a	pattern	like	this	to your project’s root urls.py file:

(r'^snippets/', include('cab.urls.snippets')),

CSS for pygments Syntax Highlighting
You’ll have noticed in the Snippet detail view that the code sample doesn’t actually appear to
be	highlighted	in	any	way.	This	is	because	pygments,	by	default,	simply	generates	HTML	with	
some class names filled in to mark things like language keywords. It expects that you’ll use a
style sheet to change the presentation appropriately.

To	get	a	head	start	on	styling	the highlighted code, look through some of the samples in
the online demo of pygments at http://pygments.org/demo/. pygments comes with several styles
built	in,	and	once	you’ve	found	one	you	like,	you	can	have	it	output	the	appropriate	CSS.	You	
can then save that to a file and use it as your style sheet.

Here’s	a	simple	example	of	how	to	get	the	appropriate	CSS	information	from	a	pygments
style.	This	assumes	that	you’ve	created	a	pygments.css file that you’ll write the styles into,
and that you’ve decided you like the “murphy” style. Open a Python interpreter and type the
following:

>>> from pygments import formatters, styles
>>> style = styles.get_style_by_name('murphy')
>>> formatter = formatters.HtmlFormatter(style=style)
>>> outfile = open('pygments.css', 'w')
>>> outfile.write(formatter.get_style_defs())
>>> outfile.close()

http://pygments.org/demo/

Chapter 8 ■ a SOCIaL CODe-SharING SIte 159

The	pygments.css	file	now	contains	a	list	of	CSS	style	rules	for	the	“murphy”	style.	You	
can tweak them a bit if you’d like. You can also have pygments automatically add more specific
information	to	the	CSS	selector	it	uses,	if	you	know	that	the	highlighted	blocks	will	appear	only	
inside	certain	page	elements.	Consult	the	documentation	for	the	pygments HtmlFormatter class
for full details on how the get_style_defs() method works.

Views for Languages
To	show	a	list	of	the	languages	that	snippets have been submitted in, you can use the object_
list generic view again. However, displaying a list of snippets for a particular Language is going
to	require	a	little	bit	of	code.	You’ll	need	to	write	a	wrapper	around	a	generic	view,	as	you	did	
in	Chapter	5,	to	show	the	list	of	entries	in	a	particular	category.

Go ahead and delete the views.py file in the cab application’s directory and create a views
directory. In it, put these two files:

	 •	 __init__.py

	 •	 languages.py

languages.py is where you’ll put your first hand-written view for this application.
In views/languages.py, add the following code to set up the wrapper around the generic

view:

from django.shortcuts import get_object_or_404
from django.views.generic.list_detail import object_list
from cab.models import Language

def language_detail(request, slug):
 language = get_object_or_404(Language, slug=slug)
 return object_list(request,
 queryset=language.snippet_set.all(),
 paginate_by=20,
 template_name='cab/language_detail.html',
 extra_context={ 'language': language })

This	returns	a	paginated	list	of	snippets	for	a	particular	language.	Now	you	can	go	to	urls/
languages.py	and	fill	in	a	couple	of	URL	patterns:

from django.conf.urls.defaults import *
from django.views.generic.list_detail import object_list
from cab.models import Language
from cab.views.languages import language_detail

language_info = { 'queryset': Language.objects.all(),
 'paginate_by': 20 }

Chapter 8 ■ a SOCIaL CODe-SharING SIte160

urlpatterns = patterns('',
 url(r'^$',
 object_list,
 language_info,
 name='cab_language_list'),
 url(r'^(?P<slug>[-\w]+)/$',
 language_detail,
 name='cab_language_detail'),
)

Again, you should have no trouble setting up some basic templates to handle these views.
The	template	names	are	cab/language_list.html and cab/language_detail.html.

To	see	these	views	in	action,	add a line like the following to your project’s root urls.py file:

(r'^languages/', include('cab.urls.languages')),

An Advanced View: Top Authors
Because any user of the application will be allowed to submit a snippet of code, you’ll want to
have	a	way	to	show	the	names	of	users	who’ve	submitted	the	most	snippets.	Let’s	write	a	view	
called top_authors to handle that.

Inside the cab/views directory, create a new file called popular.py. You’ll use this file for
this top_authors view, as well as for some other views you’ll write later to list snippets that are
rated most highly and bookmarked most often.

Start the popular.py file with a couple of imports:

from django.contrib.auth.models import User
from django.views.generic.list_detail import object_list

It might seem a bit strange to import a generic view here, because it’s hard to see any way
you	can	use	one	for	a	query	like	this.	In	fact,	even	if	you’ve	been	reading	through	the	Django	
database	API	documentation,	it	might	not	be	obvious	how	to	do	this	query.	So	first,	let’s	con-
sider	how	the	query	will	work.

Django’s	database	API	allows	you	to	specify	more	than	just	queries	that	return	instances	
of	your	models;	you	can	also	write	queries	that	make	use	of	your	database’s	underlying	sup-
port for more advanced features. In this case, you want the ability to use what are called
“aggregate”	queries,	which calculate things like the number of database rows that fulfill some
condition, the average of a collection of rows, and so on.

Django provides a number of built-in aggregate filters, but the one you want here is
django.db.models.Count, which allowsyou	to	write	a	query	that	takes	into	account	the	
number of snippets a particular author has posted. First, you’ll need to import it:

from django.db.models import Count

Then	you	can	write	a	query	like	this:

User.objects.annotate(score=Count('snippet')).order_by('score')

Chapter 8 ■ a SOCIaL CODe-SharING SIte 161

The	annotate method tells Django to add an extra attribute to every User returned by this
query:	the	attribute	will	be	named	score, and it will contain the number of snippets posted
by	the	user.	The	order_by method tells	Django	how	to	order	the	results	of	the	query,	and	it	is	
passed score	as	an	argument.	The	result,	then,	will	be	a	list	of	users	arranged	in	order	from	
most snippets posted to fewest.

And because this is a Django QuerySet, you can pass it to the object_list view:

def top_authors(request):
 top_authors_qs = User.objects.annotate(score=Count('snippet')).order_by('score')
 return object_list(request, queryset=top_authors_qs,
 template_name='cab/top_authors.html',
 paginate_by=20)

You’ll	end	up	with	a	paginated	list	of	users	ordered	by	their	snippet	counts.	Then	you	can	
wire	up	a	URL	for	it.	Let’s	add	a	new	file	in	the	urls directory, popular.py, and use it for all of
these top views. In it, you place the following:

from django.conf.urls.defaults import *
from cab.views import popular

urlpatterns = patterns('',
 url(r'^authors/$',
 popular.top_authors,
 name='cab_top_authors'),
)

Once again, you can wire this up in your project’s root urls.py file:

(r'^popular/', include('cab.urls.popular')),

After you’ve created the cab/top_authors.html template, you’ll see some results. Of
course, the results won’t be that impressive right now, because the application has only one
user—you. However, when deployed live on a site with multiple users, the top_authors view
will be a nice feature.

Improving the View of Top Authors
You can make this feature	even	better	by	encapsulating	the	top-authors	query	in	a	reusable	
way. Right now, it’s a bit of a mouthful, and you wouldn’t want to type it out over and over if
you ever needed to reuse it.

Let’s	write	a	custom	manager	for	the	Snippet	model	and	make	the	top-authors	query	a	
method on the manager. Because you’re going to end up writing several custom managers for
this application, let’s go ahead and create a managers.py file in the cab	directory.	Then,	inside	
it, put the following code:

from django.db import models
from django.contrib.auth.models import User
from django.db.models import Count

Chapter 8 ■ a SOCIaL CODe-SharING SIte162

class SnippetManager(models.Manager):
 def top_authors(self):
 return User.objects.annotate(score=Count('snippet')).order_by('score')

In cab/models.py, add a new import statement at the top:

from cab import managers

In the definition of the Snippet model, add the custom manager:

objects = managers.SnippetManager()

Now you can rewrite the top_authors view like this:

from django.views.generic.list_detail import object_list
from cab.models import Snippet

def top_authors(request):
 return object_list(request, queryset=Snippet.objects.top_authors(),
 template_name='cab/top_authors.html',
 paginate_by=20)

That’s	much	nicer.

Adding a top_languages View
While you’re adding these features, go ahead and add the ability to show the most popular
languages through a view called top_languages.	This	will	involve	a	query	similar	to	the	top_
authors view, so it’ll be easy to write now.

One	important	design	decision,	though,	is	where	to	put	the	method	to	do	this	query.	You	
could put it on the SnippetManager and probably even rework the top_authors() method into
a top_objects()	method.	This	new	method	could	return	the	top	authors,	the	top	languages,	
or—later, when you’ve built out the models for them—the most-bookmarked or highest-rated
snippets	according	to	what	argument	it	received.	That	would	cut	down	on	the	number	of	
times	you’d	have	to	write	methods	to	do	this	sort	of	query.	However,	a	disadvantage	to	this	
approach is that, logically, the list of top languages doesn’t “belong” with the Snippet model; it
belongs with the Language model. Because it’s better to present a logical API for your applica-
tion’s	users	than	to	be	lazy	about	writing	code,	go	ahead	and	give	Language a custom manager
and	put	this	query	there.

In cab/managers.py, add the following:

class LanguageManager(models.Manager):
 def top_languages(self):
 return self.annotate(score=Count('snippet')).order_by('score')

In cab/models.py, you can add the manager in the definition of the Language model:

objects = managers.LanguageManager()

Chapter 8 ■ a SOCIaL CODe-SharING SIte 163

In cab/views/popular.py, you can change the import statement from

from cab.models import Snippet

to

from cab.models import Language, Snippet

Write this view:

def top_languages(request):
 return object_list(request,
 queryset=Language.objects.top_languages(),
 template_name='cab/top_languages.html',
 paginate_by=20)

and change cab/urls/popular.py to the following:

from django.conf.urls.defaults import *
from cab.views import popular

urlpatterns = patterns('',
 url(r'^authors/$',
 popular.top_authors,
 name='cab_top_authors'),
 url(r'^languages/$',
 popular.top_languages,
 name='cab_top_languages'),
)

Now you can create the cab/top_languages.html template and add some snippets in various
languages to see the results change.

Looking Ahead
Now that you’ve got the core of this code-sharing application in place, you’ll learn to implement
some of the user interactions in the next chapter. For one thing, you’ll get an introduction to
Django’s form-processing system, so you can see how to let users submit snippets without going
through the admin interface.

If you’d like a little challenge before moving on to form handling, try writing a view
that	lists	tags	ordered	by	the	number	of	snippets	that	use	them.	Take	a	look	in	the	tagging	
application to see how the tags work, and check out the Django contenttypes framework
documentation	(www.djangoproject.com/documentation/contenttypes/)	to	get	a	feel	for	the	
generic relations that the tags use. If you get stumped, you can find a working example in the
source	code	associated	with	this	book	(download	it	from	the	Source	Code/Download	area	of	
the Apress web site at www.apress.com).

http://www.djangoproject.com/documentation/contenttypes/
http://www.apress.com

C h a p t e r 9

Form processing in the
Code-Sharing application

All of your Django applications so far—with the exception of the comments system for the
weblog—have been focused exclusively on systems in which trusted members of a site’s staff
enter content through Django’s administrative interface, rather than on interactive features
that let ordinary users submit content to be displayed. For this new application, though, you’re
going to need a way to allow users to submit their snippets of code. You’ll also want to make
sure that their submissions are in a format that works with the data models you’ve set up.

Fortunately, Django is going to make this fairly easy through the use of a simple but
powerful system for displaying and processing web-based forms. In this chapter, you’ll get a
thorough look at Django’s form-handling system and use it to build the forms that people will
use to submit and edit their code samples.

A Brief Tour of Django’s Form System
Django’s form-handling code, which lives in the module django.forms, provides three key
components that, taken together, cover every aspect of constructing, displaying, and process-
ing a form:

	 •	 A	set	of	field classes, similar to the types of fields available for Django data models,
which represent a particular type of data and know how to validate that data

	 •	 A	set	of	widget classes, which know how to render various types of HTML form controls
(text inputs, check boxes, and so on) and read out the corresponding data from an
HTTP form submission

	 •	 A	Form class that ties these concepts together and provides a unified interface for defin-
ing the data to be collected and high-level rules for validating it

A Simple Example
To get a feel for how this works, let’s take a look at a simple but common requirement: user
signups.

165

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 166

ADmoniTion: Where DoeS ThiS coDe go?

This specific code doesn’t logically belong to the cab application you’re developing, and if you ever do
develop code for handling user signups, it would be best to place that code in its own separate application.
For now, though, don’t worry about saving this code into Python files. It’s just a useful example that shows off
as many parts of Django’s form-handling system as possible.

If you ever do need to implement a user-signup system, however, feel free to refer to this code and
adapt it to suit your needs.

Basic signups will require a registration form that collects three pieces of data:

	 •	 A	username

	 •	 An	e-mail	address	to	associate	with	the	new	account

	 •	 A	password	the	user	will	use	to	log	in

Additionally,	you’ll	want to do a little bit of custom validation work:

	 •	 You’ll	want	to	make	sure	that	the	username	isn’t	already	in	use	because	you	can’t	have	
two users with the same username.

	 •	 It’s	always	a	good	idea	to	show	two	password	fields	and	have	the	user	type	the	same	
password twice. This will catch typos and provide a little extra safety to make sure new
users get the password they’re expecting.

Logically, this works out to an HTML <form> element with four fields: one each for the
username and e-mail address, and two to handle the repeated password. Here’s how you
might start building the form:

from django import forms

class SignupForm(forms.Form):
 username = forms.CharField(max_length=30)
 email = forms.EmailField()
 password1 = forms.CharField(max_length=30)
 password2 = forms.CharFIeld(max_length=30)

Aside	from	the	use	of	classes	from	django.forms instead of django.db.models, this starts
out looking similar to the way you define model classes in Django: simply subclass the appro-
priate base class and add the appropriate fields.

But the code is not quite perfect. HTML provides a special form input type for handling
passwords—<input type="password">—which would be a more appropriate way to render the
password fields. You can implement this input type by changing those two fields slightly:

password1 = forms.CharField(max_length=30,
 widget=forms.PasswordInput())
password2 = forms.CharField(max_length=30,
 widget=forms.PasswordInput())

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 167

The PasswordInput widget will render itself as an <input type="password">, which is
exactly what you want. This also shows off one major strength of the way Django’s form sys-
tem separates the validation of data, which is handled by the field, from the presentation of
the form, which is handled by the widgets. It’s fairly common to run into situations where you
have a single underlying validation rule that needs to work with multiple fields that all become
different types of HTML inputs. This separation makes it easy: you can reuse a single field type
and just change the widget.

While you’re at it, let’s make one more change:

password1 = forms.CharField(max_length=30,
 widget=forms.PasswordInput(render_value=False))
password2 = forms.CharField(max_length=30,
 widget=forms.PasswordInput(render_value=False))

The render_value argument to the PasswordInput tells it that even if it has some data, it
shouldn’t	show	it.	An	error	a	user	makes	while	entering	the	password	should	completely	clear	
the field to make sure the user types it in correctly the next time.

Validating the Username
The fields you’ve specified so far all have some implicit validation rules associated with them.
The username field and the two password fields both have maximum lengths specified, and
the EmailField will confirm that its input looks like an e-mail address (by applying a regular
expression). But you also need to make sure that the username isn’t already in use, so you’ll
need to define some custom validation for the username field.

You can do this by defining a method on the form called clean_username(). During the
validation process, Django’s form system automatically looks for any method whose name
starts with clean_ and ends in the name of a form on the field, then calls it after the field’s
built-in validation rules have been applied.

Here’s what the clean_username() method looks like (assuming that the Django user
model has already been imported using from django.contrib.auth.models import User):

def clean_username(self):
 try:
 User.objects.get(username=self.cleaned_data['username'])
 except User.DoesNotExist:
 return self.cleaned_data['username']
 raise forms.ValidationError("This username is already in use.➥

 Please choose another.")

This code packs a lot into a few lines. First of all, this method is called only if the username
field has already met its built-in requirement of containing fewer than 30 characters of text. In
that case, the value submitted for the username field is in self.cleaned_data['username']. The
attribute cleaned_data is a dictionary of any submitted data that’s made it through validation
so far.

You query for a user whose username exactly matches the value submitted to the username
field. If there is no such user, Django will raise the exception User.DoesNotExist. This exception
tells you that the username isn’t in use, so you know the value for the username field is valid. In
this case, you simply return that value.

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 168

If there is a user with the submitted username, you raise the exception ValidationError.
Django’s form-handling code will catch this exception and turn it into an error message that
you can display. (You’ll see how to do this in a moment, when you look at the template that
shows this form.)

Validating the Password
Validating the password is a bit trickier because it involves looking at two fields at once and
making sure they match. You could do this by defining a method for one of the fields and hav-
ing it look at the other:

def clean_password2(self):
 if self.cleaned_data['password1'] != self.cleaned_data['password2']:
 raise forms.ValidationError("You must type the same password each time")
 return self.cleaned_data['password2']

But there’s a better way to do this. Django lets you define a validation method—simply
called clean()—which applies to the form as a whole. Here’s how you could write it:

def clean(self):
 if 'password1' in self.cleaned_data and 'password2' in self.cleaned_data:
 if self.cleaned_data['password1'] != self.cleaned_data['password2']:
 raise forms.ValidationError("You must type the same password each time")
 return self.cleaned_data

Note that in this case, you manually check whether there are values in cleaned_data for
the two password fields. If there were any errors raised during individual field validation,
cleaned_data will be empty. So you need to check this before referring to anything you expect
to find in it.

ADmoniTion: Form FielDS Are requireD By DeFAulT

All of the field types built into Django’s form system are required by default and so cannot be left blank. If
either of the password fields were left blank, Django would raise a ValidationError before calling the
clean() method, so you wouldn’t need to raise an additional error to require a value.

To mark a form field as optional, pass it the keyword argument required=False.

Creating the New User
At	this	point,	you	could	stop	writing	form	code and move on to a view that processes the form.
You could write the view so that it creates and saves the new User object. But if you ever needed
to reuse this form in other views, you’d have to write out that code again and again. So it’s bet-
ter to write a method on the form itself that knows what to do with the valid data. Because the
method is saving a new User object to the database, let’s call it save().

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 169

ADmoniTion: save() iSn’T juST For The DATABASe

Most of the time, forms are used to create and update model objects, in which case save() is the natural
choice. But forms can be used for other purposes (for example, a contact form might send an e-mail message
instead of saving an object).

The general convention in the Django community is that any time a form class has a method that
“knows” what action to take with the valid data, that method should be called save(), even when it doesn’t
save any data to your database. The advantage of giving this type of method a consistent and recognizable
name outweighs any initial confusion it might cause.

In the save() method, you need to create a User object from the username, e-mail, and
password	submitted	to	your	form.	Assuming	you’ve	already	imported	the	User model, you can
do it like this:

def save(self):
 new_user = User.objects.create_user(username=self.cleaned_data['username'],
 email=self.cleaned_data['email'],
 password=self.cleaned_data['password1'])
 return new_user

ADmoniTion: uSerS AnD pASSWorDS

One big problem with a database of users and passwords is that anyone who can get access to the database
can see all of the passwords. Because many people tend to reuse the same passwords on multiple web sites,
this can pose a significant security risk.

To help you protect your users, Django avoids storing the “plain” password that the user will actually
use to log in. Instead, Django uses a mathematical trick called a hash function, which transforms the pass-
word into a random-looking (but not actually random) string of letters and numbers. That result is then stored
in the database instead of the actual password. The advantage is that a hash function only works one way:
if you know the password, you can apply the hash function and always get the same result, but if you only
know the result, you can’t work backward to get the password.

This provides a reasonably secure way to store passwords. When you try to log in, Django’s authentica-
tion system applies the hash function to the password you’ve entered and compares the result to the value
in the database. This means that the “plain” password never has to be permanently stored anywhere. But
because this system is a bit tricky to work with, Django’s User model has a custom manager that defines the
create_user() method you’re using here. This method handles the work of applying the hash function to
the password and storing the correct value.

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 170

And	here’s	the finished form:

from django.contrib.auth.models import User
from django import forms

class SignupForm(forms.Form):
 username = forms.CharField(max_length=30)
 email = forms.EmailField()
 password1 = forms.CharField(max_length=30,
 widget=forms.PasswordInput(render_value=False))
 password2 = forms.CharField(max_length=30,
 widget=forms.PasswordInput(render_value=False))

 def clean_username(self):
 try:
 User.objects.get(username=self.cleaned_data['username'])
 except User.DoesNotExist:
 return self.cleaned_data['username']
 raise forms.ValidationError("This username is already in use.➥

 Please choose another.")

 def clean(self):
 if 'password1' in self.cleaned_data and 'password2' in self.cleaned_data:
 if self.cleaned_data['password1'] != self.cleaned_data['password2']:
 raise forms.ValidationError("You must type the same➥

 password each time")
 return self.cleaned_data

 def save(self):
 new_user = User.objects.create_user(username=self.cleaned_data['username'],
 email=self.cleaned_data['email'],
 password=self.cleaned_data['password1'])
 return new_user

How Form Validation Works
The method you’ll use in views to determine whether or not submitted data is valid is called
is_valid(), and it’s defined on the base Form class that all Django forms derive from. Inside the
Form class, is_valid() touches off the form’s validation routines, in a specific order, by calling
full_clean() (another method defined in the base Form class in django.forms; see Figure 9-1).

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 171

Figure 9-1. The order in which validation methods are applied to a Django form

The order of validation goes like this:

 1. First, full_clean() loops through the fields on the form. Each field class has a method
named clean(), which implements that field’s built-in validation rules, and each of
these methods will either raise a ValidationError or return a value. If a ValidationError
is raised, no further validation is done for that field (because the data is already known
to be invalid). If a value is returned, it goes into the form’s cleaned_data dictionary.

 2. If a field’s built-in clean() method didn’t raise a ValidationError, then any available
custom validation method—a method whose name starts with clean_ and ends with the
name	of	the	field—is	called.	Again,	these	methods	can	either	raise	a	ValidationError or
return a value; if they return a value, it goes into cleaned_data.

 3. Finally, the form’s clean() method is called. It can also raise a ValidationError, albeit
one that’s not associated with any specific field. If clean() finds no new errors, it
should return a complete dictionary of data for the form, usually by doing return
self.cleaned_data.

 4. If no validation errors were raised, the form’s cleaned_data dictionary will be fully pop-
ulated with the valid data. If there were validation errors, however, cleaned_data will
not exist, and a dictionary of errors (self.errors) will be filled with validation errors.
Each field knows how to retrieve its own errors from this dictionary, which is why you
can do things like {{ form.username.errors }} in a template.

 5. Finally, is_valid() returns either False if there were validation errors or True if there
weren’t.

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 172

Understanding this process is key to getting the most out of Django’s form-handling
system. It might seem a bit complex at first, but the ability to attach validation rules to a form
in multiple places results in a huge amount of flexibility and makes it easier to write reusable
code. For example, if you find yourself needing to use a particular type of validation over and
over again, you’ll notice that writing a custom method on each form gets tedious. You’ll prob-
ably be better off writing your own field class, defining a custom clean() method on it, and
then reusing that field.

Similarly, distinguishing field-specific methods from the “form-level” clean() method
opens up a lot of useful tricks for validating multiple fields together. You wouldn’t necessarily
need these tricks when working with a single field only.

Processing the Form
Now, let’s take a look at a view you might use to display and process this form:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response

def signup(request):
 if request.method == 'POST':
 form = SignupForm(data=request.POST)
 if form.is_valid():
 new_user = form.save()
 return HttpResponseRedirect("/accounts/login/")
 else:
 form = SignupForm()
 return render_to_response('signup.html',
 { 'form': form })

Let’s break this down step by step:

 1. First you check the method of the incoming HTTP request. Usually, this will be GET
or POST. (There are other HTTP methods, but they’re not as commonly used, and web
browsers typically support only GET and POST for form submissions.)

 2. If, and only if, the request method is POST, you instantiate a SignupForm and pass it
request.POST as its data. Back in Chapter 3, when you wrote a simple search func-
tion, you saw that request.GET is a dictionary of data sent with a GET request; similarly,
request.POST is the dictionary of data (in this case, the form submission) sent along
with a POST request.

 3. You check whether the submitted data is valid by calling the form’s is_valid()
method. Under the hood, this matches up the submitted data with the fields on the
form and checks against each field’s validation rules. If the data passes validation,
is_valid() will return True, and the form’s cleaned_data dictionary will be populated
with the correct values. Otherwise, is_valid() will return False, and the cleaned_data
dictionary will not exist.

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 173

 4. If the data was valid, you call the form’s save() method, which you previously defined.
Then you return an HTTP redirect—using django.http.HttpResponseRedirect—to a
new page, which, presumably, would be wired up to a view to let the new user log in.
Whenever you accept data from an HTTP POST, you should always redirect after suc-
cessful processing. By taking the user to a new page, you avoid a common pitfall where
refreshing or clicking the Back button in a web browser accidentally resubmits a form.

 5. If the request method was anything other than POST, you instantiate a SignupForm with-
out any data. Technically speaking, this is called an unbound form (one that has no
data to work with), as opposed to a bound form, which does have some data to validate.

 6. You render a template, passing the form as a variable into it, and return a response.
Note that because of the way this view is written, you’ll never get to this step if the user
submitted valid data. In that case, the if statements farther up would already have
ensured	that	a	redirect	was	returned.	Also,	note	that	this	step	is	the	same	regardless	of	
whether there was invalid data or no data at all—the SignupForm object doesn’t have to
be treated specially according to the different cases.

Finally, let’s take a look at how you might display this form in the signup.html template
used by this view:

<html>
 <head>
 <title>Sign up for an account</title>
 </head>
 <body>
 <h1>Sign up for an account</h1>
 <p>Use the form below to register for your new account; all
 fields are required.</p>
 <form method="post" action="">
 {% if form.non_field_errors %}
 <p>
 {{ form.non_field_errors|join:", " }}
 </p>
 {% endif %}
 <p>{% if form.username.errors %}
 {{ form.username.errors|join:", " }}
 {% endif %}</p>
 <p><label for="id_username">Username:</label>
 {{ form.username }}</p>
 <p>{% if form.email.errors %}

 {{ form.email.errors|join:", " }}

 {% endif %}</p>
 <p><label for="id_name">Your e-mail address:</label>
 {{ form.email }}</p>

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 174

 <p>{% if form.password1.errors %}

 {{ form.passsword1.errors|join:", " }}

 {% endif %}</p>
 <p><label for="id_password1">Password:</label>
 {{ form.password1 }}</p>
 <p>{% if form.password2.errors %}

 {{ form.passsword2.errors|join:", " }}

 {% endif %}</p>
 <p><label for="id_password2">Password (again, to catch
 typos): </label>
 {{ form.password2 }}</p>
 <p><input type="submit" value="Submit"></p>
 </form>
 </body>
</html>

Most of the HTML here is pretty simple: a standard <form> tag with <label> tags for each
field and a button to submit. But notice how you actually show the fields. Each one is accessed
as an attribute of the {{ form }} variable. You can check each one to see if it had any errors
and display the error messages (which will be in a list, even if there’s only one message—hence
you use the join template filter, which can join a list of items using a specified string as a sepa-
rator).

Note, though, that at the top of the form you use {{ form.non_field_errors }}. This is
because the error raised from the clean() method doesn’t “belong” to any one field (because
it comes from comparing two fields to each other). Whenever you have a potential validation
error from the clean() method, you’ll need to check for non_field_errors and display it if
present.

Writing a Form for Adding code Snippets
Now that the user-signup example has given you a pretty good idea of how to write a form to
accept submitted data, you can write one for adding instances of your Snippet model. You’ll
simply set up fields for the information you want users to fill in, and then give it a save()
method, which creates and saves the new snippet.

But there’s one new thing you have to handle here. The author field on your Snippet
model has to be filled in, and it has to be filled in correctly, but you don’t want to show it to
your users and let them choose a value. If you did that, any user could effectively pretend to be
any other by filling in someone else’s name on a snippet. So you need some way to fill in that
field without making it a public part of the form.

Luckily, this is easy to do: a form is just a Python class. So you can add your own custom
__init__() method to it and trust that the view function that processes the form will pass in
the identity of the correct, authenticated user, which you can store and refer back to when it’s
time to save the snippet. So let’s get started writing AddSnippetForm.

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 175

Go into the cab directory and create a file called forms.py. In it you can start writing your
form as follows:

from django import forms
from cab.models import Snippet

class AddSnippetForm(forms.Form):
 def __init__(self, author, *args, **kwargs):
 super(AddSnippetForm, self).__init__(*args, **kwargs):
 self.author = author

Aside	from	accepting	an	extra	argument—author, which you store for later use—you’re
doing two important things here:

	 •	 In	addition	to	the	author argument, you specify that the __init__() method accepts
*args and **kwargs. This is a Python shorthand for specifying that it will accept any
combination of positional and keyword arguments.

	 •	 You	use	super() to call the parent class’s __init__() method, passing the other argu-
ments that your custom __init__() accepted. This ensures that the __init__() from
the base Form class gets called and sets up everything else on your form properly.

Using this technique—accepting *args and **kwargs and passing them on to the parent
method—is a useful shorthand when the method you’re overriding accepts a lot of arguments,
especially if a lot of them are optional. The __init__() method of the base Form class actually
accepts up to seven arguments, all of them optional, so this is a handy trick.

Now you can add the fields you care about:

title = forms.CharField(max_length=255)
description = forms.CharField(widget=forms.Textarea())
code = forms.CharField(widget=forms.Textarea())
tags = forms.CharField(max_length=255)

Note that once again you’re relying on the fact that you can change the widget used
by a field to alter its presentation. Where Django’s model system uses two different fields—
CharField and TextField—to represent different sizes of text-based fields (and has to, because
they work out to different data types in the underlying database columns), the form system
only has a CharField. To turn it into a <textarea> in the eventual HTML, you simply change
its widget to a Textarea, in much the same way that you used the PasswordInput widget in the
example user-signup form.

And	that	takes	care	of	everything	except the language, which is suddenly looking a little
bit tricky. What you’d like to do is show a drop-down list (an HTML <select> element) of the
available languages and validate that the user picked one of them. But none of the field types
you’ve seen so far can handle that, so you’ll need to turn to something new.

One way you could handle this is with a field type called ChoiceField. It takes a list of
choices (in the same format as a model field that accepts choices—you’ve seen that already
in the status field on the weblog’s Entry model, for example) and ensures that the submitted
value is one of them. But setting that up properly so that the form queries for the set of lan-
guages each time it’s used (in case an administrator has added new languages to the system)

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 176

would require some more hacking in the __init__()	method.	And	representing	a	model	rela-
tionship like this is an awfully common situation, so you’d expect Django to provide an easy
way to handle this.

As	it	turns	out,	Django	does	provide	an	easy	solution:	a	special	field	type	called	
ModelChoiceField. Where a normal ChoiceField would simply take a list of choices,
a ModelChoiceField takes a Django QuerySet and dynamically generates its choices from the
result of the query (executed freshly each time). To use it, you’ll need to change the model
import at the top of the file to also bring in the Language model:

from cab.models import Snippet, Language

And	then	you	can	simply	write:

language = forms.ModelChoiceField(queryset=Language.objects.all())

For this form, you don’t need any special validation beyond what the fields themselves
give you, so you can just write the save() method and be done:

def save(self):
 snippet = Snippet(title=self.cleaned_data['title'],
 description=self.cleaned_data['description'],
 code=self.cleaned_data['code'],
 tags=self.cleaned_data['tags'],
 author=self.author,
 language=self.cleaned_data['language'])
 snippet.save()
 return snippet

Because creating an object and saving it all in one step is a common pattern in Django,
you can actually shorten that a bit. The default manager class Django provides will include
a method called create(), which creates, saves, and returns a new object. Using that, your
save() method is a couple lines shorter:

def save(self):
 return Snippet.objects.create(title=self.cleaned_data['title'],
 description=self.cleaned_data['description'],
 code=self.cleaned_data['code'],
 tags=self.cleaned_data['tags'],
 author=self.author,
 language=self.cleaned_data['language'])

And	now	your AddSnippetForm is complete:

from django import forms
from cab.models import Snippet, Language

class AddSnippetForm(forms.Form):
 def __init__(self, author, *args, **kwargs):
 super(AddSnippetForm, self).__init__(*args, **kwargs):
 self.author = author

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 177

 title = forms.CharField(max_length=255)
 description = forms.CharField(widget=forms.Textarea())
 code = forms.CharField(widget=forms.Textarea())
 tags = forms.CharField(max_length=255)
 language = forms.ModelChoiceField(queryset=Language.objects.all())

 def save(self):
 return Snippet.objects.create(title=self.cleaned_data['title'],
 description=self.cleaned_data['description'],
 code=self.cleaned_data['code'],
 tags=self.cleaned_data['tags'],
 author=self.author,
 language=self.cleaned_data['language'])

Writing a View to Process the Form
Now you can write a short view called add_snippet to handle submissions. In the cab/views
directory, create a file called snippets.py, and in it place the following code:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from cab.forms import AddSnippetForm

def add_snippet(request):
 if request.method == 'POST':
 form = AddSnippetForm(author=request.user, data=request.POST)
 if form.is_valid():
 new_snippet = form.save()
 return HttpResponseRedirect(new_snippet.get_absolute_url())
 else:
 form = AddSnippetForm(author=request.user)
 return render_to_response('cab/add_snippet.html',
 { 'form': form })

This code will instantiate the form, validate the data, save the new Snippet, and return a
redirect	to	the	detail	view	of	that	snippet.	(Again,	always	redirect	after	a	successful	POST.)

At	first	this	looks	great,	but	there’s	a	problem	lurking	here.	You’re	referring	to	request.
user, which will be the currently logged-in user (Django automatically sets this up when the
authentication system has been properly activated). But what happens if the person filling out
this form isn’t logged in?

The answer is that your data won’t really be valid. When the current user isn’t logged in,
request.user is a “dummy” object representing an anonymous user, and it can’t be used as
the value of a snippet’s author field. So what you need is some way to ensure that only logged-
in users can fill out this form.

Fortunately, Django provides an easy way to handle this, via a decorator in the authen-
tication system called login_required. You can simply import it and apply it to your view
function, and anyone who’s not logged in will be redirected to a login page:

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 178

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from django.contrib.auth.decorators import login_required
from cab.forms import AddSnippetForm

def add_snippet(request):
 if request.method == 'POST':
 form = AddSnippetForm(author=request.user, data=request.POST)
 if form.is_valid():
 new_snippet = form.save()
 return HttpResponseRedirect(new_snippet.get_absolute_url())
 else:
 form = AddSnippetForm(author=request.user)
 return render_to_response('cab/add_snippet.html',
 { 'form': form })
add_snippet = login_required(add_snippet)

ADmoniTion: SeTTing up login/logouT vieWS

Django’s authentication system, bundled in django.contrib.auth, includes the views and forms you’ll
need to properly authenticate users and log them in. So long as you’re just testing an application on your
own computer, you can log in through Django’s admin interface, and then visit any views you’ve marked with
login_required. But for a live public deployment, you’ll want to set up public-facing login/logout views for
ordinary users.

To see how to use the built-in authentication views, consult the documentation for Django’s authentica-
tion system online at http://docs.djangoproject.com/en/dev/topics/auth/.

Writing the Template to Handle the add_snippet View
From here you could write the cab/add_snippet.html template like this:

<html>
 <head>
 <title>Add a snippet</title>
 </head>
 <body>
 <h1>Add a snippet</h1>
 <p>Use the form below to submit your snippet; all fields are
 required.</p>
 <form method="post" action="">
 <p>{% if form.title.errors %}

 {{ form.title.errors|join:", " }}

http://docs.djangoproject.com/en/dev/topics/auth/

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 179

 {% endif %}</p>
 <p><label for="id_title">Title:</label>
 {{ form.title }}</p>
 <p>{% if form.language.errors %}

 {{ form.language.errors|join:", " }}

 {% endif %}</p>
 <p><label for="id_languages">Language:</label>
 {{ form.language }}</p>
 <p>{% if form.description.errors %}

 {{ form.description.errors|join:", " }}

 {% endif %}</p>
 <p><label for="id_description">Description:</label></p>
 <p>{{ form.description }}</p>
 <p>{% if form.code.errors %}

 {{ form.code.errors|join:", " }}

 {% endif %}</p>
 <p><label for="id_code">Code:</label></p>
 <p>{{ form.code }}</p>
 <p>{% if form.tags.errors %}

 {{ form.tags.errors|join:", " }}

 {% endif %}</p>
 <p><label for="id_tags">Tags:</label>
 {{ form.tags }}</p>
 <p><input type="submit" value="Submit"></p>
 </form>
 </body>
</html>

Automatically generating the Form from a model
Definition
Although	Django’s form system lets you be pretty concise about writing and using this form,
you still haven’t arrived at an ideal solution. Setting up a form for adding or editing instances
of a model is a pretty common thing, and it would be awfully annoying to keep writing these
sorts of boilerplate forms over and over (especially when you’ve already specified most or all of
the relevant information once in the definition of the model class).

Fortunately, there’s a way to drastically reduce the amount of code you have to write.
Provided you don’t need too much in the way of custom behavior from your form, Django

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 180

provides a shortcut class called ModelForm that can automatically generate a moderately cus-
tomizable form from a model definition, including all the relevant fields and the necessary
save()	method.	At	its	most	basic,	here’s	how	it	works:

from django.forms import ModelForm
from cab.models import Snippet

class SnippetForm(ModelForm):
 class Meta:
 model = Snippet

Subclassing ModelForm and supplying an inner Meta class that specifies a model will set up
this new SnippetForm	class	to	automatically	derive	its	fields	from	the	specified	model.	And	
ModelForm is smart enough to ignore any fields in the model defined with editable=False, so
fields like the HTML version of the description won’t show up in this form. The only thing
lacking here is that the author field will show up. Luckily, ModelForm supports some customiza-
tions, including a list of fields to specifically exclude from the form, so you can simply change
the SnippetForm definition to the following:

class SnippetForm(ModelForm):
 class Meta:
 model = Snippet
 exclude = ['author']

And	it’ll	leave	the	author field out. Now you can simply delete cab/forms.py and rewrite
cab/views/snippets.py like this:

from django.http import HttpResponseRedirect
from django.forms import ModelForm
from django.shortcuts import render_to_response
from django.contrib.auth.decorators import login_required
from cab.models import Snippet

class SnippetForm(ModelForm):
 class Meta:
 model = Snippet
 exclude = ['author']

def add_snippet(request):
 if request.method == 'POST':
 form = SnippetForm(data=request.POST)

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 181

 if form.is_valid():
 new_snippet = form.save()
 return HttpResponseRedirect(new_snippet.get_absolute_url())
 else:
 form = SnippetForm()
 return render_to_response('cab/add_snippet.html',
 { 'form': form })
add_snippet = login_required(add_snippet)

However, this isn’t quite right. The Snippet needs to have an author filled in, but you’ve
left that field out of the form. You could go back and define a custom __init__() method
again and pass in request.user, but ModelForm has one more trick up its sleeve. You can have
ModelForm create the Snippet object and return it without saving; you do this by passing an
extra argument—commit=False—to its save() method. When you do this, save() will still
return a new Snippet object, but it will not save it to the database. This will leave you free to
add the user yourself and manually insert the new Snippet into the database:

from django.http import HttpResponseRedirect
from django.forms import ModelForm
from django.shortcuts import render_to_response
from django.contrib.auth.decorators import login_required
from cab.models import Snippet

class SnippetForm(ModelForm):
 class Meta:
 model = Snippet
 exclude = ['author']

def add_snippet(request):
 if request.method == 'POST':
 form = SnippetForm(data=request.POST)
 if form.is_valid():
 new_snippet = form.save(commit=False)
 new_snippet.author = request.user
 new_snippet.save()
 return HttpResponseRedirect(new_snippet.get_absolute_url())
 else:
 form = SnippetForm()
 return render_to_response('cab/add_snippet.html',
 { 'form': form })
add_snippet = login_required(add_snippet)

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 182

ADmoniTion: commit=False AnD mAny-To-mAny relATionShipS

If the model you’re working with has a ManyToManyField (which will be represented in a form by a field
type called ModelMultipleChoiceField), you’ll need to take one additional step when you use the
save() method of a ModelForm with commit=False. Many-to-many relationships can’t be set up until
after the primary object is saved (because they need to know its id in the database). So any time you use
commit=False on a form that has a many-to-many relationship, the form will have a method named
save_m2m(), which stores the data for the eventual many-to-many relationships. You’ll need to call that
method manually (with no arguments) after you’ve saved the primary object.

Now you can open up cab/urls/snippets.py and add a new import:

from cab.views.snippets import add_snippet

and a new URL pattern:

url(r’^add/$’, add_snippet, name=’cab_snippet_add’),

Simplifying Templates That Display Forms
The template outlined previously will continue to work because the form’s fields haven’t changed.
But again, it would be nice if Django provided an easy way to show a form in a template without
requiring you to write out all the repetitive HTML and check for field errors. You’ve eliminated the
tedium of defining the form class itself, so why not eliminate the tedium of templating it?

To deal with this, every Django form has a few methods attached to it that know how to
render the form into different types of HTML:

as_ul(): Renders the form as a set of HTML list items (tags), with one item per field

as_p(): Renders the form as a set of paragraphs (HTML <p> tags), with one item per
paragraph

as_table(): Renders the form as an HTML table, with one <tr> per field

So, for example, you could replace the templating you’ve been doing so far (a set of HTML
paragraph elements) with only the following:

{{ form.as_p }}

But there are a few things to note when using these methods:

	 •	 None	of	them	output	the	enclosing <form> and </form> tags because the form doesn’t
“know” how or where you plan to have the form submitted. You’ll need to fill in these
tags yourself, with appropriate action and method attributes.

	 •	 None	of	them	output	any	buttons	for	submitting	the	form.	Again,	the	form	doesn’t	
know how you want it to be submitted, so you’ll need to supply one or more <input
type="submit"> tags yourself.

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 183

	 •	 The	as_ul() method doesn’t output the surrounding and tags, and the
as_table() method doesn’t output the surrounding <table> and </table> tags. This is
in case you want to add more HTML yourself (which is a common need for form pre-
sentation), so you’ll need to remember to fill in these tags.

	 •	 Finally,	these	methods	are	not	easily	customizable.	When	you	just	need	a	basic	pre-
sentation for a form (especially for rapid prototyping so you can test an application),
they’re extremely handy, but if you need custom presentation you’ll probably want to
switch back to templating the form manually.

editing Snippets
Now you have a system in place for users to submit their code snippets, but what happens if
someone wants to go back and edit one? It’s inevitable that someone will accidentally submit
some code that has a typo or a minor error, or find a better solution for a particular task. It
would be nice to let users edit their own snippets in those cases, so let’s go ahead and set up
snippet editing through a view called edit_snippet.

Fortunately, this is going to be easy. ModelForm also knows how to edit an existing object,
which	takes	care	of	most	of	the	heavy	lifting.	All	you	have	to	do,	then,	is	handle	two	things:

	 •	 Figure	out	which	Snippet object to edit.

	 •	 Make	sure	that	the	user	who’s	trying	to	edit	the	Snippet is its original author.

You can handle the first part fairly easily: you can set up your edit_snippet view to receive
the id of the Snippet in the URL and to look it up in the database. Then you can compare the
snippet’s author field to the identity of the currently logged-in user to ensure that they match.
So let’s start by adding a couple more imports to cab/views/snippets.py:

from django.shortcuts import get_object_or_404
from django.http import HttpResponseForbidden

The HttpResponseForbidden class represents an HTTP response with the status code 403,
which indicates that the user doesn’t have permission to do whatever he was trying to do.
You’ll use it when someone tries to edit a snippet that he didn’t originally submit.

Here’s the edit_snippet view:

def edit_snippet(request, snippet_id):
 snippet = get_object_or_404(Snippet, pk=snippet_id)
 if request.user.id != snippet.author.id:
 return HttpResponseForbidden()
 if request.method == 'POST':
 form = SnippetForm(instance=snippet, data=request.POST)
 if form.is_valid():
 snippet = form.save()
 return HttpResponseRedirect(snippet.get_absolute_url())

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 184

 else:
 form = SnippetForm(instance=snippet)
 return render_to_response('cab/edit_snippet.html',
 { 'form': form })
edit_snippet = login_required(edit_snippet)

To tell a ModelForm subclass that you’d like it to edit an existing object, you simply pass
that object as the keyword argument instance;	the	form	will	handle	the	rest.	And	note	that	
because the Snippet already has an author, and that value won’t be changing, you don’t need
to use commit=False and then manually save the Snippet. The form won’t change that value, so
you can simply let it save as is.

Now you can add a URL pattern for it. First you change the import line in cab/urls/
snippets.py to also import this view:

from cab.views.snippets import add_snippet, edit_snippet

and then you add the URL pattern:

url(r'^edit/(?P<snippet_id>\d+)/$', edit_snippet, name='cab_snippet_edit'),

Because the form for both the edit_snippet view and the add_snippet view will have the
same fields, you can simplify the templating a bit by using only one template and passing a
variable that indicates whether you’re adding or editing (so that elements like the page title
can change accordingly). So let’s change the add_snippet view’s final line to pass an extra vari-
able called add, set its value to True, and change the template name to cab/snippet_form.html:

return render_to_response('cab/snippet_form.html',
 { 'form': form, 'add': True })

Then you can change the same line in the edit_snippet view to use cab/snippet_form.
html and set the add variable to False:

return render_to_response('cab/snippet_form.html',
 { 'form': form, 'add': False })

Now you can simply have one template—cab/snippet_form.html—which can look like this:

<html>
 <head>
 <title>{% if add %}Add a{% else %}Edit your{% endif %} snippet</title>
 </head>
 <body>
 <h1>{% if add %}Add a{% else %}Edit your{% endif %} snippet</h1>
 <p>Use the form below to {% if add %}add{% else %}edit {% endif %}
 your snippet; all fields are required</p>
 <form method="post" action="">
 {{ form.as_p }}
 <p><input type="submit" value="Send"></p>
 </form>
 </body>
</html>

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 185

Now you have forms, views, and templates that let users both add and edit their code
snippets. Here’s the finished cab/views/snippets.py file, for reference:

from django.http import HttpResponseForbidden, HttpResponseRedirect
from django.forms import ModelForm
from django.shortcuts import get_object_or_404, render_to_response
from django.contrib.auth.decorators import login_required
from cab.models import Snippet

class SnippetForm(ModelForm):
 class Meta:
 model = Snippet
 exclude = ['author']

def add_snippet(request):
 if request.method == 'POST':
 form = SnippetForm(data=request.POST)
 if form.is_valid():
 new_snippet = form.save(commit=False)
 new_snippet.author = request.user
 new_snippet.save()
 return HttpResponseRedirect(new_snippet.get_absolute_url())
 else:
 form = SnippetForm()
 return render_to_response('cab/snippet_form.html',
 { 'form': form, 'add': True })
add_snippet = login_required(add_snippet)

def edit_snippet(request, snippet_id):
 snippet = get_object_or_404(Snippet, pk=snippet_id)
 if request.user.id != snippet.author.id:
 return HttpResponseForbidden()
 if request.method == 'POST':
 form = SnippetForm(instance=snippet, data=request.POST)
 if form.is_valid():
 snippet = form.save()
 return HttpResponseRedirect(snippet.get_absolute_url())
 else:
 form = SnippetForm(instance=snippet)
 return render_to_response('cab/snippet_form.html',
 { 'form': form, 'add': False })
edit_snippet = login_required(edit_snippet)

Chapter 9 ■ FOrM prOCeSSING IN the CODe-SharING appLICatION 186

looking Ahead
Before moving on, I would suggest taking a little time to work with Django’s form system.
Although	you	should	have	a	good	understanding	of	the	basics	by	now,	you’ll	probably	want	
to spend some time looking over the full documentation for the django.forms package (online
at http://docs.djangoproject.com/en/dev/topics/forms/) to get a feel for all of its features
(including the full range of field types and widgets, as well as more advanced tricks for custom-
izing form presentation).

When you’re ready to come back, the next chapter will wrap up this application by add-
ing the bookmarking and rating features, including lists of the most popular snippets and the
necessary template extensions to determine whether a user has already bookmarked or rated a
snippet.

http://docs.djangoproject.com/en/dev/topics/forms/

C h a p t e r 1 0

Finishing the Code-Sharing
application

With the addition of the forms for user submissions, your code-sharing application is nearly
complete. Only three features are left to implement from the original list. Then you can wrap
up the application with a few final views. Let’s get started.

Bookmarking Snippets
Currently, your application’s users can keep track of their favorite snippets by bookmarking
them in a web browser or posting bookmarks to a service like Delicious. However, it would be
nice to give each user the ability to track a personalized list of snippets directly on the site. This
will cut down on the amount of clutter in each user’s general-purpose bookmarks, and it will
provide a useful social metric—most-bookmarked snippets—that you can track and display
publicly.

To support this feature, you first need a model representing a user’s bookmark. This is a
pretty simple model, because all it needs to do is track a few pieces of information:

	 •	 The	user	the	bookmark	belongs	to

	 •	 The	snippet	the	user	bookmarked

	 •	 The	date	and	time	when	the	user	bookmarked	the	snippet

You can manage this by opening up cab/models.py and adding a new Bookmark model with
three fields for this information:

class Bookmark(models.Model):
 snippet = models.ForeignKey(Snippet)
 user = models.ForeignKey(User, related_name='cab_bookmarks')
 date = models.DateTimeField(editable=False)

 class Meta:
 ordering = ['-date']

187

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION188

 def __unicode__(self):
 return "%s bookmarked by %s" % (self.snippet, self.user)

 def save(self):
 if not self.id:
 self.date = datetime.datetime.now()
 super(Bookmark, self).save()

There’s only one new feature in use here, and that’s the related_name argument to the for-
eign key pointing at the User model. The fact that you’ve created a foreign key to User means
that Django will add a new attribute to every User object, which you’ll be able to use to access
each user’s bookmarks. By default, this attribute would be named bookmark_set based on the
name of your Bookmark model. For example, you could query for a user’s bookmarks like this:

from django.contrib.auth.models import User

u = User.objects.get(pk=1)
bookmarks = u.bookmark_set.all()

However, this can create a problem: If you ever use any other application with a book-
marking system, and if that application names its model Bookmark, you’ll get a naming conflict
because the bookmark_set attribute of a User can’t simultaneously refer to two different models.

The solution to this is the related_name argument to ForeignKey, which lets you manually
specify the name of the new attribute on User, which you’ll use to access bookmarks. In this
case, you’ll use the name cab_bookmarks. So once this model is installed and you have some
bookmarks in your database, you’ll be able to run queries like this:

from django.contrib.auth.models import User

u = User.objects.get(pk=1)
bookmarks = u.cab_bookmarks.all()

Generally, it’s a good idea to use related_name any time you’re creating a relationship
from a model with a common name.

Also, note that because users will manage their bookmarks entirely through public-facing
views, you don’t need to activate the admin interface for the Bookmark model.

Go ahead and run manage.py syncdb to install the Bookmark model into your database.
Again, syncdb is smart enough to realize that it needs to create only one new table.

Adding Basic Bookmark Views
Now you can add a couple of views to let users bookmark snippets and remove their book-
marks later if they wish. Create a file in cab/views called bookmarks.py, and start with the
add_bookmark view:

from django.http import HttpResponseRedirect
from django.shortcuts import get_object_or_404, render_to_response
from django.contrib.auth.decorators import login_required
from cab.models import Bookmark, Snippet

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION 189

def add_bookmark(request, snippet_id):
 snippet = get_object_or_404(Snippet, pk=snippet_id)
 try:
 Bookmark.objects.get(user__pk=request.user.id,
 snippet__pk=snippet.id)
 except Bookmark.DoesNotExist:
 bookmark = Bookmark.objects.create(user=request.user,
 snippet=snippet)
 return HttpResponseRedirect(snippet.get_absolute_url())
add_bookmark = login_required(add_bookmark)

The logic here is pretty simple. You check whether the user already has a bookmark for
this snippet, and if not—in which case the Bookmark.DoesNotExist exception will be raised—
you create one. Either way, you return a redirect back to the snippet, and, of course, you
ensure that the user must be logged in to do this.

Deleting a bookmark is similarly easy:

def delete_bookmark(request, snippet_id):
 if request.method == 'POST':
 snippet = get_object_or_404(Snippet, pk=snippet_id)
 Bookmark.objects.filter(user__pk=request.user.id,
 snippet__pk=snippet.id).delete()
 return HttpResponseRedirect(snippet.get_absolute_url())
 else:
 return render_to_response('cab/confirm_bookmark_delete.html',
 { 'snippet': snippet })
delete_bookmark = login_required(delete_bookmark)

With the delete_bookmark view, you’re using two important techniques:

	 •	 Instead	of	querying	to	see	if	the	user	has	a	bookmark	for	this	snippet	and	then	deleting	it	
manually (which incurs the overhead of two database queries), you simply use filter()
to create a QuerySet of any bookmarks that match this user and this snippet. You then
call the delete() method of that QuerySet. This issues only one query—a DELETE query,
whose FROM clause limits it to the correct rows, if any exist.

	 •	 You’re	requiring	that	bookmark	deletion	use	an	HTTP	POST. If the request method isn’t
POST, you display a confirmation page instead.

This last point bears emphasizing, because	requiring	HTTP	POST and a confirmation
screen for anything that deletes content—even trivial-seeming content like a bookmark—is
an extremely important habit to get into. Not only does it prevent accidental deletion by a user
who clicks the wrong link on a page, but it also adds a small measure of security against a com-
mon type of web-based attack: cross-site request forgery (CSRF). In a CSRF attack, a hacker
lures a user of your site to a page that contains a hidden link or form pointing back to your
application.	The	hacker	exploits	the	fact	that	because	the	HTTP	requests	are	coming	from	the	
user, many applications allow modification or deletion of content.

Additionally, it’s generally good practice to require POST for any operation that alters or
deletes	data	on	the	server.	The	HTTP	specification	states	that	certain	methods,	including	GET,
should be considered safe and generally should not have side effects.

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION190

Admonition: SAfe And idempotent Http metHodS

The view you’ve written for adding a bookmark can be accessed via an HTTP GET, which seems to contradict
the idea that this type of view should be safe.

The HTTP specification uses two different but related terms to describe request methods: safe and
idempotent. A safe request is one that has no side effects and simply retrieves some information, while an
idempotent request is one in which the effect of multiple identical requests is the same as the effect of one
request. HTTP requires GET requests to be idempotent, but it doesn’t strictly require them to be safe.

The add_bookmark view is idempotent, because multiple requests from the same user to bookmark
the same snippet don’t create multiple Bookmark objects. The net effect is the same as if there were only
one request, because only one Bookmark object gets created.

The add_bookmark view isn’t safe in this sense, though, because it can have a side effect (creating
a Bookmark object). This doesn’t violate the HTTP specification, but in general, you should be careful when
allowing a GET request to have side effects. In this case, creating a bookmark doesn’t really pose a risk. If
someone were to be tricked into clicking a link to bookmark a snippet, for example, the worst thing that could
happen would be that they’d need to delete the bookmark. So it’s generally acceptable to allow bookmark
creation to happen via a GET request.

Templating the confirmation page is easy enough. You can display some information
about the snippet the user is about to “unbookmark,” and then you can include a simple form
that submits the confirmation via POST:

<form method="post" action="">
 <p><input type="submit" value="Delete bookmark"></p>
</form>

Admonition: furtHer protection AgAinSt cSrf

Requiring an HTTP POST helps somewhat against CSRF, because it means that an attacker can’t merely
display a link to a particular page and have that trigger deletion of content. However, for full protection, you’ll
want to refer to and enable django.contrib.csrf, an application bundled with Django that provides some
stronger measures. It automatically inserts and checks for a randomly generated string in an incoming POST
submission, and it returns an HTTP 403 (Forbidden) response if that string is not posted back by the user’s
browser.

You can find full documentation for this system online at http://docs.djangoproject.com/en/
dev/ref/contrib/csrf/.

It’s easy enough to set up URLs for adding and deleting bookmarks. You can create cab/
urls/bookmarks.py and start filling it in:

from django.conf.urls.defaults import *
from cab.views import bookmarks

http://docs.djangoproject.com/en/

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION 191

urlpatterns = patterns('',
 url(r'^add/(?P<snippet_id>\d+)/$',
 bookmarks.add_bookmark,
 name='cab_bookmark_add'),
 url(r'^delete/(?P<snippet_id>\d+)/$',
 bookmarks.delete_bookmark,
 name='cab_bookmark_delete'),
)

Now that you’ve got views in place for managing bookmarks, go ahead and write one to
show a list of the current user’s bookmarks. This is just a wrapper around the object_list
generic view:

from django.views.generic.list_detail import object_list

def user_bookmarks(request):
 return object_list(queryset=Bookmark.objects.filter(user__pk=request.user.id),
 template_name='cab/user_bookmarks.html',
 paginate_by=20)

You can set up a URL for the view so that the root of the bookmark URLs simply shows the
user’s bookmarks:

url(r'^$', bookmarks.user_bookmarks, name='cab_user_bookmarks'),

Finally, to round out the bookmark-oriented views, add one that queries for the
most-bookmarked snippets. Because this query returns Snippet objects, place it on the
SnippetManager in cab/managers.py:

def most_bookmarked(self):
 return self.annotate(score=Count('bookmark')).order_by('score')

Now write the most_bookmarked view in cab/views/popular.py:

def most_bookmarked(request):
 return object_list(queryset=Snippet.objects.most_bookmarked(),
 template_name='cab/most_bookmarked.html',
 paginate_by=20)

Then add the URL pattern in cab/urls/popular.py:

url(r'^bookmarks/$', popular.most_bookmarked, name='cab_most_bookmarked'),

creating a new template tag:
{% if_bookmarked %}
To go with the add_bookmark and delete_bookmark views, you might want to indicate when dis-
playing a snippet whether a user has already bookmarked it. That way, you could either hide
any links to bookmarking views you might otherwise show or switch to showing a link or but-
ton to delete the bookmark.

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION192

You could set this up to be part of the snippet’s detail view, but that’s not necessarily the
only place you might want this functionality. If you’re showing a list of snippets, for example,
you might want a quick and easy way to determine where to show a link for bookmarking and
where not to. The ideal solution would be a template tag, which can tell whether a user has
already bookmarked a specific snippet. Something that works like this would be ideal:

{% if_bookmarked user object %}
 <form method="post" action="{% url cab_bookmark_delete object.id %}">
 <p><input type="submit" value="Delete bookmark"></p>
 </form>
{% else %}
 <p>Add bookmark</p>
{% endif_bookmarked %}

Admonition: Wiring up tHe urLS

Because you’re using the {% url %} tag to generate the link to the add_bookmark view, you need to add
the URLs for the cab application to your project’s root URLConf module (via include() calls). If you use the
{% url %} tag with a URL name that you haven’t yet set up in your project, it won’t be able to find the cor-
rect URL and will simply return an empty string instead of a URL.

But how can you write this? So far, all of your custom template tags have been pretty
simple. They typically just read their arguments and spit something back out into the context.
Writing this tag requires two new techniques:

	 •	 The	ability	to	write	a	tag	that	reads	ahead	a	bit	in	the	template	to	find,	for	example,	the	
{% else %} clause and the closing tag, and keeps track of what to display

	 •	 The	ability	to	resolve	arbitrary	variables	from	the	template	context,	as	in	the	case	of	a	
variable such as object

Fortunately, both of these are easy enough to accomplish.

Parsing Ahead in a Django Template
You’ll recall from Chapter 6 when you wrote your first custom template tags that the compila-
tion function for a tag receives two arguments, conventionally called parser and token. At the
time, you were concerned only with the token portion because it contained the arguments
you were interested in. However, now you’re in a situation where parser—which is the actual
object that’s parsing the template—is going to come in handy.

Before diving in too deeply, let’s go ahead and lay out the infrastructure for the custom
tag. In the cab directory, create a new directory called templatetags, and in that directory,
create two new files: __init__.py and snippets.py. Then, open up cab/templatetags/
snippets.py and fill in a couple of necessary imports:

from django import template
from cab.models import Bookmark

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION 193

Now, you can start writing the compilation function for the {% if_bookmarked %} tag:

def do_if_bookmarked(parser, token):
 bits = token.contents.split()
 if len(bits) != 3:
 raise template.TemplateSyntaxError("%s tag takes two arguments" % bits[0])

This compilation function looks at the syntax used to call the tag—which is of the form
{% if_bookmarked user snippet %}—and verifies that it has the right number of arguments,
bailing out immediately with a TemplateSyntaxError if it doesn’t.

Now you can turn your attention to the parser argument and see how it can help you out.
You want to read ahead in the template until you find either an {% else %} or an {% endif_
bookmarked %} tag. You can do just that by calling the parse() method of the parser object and
passing a list of things you’d like it to look for. The result of this parsing will be an instance of
the class django.template.NodeList, which is—as the name implies—a list of template nodes:

nodelist_true = parser.parse(('else', 'endif_bookmarked'))

You’re storing this result in a variable called nodelist_true because—in terms of this tag’s
if/else-style behavior—it corresponds to the output you want to display if the condition is
true (if the user has bookmarked the snippet).

The call to parser.parse() moves ahead in the template to just before the first item in the
list you told it to look for. This means you now want to look at the next token and find out if it’s
an {% else %}. If it is, you’ll need to do a bit more parsing:

token = parser.next_token()
if token.contents == 'else':
 nodelist_false = parser.parse(('endif_bookmarked',))
 parser.delete_first_token()
else:
 nodelist_false = template.NodeList()

If the first thing the parser finds from your list is indeed an {% else %}, then you want to
read ahead again to {% endif_bookmarked %} to get the output to display when the user hasn’t
bookmarked the snippet. This is another NodeList, which you store in the variable nodelist_
false.

If, on the other hand, the parser finds an {% endif_bookmarked %} with no {% else %},
then you simply create an empty NodeList. If the user hasn’t bookmarked the snippet, then
you shouldn’t display anything when there’s no {% else %} clause.

Finally, you return a Node class, passing the two arguments gathered from the tag and the
two NodeList instances. Although you haven’t defined it yet, the Node class you’re going to use
will be called IfBookmarkedNode:

return IfBookmarkedNode(bits[1], bits[2], nodelist_true, nodelist_false)

Resolving Variables Inside a Template Node
Now you can begin writing the IfBookmarkedNode. Obviously, it needs to subclass template.
Node, and it needs to accept four arguments in its __init__() method. You’ll simply store the
two NodeList instances for later use when you render the template:

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION194

class IfBookmarkedNode(template.Node):
 def __init__(self, user, snippet, nodelist_true, nodelist_false):
 self.nodelist_true = nodelist_true
 self.nodelist_false = nodelist_false

But what about the user and snippet variables? Right now, they’re the raw strings from the
template, and you don’t yet know what values they’ll actually resolve to when you look at the
context. You need some way of saying that these are actually template variables that you need
to resolve later. Fortunately, that’s easy enough to do:

self.user = template.Variable(user)
self.snippet = template.Variable(snippet)

The Variable class in django.template handles the hard work for you. When given the
template context to work with, it knows how to resolve the variable and gives you back the
actual value it corresponds to.

Now you can start to write the render() method:

def render(self, context):
 user = self.user.resolve(context)
 snippet = self.snippet.resolve(context)

Each Variable instance has a method called resolve(), which handles the actual business of
resolving the variable. If the variable turns out not to correspond to anything, it’ll even handle
raising an exception—django.template.VariableDoesNotExist—automatically for you. Of
course, you’ve seen that it’s usually a good idea for custom template tags to fail silently when
possible, so catch that exception and just have the tag return nothing when one of the vari-
ables is invalid:

def render(self, context):
 try:
 user = self.user.resolve(context)
 snippet = self.snippet.resolve(context)
 except template.VariableDoesNotExist:
 return ''

If you get past this point, then you know that these variables resolved successfully, and
you can use them to query for an existing Bookmark. The only tricky thing now is figuring out
what to return in each case. You have two NodeList instances, and you want to render one or
the other according to whether the user has bookmarked the snippet. Fortunately, that’s easy.
Just as a Node must have a render() method that accepts the context and returns a string, so
too must NodeList:

if Bookmark.objects.filter(user__pk=user.id,
 snippet__pk=snippet.id):
 return self.nodelist_true.render(context)
else:
 return self.nodelist_false.render(context)

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION 195

Now you have a finished tag. After you register it, cab/templatetags/snippets.py looks
like this:

from django import template
from cab.models import Bookmark

def do_if_bookmarked(parser, token):
 bits = token.contents.split()
 if len(bits) != 3:
 raise template.TemplateSyntaxError("%s tag takes two arguments" % bits[0])
 nodelist_true = parser.parse(('else', 'endif_bookmarked'))
 token = parser.next_token()
 if token.contents == 'else':
 nodelist_false = parser.parse(('endif_bookmarked',))
 parser.delete_first_token()
 else:
 nodelist_false = template.NodeList()
 return IfBookmarkedNode(bits[1], bits[2], nodelist_true, nodelist_false)

class IfBookmarkedNode(template.Node):
 def __init__(self, user, snippet, nodelist_true, nodelist_false):
 self.nodelist_true = nodelist_true
 self.nodelist_false = nodelist_false
 self.user = template.Variable(user)
 self.snippet = template.Variable(snippet)

 def render(self, context):
 try:
 user = self.user.resolve(context)
 snippet = self.snippet.resolve(context)
 except template.VariableDoesNotExist:
 return ''
 if Bookmark.objects.filter(user__pk=user.id,
 snippet__pk=snippet.id):
 return self.nodelist_true.render(context)
 else:
 return self.nodelist_false.render(context)

register = template.Library()
register.tag('if_bookmarked', do_if_bookmarked)

Now you can simply do {% load snippets %} in a template and use the {% if_bookmarked
%} tag.

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION196

using RequestContext to Automatically populate
template Variables
But you can only use the {% if_bookmarked %} tag if the template where you’re using the tag
has an available variable that represents the currently logged-in user. This is a slightly trickier
proposition because so far, you haven’t been writing your views to pass the current user as a
variable to the templates they use. Mostly that’s because you haven’t had much need to do so.
You’ve been doing everything with the logged-in user at the view level by accessing request.
user, so you haven’t really run into a case—until now—where you genuinely needed to have a
variable for the user available in templates.

You could simply go back at this point and make the necessary change in all your hand-
written views, but that immediately brings up two disadvantages:

	 •	 It’s tedious and repetitive: Generally, Django encourages you to avoid anything that
can be described in that fashion.

	 •	 It doesn’t help for views you didn’t write yourself: In a lot of cases, you’re simply
wrapping a generic view, and short of manually passing the extra_context argument
every	time	you	use	a	generic	view,	there	doesn’t	seem	to	be	any	way	to	solve	this.	Plus,	
this approach might not help if you need to use views from someone else’s application.
If that person hasn’t written views to accept an argument similar to extra_context, you
won’t be able to do anything.

Fortunately, there’s an easier solution. As you’ll recall from the first hand-written views
back in Chapter 3, the dictionary of variables and values passed to a template is an instance
of django.template.Context.	Because	this	is	an	ordinary	Python	class,	you	can	subclass	it	to	
add customizable behavior. Django includes one very useful subclass of Context—django.
template.RequestContext—that can automatically populate some extra variables each time it’s
used without needing those variables explicitly declared and defined in each view.

RequestContext gets its name from the fact that it makes use of functions called context
processors (which I mentioned briefly in Chapter 6). Each context processor is a function that
receives a Django HttpRequest object as an argument and returns a dictionary of variables
based on that HttpRequest. RequestContext then automatically adds those variables to the
context, in addition to any variables explicitly passed to the context during the process of
executing a view function.

In normal use, RequestContext reads its list of context-processor functions from the set-
ting TEMPLATE_CONTEXT_PROCESSORS. The default set happens to include a context processor that
reads request.user to get the current user and adds it to the context as the variable {{ user }}.
This just happens to be exactly what you want here. As long as a view uses RequestContext, its
template can rely on the fact that the variable {{ user }} will be available and will correspond
to the currently active user.

Using RequestContext is trivially easy; you simply import it:

from django.template import RequestContext

You can use it anywhere you need a context for a template. The only difference between a
normal Context and RequestContext is that the latter must receive the HttpRequest object as an
argument. For example, in a view, you might write this:

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION 197

context = RequestContext(request, { 'foo': 'bar' })

It works with the render_to_response() shortcut as well, although the usage is slightly
different. For example, where you’d normally write this:

return render_to_response('example.html',
 { 'foo': 'bar' })

you’d instead write this:

return render_to_response('example.html',
 { 'foo': 'bar' },
 context_instance=RequestContext(request))

And for cases where you’re wrapping a generic view, you don’t even have to do anything—
Django’s generic views default to using RequestContext. So far, you’ve written only three
views in this application that don’t use generic views—the delete_bookmark, add_snippet,
and edit_snippet views, to be precise—so it’s not too hard to go back and add the use of
RequestContext to them. Because the rest are generic views or wrap generic views, they’re
already using RequestContext.

Admonition: uSing RequestContext repetitiVeLy

Even though RequestContext obviously makes it a lot easier to handle situations where you want to have
certain variables globally available to your templates, manually stating that you want it each time still feels a
little bit repetitive. And if the generic views use RequestContext automatically, why shouldn’t a shortcut
such as render_to_response() use it as well? In fact, why isn’t it just the default context class?

One good reason is the fact that RequestContext requires access to the HttpRequest object, and
there’s no way for it to get that access automatically. Unless the HttpRequest is passed to it explicitly,
RequestContext won’t be able to do anything. Another good reason is that in a lot of cases, you’ll want to
render a template independently of any HTTP request being processed. It’s not at all unusual for the Django
template system to be used to generate e-mail messages, files that are written to disk, and other items that
have little to do directly with the HTTP request/response cycle.

If you do find yourself aching for a shortcut, though, you can write one easily:

from django.shortcuts import render_to_response
from django.template import RequestContext

def render_response(request, *args, **kwargs):
 kwargs['context_instance'] = RequestContext(request)
 return render_to_response(*args, **kwargs)

Personally, I tend to avoid doing this, and as a matter of style, I prefer simply to write out the use of
RequestContext each time. I find that doing so serves as a reminder to me that I’m setting up a view to
have the extra variables RequestContext will populate. Plus, the extra bit of code to set it up makes it easy
to spot when I come back later and read over a view function. Handling RequestContext manually also
prevents the problem of writing code that relies heavily on a shortcut function that might not be distributed
along with a particular application, which in turn improves your code’s reusability.

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION198

Adding the user rating System
The only thing left to implement from the feature list is a rating system that lets users mark
particular snippets they found useful (or not useful, as the case may be). Once again, start
with a data model. As with the bookmarking system, it’s fairly simple. You need to collect four
pieces of information:

	 •	 The	snippet	being	rated

	 •	 The	user	doing	the	rating

	 •	 The	value	of	the	rating—in	this	case,	either	a	+1	or	–1,	for	a	simple	“up	or	down”	voting	
system

	 •	 The	date	of	the	rating

You can easily build out this Rating model in cab/models.py:

class Rating(models.Model):
 RATING_UP = 1
 RATING_DOWN = -1
 RATING_CHOICES = ((RATING_UP, 'useful'),
 (RATING_DOWN, 'not useful'))
 snippet = models.ForeignKey(Snippet)
 user = models.ForeignKey(User, related_name='cab_rating')
 rating = models.IntegerField(choices=RATING_CHOICES)
 date = models.DateTimeField()

 def __unicode__(self):
 return "%s rating %s (%s)" % (self.user, self.snippet,
 self.get_rating_display())

 def save(self):
 if not self.id:
 self.date = datetime.datetime.now()
 super(Rating, self).save()

As with the Bookmark model, you’re setting related_name explicitly on the relationship
to the User model in order to avoid any potential name clashes with other applications that
might define rating systems. Meanwhile, the rating value uses an integer field, with appropri-
ately named constants, to handle the actual “up” and “down” rating values, in much the same
fashion as the status field on the weblog’s Entry model. There is one new item, though: in
the __unicode__() method, you’re calling a method named get_rating_display(). Any time
a model has a field with choices like this, Django automatically adds a method—whose name
is derived from the name of the field—that will return the human-readable value for the cur-
rently selected value.

While you’re in the cab/models.py file, you can also add a method to the Snippet model
that calculates a snippet’s total score by summing all of the ratings attached to it. This method
will use Django’s aggregate support again, but with a different type of aggregate filter: django.
db.models.Sum. This filter, as its name implies, adds up a set of values in the database and
returns the sum.

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION 199

You’ll	also	use	a	different	method	to	apply	the	aggregate.	Previously,	you	used	the	annotate
method, because you needed to add an extra piece of information to the results returned by
the query. But now you just want to directly return the aggregated value and nothing else,
so you’ll use a different method called aggregate. If you have a Snippet object in a variable
named snippet, and you want the sum of all the ratings attached to it, you can write the query
like this:

from django.db.models import Sum
total_rating = snippet.rating_set.aggregate(Sum('rating'))

You can then add this functionality as a get_score method on the Snippet model (remem-
ber to place the import statement for the Sum aggregate at the top of the models.py file):

def get_score(self):
 return self.rating_set.aggregate(Sum('rating'))

Finally, in cab/managers.py, you can add one more method on the SnippetManager for
calculating the top-rated snippets (again, remember to add the import statement for the Sum
aggregate):

def top_rated(self):
 return self.annotate(score=Sum('rating')).order_by('score')

This takes care of all the custom queries you’ll need, so go ahead and run manage.py
syncdb to install the Rating model.

Rating Snippets
Letting users rate snippets is pretty easy. All you need is a view that gets a snippet ID and an
“up” or “down” rating, then adds a new Rating object. The view logic is simple. Create one
more view file—cab/views/ratings.py—and place this code in it:

from django.http import HttpResponseRedirect
from django.shortcuts import get_object_or_404
from django.contrib.auth.decorators import login_required
from cab.models import Rating, Snippet

def rate(request, snippet_id):
 snippet = get_object_or_404(Snippet, pk=snippet_id)
 if 'rating' not in request.GET or request.GET['rating'] not in ('1', '-1'):
 return HttpResponseRedirect(snippet.get_absolute_url())
 try:
 rating = Rating.objects.get(user__pk=request.user.id,
 snippet__pk=snippet.id)
 except Rating.DoesNotExist:
 rating = Rating(user=request.user,
 snippet=snippet)
 rating.rating = int(request.GET['rating'])
 rating.save()
 return HttpResponseRedirect(snippet.get_absolute_url())
rate = login_required(rate)

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION200

Only two moderately tricky things are going on here:

	 •	 You’re	going	to	expect	this	view	to	be	accessed	with	a	query	string	like	?rating=1 or
?rating=-1, so you verify that this string is present and that it has an acceptable value.
If not, you simply redirect back to the snippet.

	 •	 To	prevent	ballot	stuffing	by	a	user	trying	to	rate	the	same	snippet	over	and	over,	you	
ensure that the view simply changes the value of an existing rating if one is found.

Setting up the URL for this view should be fairly easy. You can simply add a cab/urls/
ratings.py file and set up the necessary URL pattern:

from django.conf.urls.defaults import *
from cab.views.ratings import rate

urlpatterns = patterns('',
 url(r'^(?P<snippet_id>\d+)$', rate, name='cab_snippet_rate'),
)

Adding an {% if_rated %} Template Tag
Go ahead and add an {% if_rated %} template tag that resembles the {% if_bookmarked %}
tag you developed earlier in this chapter. The compilation function for it should look familiar
(once again, this goes into cab/templatetags/snippets.py):

def do_if_rated(parser, token):
 bits = token.contents.split()
 if len(bits) != 3:
 raise template.TemplateSyntaxError("%s tag takes two arguments" % bits[0])
 nodelist_true = parser.parse(('else', 'endif_rated'))
 token = parser.next_token()
 if token.contents == 'else':
 nodelist_false = parser.parse(('endif_rated',))
 parser.delete_first_token()
 else:
 nodelist_false = template.NodeList()
 return IfRatedNode(bits[1], bits[2], nodelist_true, nodelist_false)

Once again, you use the ability to parse ahead in the template to work out the structure of
the if/else possibilities for the tag and store a pair of NodeList instances to pass as arguments to
the Node class, which you can call IfRatedNode. First, you need to change the import statement at
the top of the file from

from cab.models import Bookmark

to

from cab.models import Bookmark, Rating

Then you can write the IfRatedNode class:

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION 201

class IfRatedNode(template.Node):
 def __init__(self, user, snippet, nodelist_true, nodelist_false):
 self.nodelist_true = nodelist_true
 self.nodelist_false = nodelist_false
 self.user = template.Variable(user)
 self.snippet = template.Variable(snippet)

 def render(self, context):
 try:
 user = self.user.resolve(context)
 snippet = self.snippet.resolve(context)
 except template.VariableDoesNotExist:
 return ''
 if Rating.objects.filter(user__pk=user.id,
 snippet__pk=snippet.id):
 return self.nodelist_true.render(context)
 else:
 return self.nodelist_false.render(context)

At the bottom of the file, you can register the tag:

register.tag('if_rated', do_if_rated)

Retrieving a User’s Rating
Now that you have the {% if_rated %} tag, you can add a second, complementary tag to
retrieve the user’s rating for a particular snippet. This new {% get_rating %} tag lets you
set up a template like this:

{% load snippets %}
{% if_rated user snippet %}
 {% get_rating user snippet as rating %}
 <p>You rated this snippet {{ rating.get_rating_display }}.</p>
{% endif_rated %}

When a user has rated a snippet, this code should end up displaying something like, “You
rated this snippet useful.”

This new tag’s compilation function, do_get_rating, is straightforward:

def do_get_rating(parser, token):
 bits = token.contents.split()
 if len(bits) != 5:
 raise template.TemplateSyntaxError("%s tag takes four arguments" % bits[0])
 if bits[3] != 'as':
 raise template.TemplateSyntaxError("Third argument to➥

 %s must be 'as'" % bits[0])
 return GetRatingNode(bits[1], bits[2], bits[4])

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION202

The Node class, which you’ll call GetRatingNode, is also easy to write. You just need to
resolve the user and snippet variables, retrieve the Rating, and put it into the context:

class GetRatingNode(template.Node):
 def __init__(self, user, snippet, varname):
 self.user = template.Variable(user)
 self.snippet = template.Variable(snippet)
 self.varname = varname

 def render(self, context):
 try:
 user = self.user.resolve(context)
 snippet = self.snippet.resolve(context)
 except template.VariableDoesNotExist:
 return ''
 rating = Rating.objects.get(user__pk=user.id,
 snippet__pk=snippet.id)
 context[self.varname] = rating
 return ''

Next, you register the tag:

register.tag('get_rating', do_get_rating)

Then you can use the tag like this (in the detail view of a snippet, for example):

{% load snippets %}
{% if_rated user object %}
 {% get_rating user snippet as rating %}
 <p>You rated this snippet {{ rating.get_rating_display }}.</p>
{% else %}
 <p>Rate this snippet:
 useful or
 not useful.</p>
{% endif_rated %}

Looking Ahead
At this point, you’ve implemented everything on your original feature list for the code-sharing
application. Users can submit and edit snippets, tag them, and sort them by language. You
also have bookmarking and rating features as well as some aggregate views to display things
like the top-rated and most-bookmarked snippets and the most-used languages. Along the
way, you’ve learned how to work with Django’s form system, and you’ve picked up some
advanced tricks for working with the object-relational mapper and the template engine.

Chapter 10 ■ F IN IShING the CODe-SharING appLICatION 203

Of course, you could still add a lot more features at this point:

	 •	 Following	up	on	your	experiences	with	the	weblog	application,	you	could	easily	add	
comments (with moderation) and feeds.

	 •	 You	could	borrow	the	content-retrieving	template	tags	you	wrote	for	the	weblog	and	
use them to retrieve the latest snippets or adapt them to perform some of the custom
queries you’ve written for this application.

	 •	 You	could	build	out	a	whole	lot	of	new	views	and	queries;	even	with	the	simple	set	of	
models you have here, there’s a lot of room for interesting ways to explore this applica-
tion, and what you’ve set up so far just scratches the surface.

	 •	 You	could	explore	ways	of	integrating	this	application	with	some	of	the	others	you’ve	
written and used (perhaps a code-sharing site with a weblog that points out the site
staff’s favorite snippets).

By now, you’ve reached a point where you can start building out these features on your
own and tailor this application to work precisely the way you want it to. Consider some of
these ideas and think about how you’d implement them, then sit down and write the code.
Then start brainstorming some things you’d like that aren’t on the preceding list, and try your
hand at them too. Because if you’ve made it this far, you’re ready to make use of your knowl-
edge and put Django to work for you.

In recognition of that, I’m not going to dictate any more feature lists or implementations
to you. Instead, in the next two chapters, I’ll change gears a bit and talk about some general
best practices for developing your Django applications and getting the most out of them.

C H A P T E R 1 1

Practical Development
Techniques

Until now, you’ve been focusing on what Django’s libraries and components can do and
how you can take advantage of them in your applications. But Django’s code and the code you
write using Django make up only half the story when it comes to practical, efficient web devel-
opment. The other half consists of more general techniques and specific best practices. Some
of these apply broadly to any sort of software development, while others apply more specifi-
cally to Python, Django, and the Web. In either case, they comprise a solid set of guidelines
that can drastically improve your productivity and your ability to continuously produce work-
ing, useful code.

In this chapter, I’ll go over some techniques for organizing, maintaining, and deploying
your code. As you read, keep in mind that most of these topics are large enough to fill entire
books. For the most part, I’ll provide a brief overview of a given practice and some examples
showing how it’s useful, but you should follow up with your own research to find the specific
tools and techniques that best suit you.

Using Version-Control Systems to Track Your Code
There’s a common problem that bites every software developer sooner or later; it’s gotten me
more times than I can count, and if you spend much time writing code it’ll eventually bite you,
too. This universal nemesis is the attack of the sudden bug.

Imagine you’ve got an application that you’ve been working on for a while. You’ve imple-
mented all the features in your initial checklist, and they all work. Then you decide to get a
little adventurous and add a couple extra bits to really make your application shine. But about
halfway through you stop, save your work, fire up Django’s development server to try out
what you’ve got so far, and. . . disaster. Instead of seeing your shiny new application in action,
you’re getting ugly error messages. You’ve introduced a bug. But where is it? And, more impor-
tant, how can you recover an older version of your code that still worked?

Normally you’d be out of luck: every time you make changes to a file full of code and save
it, you’re destroying whatever you had before. If your changes introduced a bug into the code
and you didn’t realize it in time, you face a major problem.

This is precisely the sort of problem a version-control system (VCS) can solve for you.
In a nutshell, a VCS is a piece of software designed to do two things:

205

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES206

	 •	Keep	track	of	what	changed	and	when,	as	you	make	changes	to	your	files

	 •	Provide	the	ability	to	instantly	and	painlessly	retrieve	any	previous	version	of	any	file	
you’ve been working with

Using a VCS generally doesn’t impose a lot of changes on your development workflow.
Most of the time, it simply adds one extra step to carry out whenever you save one or more
files—an extra step in which you “commit” your changes.

A Simple Example
For most of my day-to-day work, I use a VCS called Mercurial. I like it because it’s both
extremely simple and extremely powerful. Plus, it’s written in Python, so I can customize it
easily if necessary. I tend to work almost exclusively on the command line, and Mercurial
provides a command named hg that lets me access its features. (The command name is a pun:
“Hg” is the chemical symbol for mercury.)

Suppose I want to write a new, simple Python script. I create a directory for it, and in the
directory I type:

hg init

This tells Mercurial that I want this directory to be a Mercurial repository, a location where
it will keep track of my files and any changes made to them. Next, I might create a file named
hello.py and place the following line of code in it:

print "Hello!"

So far, Mercurial doesn’t know about this file, but I can type a command to tell it that this
file should become part of my repository:

hg add hello.py

And then I can commit—create a permanent record of this file and its contents, along with
an explanatory message—by typing one more command:

hg commit -m "Add hello.py file"

Now Mercurial knows about this file, and it will track changes to the file from this point
forward. It will also start keeping a log of all the changes I’ve made, which I can view by typing
hg log. The output looks like this:

changeset: 0:55f0a856fa92
tag: tip
user: James Bennett
date: Wed Mar 18 01:16:24 2009 -0500
summary: Add hello.py file

Now, suppose I’d like to change hello.py to print “Hello, there!” instead of just “Hello!” I
can change the code to read:

 print "Hello, there!"

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES 207

and then save the hello.py file. If I now ask Mercurial to show me the current status of the
repository (by typing hg st), it will display:

M hello.py

This means that the file hello.py has been modified from the most recent version that
Mercurial knows about. I can use hg commit to tell Mercurial to record the new version:

hg commit -m "Change message printed by hello.py"

And now if I ask for a log of changes in my repository, I’ll see a new entry:

changeset: 1:50ca08429c16
tag: tip
user: James Bennett
date: Wed Mar 18 01:20:05 2009 -0500
summary: Change message printed by hello.py

changeset: 0:55f0a856fa92
user: James Bennett
date: Wed Mar 18 01:16:24 2009 -0500
summary: Add hello.py file

More important, I can now do two very useful things. First, I can view a summary of the
differences between the two versions of hello.py (the command to do so is called hg diff, but
I won’t show it here because its output can be somewhat complicated to read). Second, I can
instantly switch back to the older version of the file. All I have to do is type:

 hg revert -r 0 hello.py

The -r 0 means “revert to revision number 0.” Each change in my Mercurial repository is
assigned a number (starting from zero), and the log shows what that number is. Each change
also has a much longer identifier—for revision 0, it’s 55f0a856fa92—that can uniquely identify
the change even if it’s merged into another repository with a different sequential change num-
ber. But for now that’s not too important to worry about.

After running the revert command, Mercurial puts hello.py back the way it was origi-
nally, printing just “Hello!” If I’m happy with that version of the file, I can issue another
commit to keep it that way:

 hg commit -m "Restore original hello.py message"

This will produce a new entry in the log (assigned revision number 2). Now I can go on
working, with my file back just the way I want it. Note that until you issue a commit, Mercurial
doesn’t permanently record any change, even if you made that change by reverting back to an
earlier version of a file.

A good VCS can do a lot more for you, but this example should give you a general idea
of why it’s so useful. In exchange for just a tiny bit more work (remembering to commit each
time you change your code), a VCS gives you a quick and easy way to trawl back through what
you’ve done, view the history of any file you’ve been working with, and restore an older ver-
sion if you accidentally mess something up.

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES208

Version-Control Tools and Hosting Options
There are quite a lot of VCSs available, and many of them are free for anyone to download and
use. These three seem to be the most popular:

	 •	 Mercurial	(http://www.selenic.com/mercurial/wiki/)

	 •	 Git	(http://git-scm.com/)

	 •	 Subversion	(http://subversion.tigris.org/)

All three are solid and stable, and they support the basic features you need from a VCS.
Mercurial	and	Git	are	generally	a	bit	easier	to	get	up	and	running	for	managing	your	own	local	
development work, though; Subversion requires a bit more setup, and doesn’t make it as easy
to quickly create new version-controlled repositories.

Additionally, all three have good free or low-cost hosting options, which is important if
you want to share your code with other developers or make it generally available to the pub-
lic. Any good VCS has some sort of option to allow access to a repository over HTTP or other
network protocols. This way, both you and other developers can download a copy of the code
and—depending on how access to the repository has been set up—upload changes back to the
repository for others to see.

Setting up a repository to be accessible over the Internet and configuring access controls
to ensure that only people you trust can publish changes can be somewhat tricky, so having a
specialized repository-hosting service is extremely handy. Here are a few popular code-host-
ing services:

	 •	 For	Mercurial,	Bitbucket	(http://bitbucket.org/) offers a variety of hosting plans,
including one that’s free. It also provides basic bug tracking and the ability to set up
a wiki for your project.

	 •	 For	Git,	GitHub	(http://github.com/) similarly offers both free and paid plans, and
provides a project wiki and bug tracker as well.

	 •	 For	Subversion,	Google	Project	Hosting	(http://code.google.com/hosting/) is free
for open source projects, and it provides bug tracking and a wiki in addition to a
repository.	As	of	this	writing,	Google	has	also	announced—but	not	yet	made	publicly	
available—support for hosting Mercurial repositories.

Choosing and Using a VCS
If you take only one piece of advice from this chapter, let it be this: choose a VCS, learn how to
work with it, and use it in all of your projects. The amount of time and trouble you’ll save as a
result more than outweighs the time you’ll spend learning how to work with it.

Even if this sounds a bit scary, don’t worry; you have plenty of good options for learning
how to work with a VCS and for making the process as easy as possible. For each of the three
VCS tools I’ve mentioned here, you can take advantage of both full-length books and useful
add-ons that provide easier interfaces:

http://www.selenic.com/mercurial/wiki/
http://git-scm.com/
http://subversion.tigris.org/
http://bitbucket.org/
http://github.com/
http://code.google.com/hosting/

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES 209

	 •	 Mercurial	is	the	topic	of Mercurial: The Definitive Guide by Bryan O’Sullivan, which is
available for free online at http://hgbook.red-bean.com/hgbook.html. And TortoiseHg,
available for free at http://bitbucket.org/tortoisehg/stable/wiki/Home, provides an
easy-to-use graphical interface.

	 •	 Git	is	the	subject	of	a	community-edited	book,	available	online	at	http://book.
git-scm.com/, as well as several printed books. Multiple applications are available to
provide graphical interfaces; see http://git-scm.com/tools for a list.

	 •	 The	standard	book	on	Subversion is Version Control with Subversion by Ben Collins-
Sussman, Brian W. Fitzpatrick, and C. Michael Pilato, and it’s available for free online
at http://svnbook.red-bean.com/. TortoiseSVN, a free graphical interface to Subver-
sion, is available at http://tortoisesvn.tigris.org/.

There are also many other VCSs available besides these three; feel free to research them
before deciding which one you’d like to use.

Using Isolated Python Environments to Manage
Software
When you wrote your first Django application—the search system for your simple CMS—you
used Django’s manage.py startapp command to create the files for it directly inside your proj-
ect directory. As I’ve already mentioned, doing this hurts the reusability of an application, so
it’s generally best to write applications as modules that live directly on your Python import
path. In keeping with this practice, the standard Python package-installation process places
the code for any third-party Python modules or Django applications in a directory that’s on
your Python path.

But placing all your code in directories on your Python path exposes you to a new set of
problems:

	 •	 If	you	have	only	one	or	two	directories	where	you	place	Python	modules,	they’ll	
become increasingly crowded.

	 •	 You	might	eventually	run	into	two	different	applications	or	libraries	that	nonetheless	
have the same Python module name (this is a particular risk with modules that use
generic names like tagging), even though you’re allowed only one module of a given
name.

	 •	 Sooner	or	later,	you’ll	have	two	different	applications	that	depend	on	two	different	
versions of some particular module. For example, you might have an older application
that requires an old version of the library, and a newer application that requires a more
recent version. This is essentially the same problem as having two libraries with the
same name, but it occurs much more frequently.

To address these code-management problems, you could set up lots of different directo-
ries, each containing a particular set of libraries and applications, and then switch your Python
path to point at whichever one you’re currently working with. But this is tedious, repetitive,
and error-prone—just the sort of thing I’ve been trying to help you avoid.

http://hgbook.red-bean.com/hgbook.html
http://bitbucket.org/tortoisehg/stable/wiki/Home
http://book
http://git-scm.com/tools
http://svnbook.red-bean.com/
http://tortoisesvn.tigris.org/

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES210

A better solution is to use automated tools, and there’s a very good tool that solves all the
aforementioned problems and more. It’s called virtualenv, and you can download it for free
at http://pypi.python.org/pypi/virtualenv.

What virtualenv does is create a new isolated or “virtual” Python environment. It accom-
plishes this by creating a new directory that contains these items:

	 •	 A	copy	of	the	Python	interpreter

	 •	 A	directory	for	executable	Python	scripts

	 •	 A	site-packages directory for Python modules

	 •	 A	tool	called	easy_install that you can use to download and install new Python modules

	 •	 Scripts	that	you	can	use	to	“activate”	the	virtual	environment

This Python interpreter will be set up to use the site-packages directory created by
virtualenv rather than the system-wide site-packages directory normally used by Python.
When the virtual environment is active, any Python packages you install (whether via
easy_install, some other tool, or a manual setup.py install) will install into the virtual
environment’s site-packages directory.

This means that, rather than dealing with complicated import-path gymnastics, you can
simply create a new virtual environment for each project you work on, and any libraries you
install will be “visible” only to that environment. This solves all of the problems in the preced-
ing list:

	 •	 Because	each	project	has	only	the	libraries	and	applications	it	actually	needs,	you	don’t	
end up with overcrowded directories on your import path.

	 •	 Because	different	virtual	environments	don’t	interfere	with	one	another,	you	can	have	
two projects that use two different modules of the same name—each project will see
only the module that’s installed in its environment.

	 •	 If	you	have	two	projects	that	need	different	versions	of	a	library,	you	can	simply	install	
the appropriate version in each project’s virtual environment. Once again, the two
environments won’t interfere with each other, and each project will see only the ver-
sion of the library that it needs.

Using virtualenv does have the slight downside of creating additional copies of the
Python interpreter and standard libraries (and possibly multiple copies of libraries you install
into different environments), thus consuming more space on your hard drive. But in nearly
a year of using virtualenv (and creating quite a lot of virtual environments with it), I haven’t
noticed any significant drain on my laptop’s available space. virtualenv does a good job of
keeping the virtual environments as lightweight as possible, and its benefits more than make
up for the negligible amount of drive space the environments use.

Once you’ve downloaded virtualenv and installed it (choose the source package and use
the setup.py script it provides to install), you’ll have a script named virtualenv.py. To create
a new virtual Python environment, open a command line and type:

python /path/to/virtualenv.py django_environment

http://pypi.python.org/pypi/virtualenv

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES 211

(Replace /path/to/virtualenv.py with the actual location of the virtualenv.py script on
your computer.)

This will create a new directory called django_environment, containing the new Python
environment. Inside it is a directory named bin, whose contents depend on your computer’s
operating system:

	 •	 On	Windows,	there	will	be	two	Windows	batch	scripts	that	you	use	to	activate	and	
deactivate the virtual environment—activate.bat and deactivate.bat, respectively.
Typing \path\to\virtualenv\bin\activate.bat (with the correct path for the virtual
environment’s directory) activates the environment, and doing the same with
deactivate.bat deactivates it.

	 •	 On	Mac	OS	X,	Linux,	and	UNIX	systems,	there	will	be	a	single	script	named	activate,
which	is	written	in	the	standard	UNIX	bash scripting language. To run it, simply type
source activate from a command line in the environment’s bin directory. To deacti-
vate the environment, just close the terminal window or type the command deactivate.

Once you’ve activated your virtual environment, typing python (in the same command-
line session) will run the virtual environment’s Python interpreter. The interpreter will then
look for Python modules in the virtual environment’s site-packages directory.

From there you can, for example, install Django by typing:

 easy_install Django

This will download the latest Django release package and install it in the virtual environ-
ment’s site-packages directory. You can also place any other Python modules you’d like in the
virtual environment’s site-packages directory, and only that virtual environment will be able
to see them.

Creating a new virtual environment each time you start a project is a good habit to get
into, because it’ll greatly simplify the process of installing and managing Python code and
keeping different projects from stepping on one another’s toes.

If you’re using Mac OS	X,	Linux,	or	some	other	UNIX	system,	I’d	recommend	also	check-
ing out virtualenvwrapper (http://www.doughellmann.com/projects/virtualenvwrapper/),
which provides a set of utilities to make it even easier to manage, activate and deactivate, and
work with virtual Python environments created by virtualenv. (Unfortunately, virtualen-
vwrapper is not available for Windows.)

And once you’ve finished the initial development work on an application and you’re ready
to deploy it, virtualenv can continue to help you keep things straight. On the server where
I host my personal web site and various other projects, I have virtualenv installed, and I cre-
ate a new virtual environment for each site I deploy. This lets me easily keep different sets of
applications from interfering with one another, which helps when I have projects with con-
flicting requirements. When I’m ready to deploy new code, virtualenv lets me ensure that I’m
updating only the code used by the specific sites I’m changing.

Furthermore, support for using a virtual Python environment created by virtualenv is
built into mod_wsgi, a module that allows Python web applications to run in an Apache web
server. See http://code.google.com/p/modwsgi/wiki/VirtualEnvironments for details.

http://www.doughellmann.com/projects/virtualenvwrapper/
http://code.google.com/p/modwsgi/wiki/VirtualEnvironments

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES212

Using Build Tools
While using virtualenv solves quite a lot of problems in normal day-to-day Python develop-
ment and even in deployment, there’s an even tougher task that it can’t help with: tracking
all of your project’s dependencies and creating reproducible builds. In a nutshell, this task
involves quickly creating a completely functional copy of your application’s code and all the
libraries or other applications it depends on, from scratch.

There are plenty of situations when you’ll need to be able to do this:

	 •	 If	you’re	setting	up	your	application	on	a	web	server,	you’ll	need	to	ensure	that	all	the	
code is present and everything’s properly configured.

	 •	 If	you	personally	use	multiple	computers	(say,	a	desktop	PC	in	your	home	or	office,	and	
a laptop on the road), you’ll need to make sure they all have identical copies of your
application and everything it needs.

	 •	 If	you’re	working	as	part	of	a	team	to	develop	a	larger	project,	everybody	needs	to	have	
the same code and all of the required libraries to support it.

While you could manually write up a long set of instructions for each and every project
you work on, and then go through it each time to ensure you set everything up properly, using
an	automated	process	is	much	easier.	Generally,	software	that	helps	you	set	up	such	a	process	
is called a build tool. You can use a build tool to write up a specification of all the things your
application needs, and then you can run it to fetch everything and set it up exactly the way you
need it.

For Python, two popular pieces of software can serve as build tools:

	 •	 zc.buildout, available at http://pypi.python.org/pypi/zc.buildout/

	 •	 pip, available at http://pypi.python.org/pypi/pip/ (pip actually bills itself as only a
package installer, but it provides enough functionality to work as a build/deployment
tool in many common situations)

Of the two, zc.buildout offers more features, but as a result it’s a bit more complicated to
get up and running. On the other hand, pip isn’t able to do quite as much, but you’ll be able to
dive into it more easily. I’d recommend studying both to determine which one will best suit your
needs, but to give you a feel for some simple examples I’ll walk through a bit of what pip can do.
Specifically, I’ll show you how to use pip to create, freeze, and replicate an environment.

Installing pip is fairly easy, especially if you have already installed the easy_install tool
(parts of which are a prerequisite). As you’ve already seen, virtualenv sets up easy_install for
you automatically, so in a virtual environment you can simply type:

easy_install pip

And easy_install will do the rest.
At its heart, pip is a package-installation tool (and in fact is intended to serve as a replace-

ment for easy_install). This means you can use it to quickly install Python modules and
automatically track down their dependencies at the same time. For example, you can use pip
to install Django:

pip install Django

http://pypi.python.org/pypi/zc.buildout/
http://pypi.python.org/pypi/pip/

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES 213

But where pip really shines is in a feature called a requirements file. This is simply a plain-
text file containing a list of packages, which can be specified by:

	 •	 The	package	name,	if	the	package	is	listed	on	the	Python	Package	Index

	 •	 The	URL	of	a	Python	package,	if	the	package	isn’t	on	the	Python	Package	Index	or	if	
you’d rather use an alternate version from somewhere else

	 •	 The	location	of	a	project’s	version-controlled	repository	on	the	Web	(Mercurial,	Git,	
and Subversion are supported)

Once you have a requirements file, you can pass the name of that file (instead of a package
name) to pip install, and it will install all of the packages listed in the file, along with any
dependencies those packages specify.

More important, pip provides a way to create a requirements file from your current set of
installed Python modules via the command pip freeze. So, for example, if you’ve created a
virtual environment with virtualenv and installed your application and everything it needs,
you can type this in the virtual environment:

 pip freeze my_django_environment.txt

This will create the file my_django_environment.txt and fill in a list of everything installed
in your virtual environment—in other words, your application and everything it needs. Then
you can, for example, upload a copy of that file to your web server and type this (if you have
pip installed there):

pip install my_django_environment.txt

This will install all the applications and libraries listed, replicating the code that’s in your
development environment on your server.

You can also use pip together with virtualenv. Within an active virtual environment, pip
will install into that environment’s site-packages directory, but you can also have pip create
a new virtual environment for you and install everything into it, like this:

pip install -E new_django_environment/ my_django_environment.txt

If virtualenv is installed, this command will create the new virtual environment new_
django_environment and install everything from the requirements file into it.

So now you can set up a simple but extremely powerful workflow:

 1. On your computer, create a new virtualenv, install pip into it and other Python modules
as you need them.

 2. When you’re ready to deploy your application, use pip freeze to create a requirements
file from your virtual environment.

 3. On your server, use pip install to install all the necessary modules (either in a virtual
environment you’ve already created, or in one that pip creates for you).

You can also use a similar process to easily reproduce your development environment on a
different computer, or to enable new coworkers to quickly get their own copies up and running.

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES214

Note that pip requires any software you want to install to be available as a standard Python
package, and zc.buildout (if you decide to use it instead) works best with Python packages. In
the next chapter, I’ll explain how you can create a package from a Django application so that
these and many other tools will be able to work effortlessly with your own applications.

Using a Deployment Tool
The last big piece of any practical development process is an easy way to move your code from
your own computer where you’re developing it to the web server where it will run (or multiple
web servers, as the case may be). While tools like pip and zc.buildout can help you initially
set up a working copy of your code, even the relatively simple process of running the tools on
one or more servers every time you update something can quickly become tedious. Also, some
things—such as settings files and other configuration information—won’t fit into the sort of
packaging and build workflow that these tools provide.

Of course, you could simply use FTP or a similar protocol to upload files to your web
server whenever you need to make changes, but once again that becomes tedious and repeti-
tive. What’s best is to have some way to specify what needs to be done for an update, and then
have it happen automatically. You can accomplish this with a deployment tool.

As with most of the material I’m covering here, this is an extremely broad topic on which
you’ll want to do at least a bit of your own research. But to give you an idea of what a good
deployment tool can do for you, I’ll walk through some examples of a tool I use called Fabric.

Fabric is, of course, written in Python. You can find it online at http://www.nongnu.org/
fab/index.html, and both easy_install and pip can install it automatically for you (through
the command pip install Fabric). Fabric provides a command called fab, and deployment
revolves around writing a type of Python script called a fabfile.

As I’ve said, I typically use Mercurial as my VCS, and most of my projects actually reside
in Mercurial repositories that are accessible over the Web. (For example, all of the code for this
book is maintained in a Mercurial repository hosted at Bitbucket.) This means that when I’ve
made changes to my copy of the code, I can “push” them into the repository online, and other
people can “pull” from the repository to get the updated code.

So here’s an example of a fabfile (which needs to be named fabfile.py) that would push
code from my copy of an application into an online repository, log in to a couple of web serv-
ers, download the updated code, and reload the application:

config.fab_hosts = ['server1.example.com', 'server2.example.com']

def deploy():
 local("cd myapp/")
 local("hg push")
 run("cd /home/code/myapp/")
 run("hg pull -u")
 sudo("httpd restart")

http://www.nongnu.org/

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES 215

The various functions provided by Fabric will execute these commands:

	 •	 local() runs a command on your computer. In this case, it navigates into the directory
containing the application and executes hg push to send changes to the online repository.

	 •	 run() runs a command on the web server. Here, it goes to the directory containing the
application and executes hg pull -u to update the code with the latest changes in the
online repository.

	 •	 sudo() runs a command on the web server, but it requires administrative privileges
(it will prompt you to type in a password). Because the code’s just been updated, this
script uses sudo() to restart the web server and reload the application.

The config.fab_hosts variable simply holds a list of names of servers that Fabric should
execute commands on. Fabric uses Secure Shell (SSH) as an encrypted connection to connect
to the remote server, and if necessary it will prompt you for passwords when it needs to log in.

Running the preceding script is simple; you’d simply type:

 fab deploy

from within the directory containing the fabfile.py script, and Fabric would run the deploy()
function and execute all the commands it specifies.

Fabric supports a number of other useful features—uploading files and directories,
allowing fine-grained configuration of which servers to log in to, and so on. And because the
fabfile.py script is written solely in Python, it’s extremely extensible. Even this simple exam-
ple should give you an idea of the power of a good deployment tool, and of the time you can
save by using such a tool.

Simplifying Your Django Development Process
So far, this chapter has focused on tools and techniques that apply broadly to many types of
projects, but there are a few Django-specific things you can do to simplify the process of devel-
oping and deploying Django applications. Some of these combine nicely with other advice
from this chapter, but most of them will help you out with any Django application, regardless
of any other tools you happen to be using.

Living Without Projects
When you started your first Django project at the beginning of this book, you used django-
admin.py startproject, which created a simple Python module containing the manage.py
helper script, the settings.py file for your settings, and the urls.py	file	for	the	root	URL	con-
figuration. This command is handy to have, of course, but it’s not actually necessary.

In order to work, Django just has to be pointed at a valid settings file, and by default it
looks for an environment variable named DJANGO_SETTINGS_MODULE to tell it where to find the
settings. The value of this variable should be the Python import path of the settings file, such

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES216

as cms.settings. (Note that environment variables are quite different from Python variables;
they typically apply broadly to the way you work with your computer, as in the case of the
PYTHONPATH environment variable you set in Chapter 4 to tell Python where to look for your
code.)

As long as you set this environment variable properly (you usually must do this anyway
when you deploy Django on a web server), there’s no need for manage.py, which simply sets
DJANGO_SETTINGS_MODULE for you and then executes whatever command you’ve asked for by
using the same code as django-admin.py. (This is why, in Chapter 8, you were able to create the
basic files for the cab code-sharing application using django-admin.py startapp.)

The urls.py	file	also	isn’t	required;	Django	actually	determines	the	root	URL	configuration	
by looking at the setting ROOT_URLCONF, and django-admin.py startproject creates a settings file
that points this setting to the project’s urls.py file (for example, ROOT_URLCONF was set to cms.
urls for your CMS project from Chapters 2 and 3).

Finally, you’ve already seen that developing applications directly as standalone Python
modules—rather than placing them inside a project’s directory—is generally better for reus-
ability. You’ll see more on that topic in the next chapter.

So a Django “project” actually isn’t needed. Instead of creating projects each time you
start working on a new Django-powered site, you might create just one directory called config,
and inside it directories named settings and urls (and, as always, __init__.py files in each to
tell Python that these directories are Python modules). Then you could place settings files and
URL-config	files	for	your	sites	into	the	proper	directories,	and	refer	to	them	in	a	consistent	way	
(using names like config.settings.site1, config.settings.site2, config.urls.site1, and so
on).

This sort of setup offers some advantages. If you manage a large number of Django-
powered sites, it’s much easier to have all the configuration in one place than to constantly
hunt through lots of different project directories to find what you’re looking for. And if you use
a consistent naming scheme, you’ll find it much easier to develop automated tools that know
about all the sites you’re managing. For example, a script that simply looks at all the files in
a “settings” directory will be much simpler to write and maintain than one that has to scan
through multiple project directories.

Of course, you won’t have the manage.py helper script anymore, but django-admin.py can
do anything manage.py can do, and it accepts a --settings argument that tells it what settings
to use. So if you have a configuration/settings directory as described earlier, and you want to
run syncdb for one particular site, you could type:

django-admin.py syncdb --settings=config.settings.site1

And django-admin.py would take care of it for you. You can also simply set the DJANGO_
SETTINGS_MODULE environment variable (although, as covered in Chapter 4, the process for
doing this varies according to your operating system).

Deciding whether working without projects is right for you will, of course, depend on what
you’re doing. If you don’t plan to have many Django-powered sites, it might be simpler to just
use startproject to create a project directory for each one, and use manage.py as usual. But if
you’re going to be working with a large number of sites (more than about four or five) on a reg-
ular basis, you might want to explore a “project-less” setup to see if it can make your life easier.

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES 217

Using Relative Paths in Settings
When you were configuring your	first	Django	project,	you	set	it	up	to	use	a	SQLite	database,	
which is contained within a single file, and you specified a directory where your templates
would be stored. The relevant settings—DATABASE_NAME and TEMPLATE_DIRS—were simply filled
in with the appropriate locations on your computer, and that worked just fine.

But as soon as you start thinking about deploying your application on a web server, or
having multiple people working on the same project, having these sorts of hard-coded file and
directory names starts to cause problems. What if different developers keep things in differ-
ent places on their computers? What if some developers use Windows and others use Mac OS
or	Linux	(which	use	different	ways	of	specifying	locations	on	the	file	system)?	What	about	the	
web server? It probably won’t have the same directory layout as your own computer.

The solution to this is to avoid placing these sorts of hard-coded locations in your settings,
and that’s extremely easy to do. A Django settings file is just Python code, and even though
it’s mostly just made up of variables with values assigned to them, you have the full power of
Python available within that file.

One simple case would be a project directory that contains the template directory in addi-
tion to the settings.py, manage.py, and urls.py files. Then you could set TEMPLATE_DIRS like this:

import os

TEMPLATE_DIRS = (
 os.path.join(os.path.abspath(os.path.dirname(__file__)), 'templates'),
)

Python’s os.path module lets you easily combine and work with file and directory paths,
and knows how to generate strings that will be valid paths for the operating system you’re
using. And every Python file has access to a special variable named __file__, which contains
the full path to that file. Putting this module and variable together, the preceding piece of code
sets TEMPLATE_DIRS to include a directory named templates inside the same directory as the
settings file, no matter where the settings file happens to be.

You can do the same with the DATABASE_NAME	setting,	for	example	to	specify	a	SQLite	data-
base residing in the same directory as the settings. You could have set up the database for your
simple CMS project like this:

 DATABASE_NAME = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'cms.db')

Of course, this process gets repetitive if you’re doing it for multiple settings. For a better
solution, calculate the location of the settings file once, store it in a variable, and refer to it as
needed:

 SETTINGS_DIR = os.path.abspath(os.path.dirname(__file__))

Then you could specify the database like this:

DATABASE_NAME = os.path.join(SETTINGS_DIR, 'cms.db')

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES218

Using these sorts of relative paths—so named because they’re relative to the location
of the settings file—solves all of the problems associated with hard-coded directory and file
paths. Relative paths make it trivially easy for multiple developers to work on the same project,
and they make it easy for you to use the same settings file for development on your computer
and for deployment on your web server.

Dealing with Settings That Change for Different Environments
Of course, there are some settings that simply can’t remain the same for both local develop-
ment on your computer and actual deployment on your web server. For example, you might
do	your	development	work	using	a	SQLite	database	file,	but	you	probably	don’t	want	to	use	
SQLite	for	your	actual	site;	you’ll	most	likely	use	a	MySQL,	PostgreSQL,	or	Oracle	database	
server instead. Still, it would be nice to minimize the number of changes you have to make.

Once again, the fact that a Django settings file consists of Python code is important.
Django has a setting named DEBUG, which is set to True by default (this enables things like the
error pages you saw in earlier chapters, which displayed lots of useful debugging information
when something went wrong). But you’ll always want to set DEBUG to False on a live site. So you
could change the database settings depending on the value of the DEBUG setting, like this:

if DEBUG:
 DATABASE_ENGINE = 'sqlite3'
 # ... other settings for use with SQLite would go here
else:
 DATABASE_ENGINE = 'mysql'
 # ... settings for use with MySQL would go here

Then all you’d have to do is change the value of the DEBUG setting when switching between
local development and live deployment. And this works well with other settings, too; for exam-
ple, Django includes a caching system that can drastically improve your site’s performance by
letting you store data in any of several types of caches. Anything from the results of a complex
database query up to a fully rendered web page can be cached, which means you can save
your server a lot of processing if you have pages that don’t change much or don’t need to be
customized on a per-user basis. One of the settings involved in caching is called CACHE_BACKEND,
which you can set to dummy (meaning no caching is done) or to the name and location of a cache
Django should use. (For full details, consult the Django caching documentation at http://docs.
djangoproject.com/en/dev/topics/cache/.)

Because you probably don’t want to do any caching in development, you could once
again use DEBUG as a cue to change the setting:

if DEBUG:
 CACHE_BACKEND = 'dummy'
else:
 # ... settings for the real site cache would go here

http://docs

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES 219

But while this option is handy for changing the values of a few settings, it does still cause a
couple of problems:

	 •	 The	settings	file	is	going	to	become	more	complicated,	thanks	to	all	the	different	
options that need to be set one way or another depending on the value of DEBUG.

	 •	 You	still	have	to	remember	to	change	the	value	of	the	DEBUG setting, and—because
other settings will change when it does—you might not be able to do any local testing
of your site without DEBUG set to True.

A more flexible solution is to simply write your settings file as usual and include all the
correct values for live deployment on your actual web server, and then add a few lines like this
at the very bottom:

try:
 from local_settings import *
except ImportError:
 pass

This code will try to find a file named local_settings.py in the same directory as the
settings file. If it succeeds, it will import everything defined in the file. If no such file exists,
nothing will happen.

The advantage to this solution is that you can simply create a local_settings.py file, and
in it place anything you’d like to override for local development. When you actually deploy
your site, that file won’t exist and nothing will be overridden, but on your own computer
the values defined in your local_settings.py will take precedence over the normal settings.
(Because this is happening at the very bottom of settings.py, any values it imports will over-
ride settings defined further up in the file.)

This solution also lets each developer on your team maintain her own local_settings.
py file, which makes some types of customizations much easier. For example, one developer
might actually have a database server running on her computer, so she could use that for
development	instead	of	a	SQLite	database	file.

You could even take this further and write code in the settings file to look for overridden
settings in multiple different locations, depending on some other parameter. Once again, the
fact that the settings file is just Python code makes this extremely easy.

Unit-Testing Your Applications
Earlier when I was explaining some of the utility behind using a VCS, I mentioned one com-
mon case: you make some changes to your code, and suddenly it stops working. It would be
nice to have some easy way to find out immediately whether a new change or a new piece of
code has broken anything in your application, so you could quickly fix it. That’s precisely what
unit testing can do for you.

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES220

Entire libraries of books could be (and have been) written about unit testing, but in a nut-
shell it consists of writing small pieces of code that test different parts of your application. A unit
test gets its name from the fact that each one tests some “unit” of your code—some particular
function or method, for example—by calling it and checking that the output is what you expect.

Django includes a robust unit-testing framework, and encourages you to write tests as you
write code; this is why the startapp command creates a tests.py file for you. Full documenta-
tion for Django’s testing framework is available online at http://docs.djangoproject.com/en/
dev/topics/testing/, but I’ll walk through a few examples to give you an idea of how it works
and how it’s useful.

Django’s testing framework supports two different ways of writing tests, both built on test-
ing libraries included with Python. One of these, based on Python’s doctest module, lets you
write tests that look like what you’d type in a Python interpreter. That is, you write a few lines
of code with the interpreter’s >>> prompt in front of them followed by a line that shows what
the result should be, and the test passes if it matches the actual result of running that code.
The other way of writing tests is based on Python’s unittest module; setting it up requires a
bit more work, but it makes more complex tests easier to write.

Here’s a simple example of a unittest-based test, which might go in the tests.py file for
your coltrane weblog application:

from django.test import TestCase

class EntryTests(TestCase):
 def test_entry_archive_view(self):
 response = self.client.get('/weblog/')
 self.assertEqual(response.status_code, '200')
 self.assertTemplateUsed(response, 'coltrane/entry_archive.html')

This sets up a test case—a collection of unit tests to be run together—with one test in it.
This test uses a feature of Django’s testing framework: each Django TestCase object has an
attribute named client, which can issue mock HTTP requests to your application and inspect
the responses it returns. Specifically, this test (of the weblog’s entry-archive view) issues an
HTTP GET	request	to	the	URL	/weblog/, which (the test assumes) is an index of weblog entries.
It then makes two assertions: that the HTTP response returned from that request had a status
code	of	200	(which	HTTP	defines	as	“OK,”	meaning	no	errors	occurred),	and	that	the	view	
used the template coltrane/entry_archive.html.

If you had this code in the tests.py file of your weblog application, and a project with the
weblog	application	installed	(and	the	appropriate	URLs	configured),	you	could	run:

python manage.py test coltrane

and the preceding test would be executed. If either of the assertions in the test failed (say,
because the view returned a server error or used the wrong template), the Django testing
framework would tell you which one failed and why. If both assertions passed, the testing
framework would simply display a message saying the test passed.

This example also demonstrates the cardinal rule of unit testing: each test should cover one
and only one logical part of your application’s code. The single method test_entry_archive_

http://docs.djangoproject.com/en/

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES 221

view on this TestCase does just that: it tests the behavior of one view. A proper test suite for the
weblog application would have additional methods for testing each of the other views, as well,
and would have additional TestCase classes for testing the views for links, categories, and tags,
as well as the comment-moderation features.

You’ll want to read through Django’s testing documentation to get a feel for all of the
features. In addition to what’s provided by Python’s built-in testing libraries, Django adds a
number of things, including:

	 •	 The testing HTTP client: This lets you send requests to your application and inspect
the responses.

	 •	 A number of extra assertions: These include assertTemplateUsed, which you saw in the
preceding code. This assertion verifies that a Django view uses a particular template.
You can also make assertions about the contents of the template’s context.

	 •	 A fixture-loading system: Django’s testing framework doesn’t use your real database
because that could overwrite or delete data you’re relying on. Instead, it creates a tem-
porary database that exists only during the test run. With Django’s help, you can create
files called fixtures that contain data to load during the test run so code that performs
database queries can be tested.

	 •	 A mock e-mail system: This lets you verify the behavior of applications that send
e-mail.

Generally,	it’s	a	very	good	idea	to	write	tests	for	a	Django	application	as	you	write	the	code	
itself. That way, each time you make a change, you can run the tests (with “manage.py test” or
“django-admin.py test”) to verify that nothing has broken and that any new features you’ve
added work properly.

Unit testing can also tie in conveniently with your VCS. Many VCS tools now support a
feature called bisecting, which helps you pinpoint the exact change that introduced a bug. You
need three things to perform bisecting:

	 •	 A	revision	number	for	a	version	of	the	code	that	worked

	 •	 A	(later)	revision	number	for	a	version	of	the	code	that	doesn’t	work

	 •	 A	command	that	returns	a	standard	exit	code	indicating	success	or	failure	(Django’s	
test system does this, via manage.py test)

The VCS will then start at a point halfway between the two revisions, run the specified
command, and see whether it fails. If the command fails, the VCS backs up to a point halfway
between the “good” revision and the one it just tested, and repeats the process. (If the com-
mand succeeds, it instead moves forward to halfway between the revision it just tested and
the known “bad” revision.) Moving in this way, the VCS will eventually identify the revision at
which the code stopped working.

Although it requires a bit more work and solid discipline, writing and maintaining a
thorough set of unit tests for each application you write has so many benefits that it’s always
worthwhile. A good test suite helps you identify and fix bugs quickly, and gives you confidence
that when you deploy your applications, they’ll work exactly as you want them to.

CHAPTER 11 ■ PRACTICAL DEVELOPMENT TECHNIQUES222

Looking Ahead
In the next (and final) chapter, I’ll cover a set of principles for building Django applications
that you can use and reuse in multiple projects. Although you’ve already encountered some of
the basic ideas, the ability to write code once and reuse it multiple times is one of the strongest
features Django has to offer, and it’s worthy of more in-depth coverage.

Before you move on, though, I encourage you to spend some time researching some of
the general topics covered in this chapter and to think about how you can fit them into your
development workflow. Even if you never end up deploying a single Django application, most
of the tools and techniques I’ve mentioned can help you become a better and more efficient
general-purpose programmer.

C h a p t e r 1 2

Writing reusable Django
applications

So far, this book has mostly been concerned with covering various aspects of Django in the
context of building a set of specific applications. Through the process of writing the code for
those applications, you’ve seen Django’s major components in action and learned how they
can drastically reduce the amount of work needed to build useful web applications. But that’s
really just a small part of what Django can do to help you cut down on development time and
effort. By encouraging certain best practices and by making it easier to follow them as you
write, Django also helps you improve the quality, flexibility, and reusability of your code. And
in the long run, that’s a much larger gain.

Time and time again, you’ve seen how components included in Django, or applications
bundled along with it, can help you kick-start the process of developing a new application
by handling common tasks for you. When you’re developing with Django, you don’t need to
worry about writing lots of code to handle your database queries. It’s easy to route specific
URLs to parts of your application or to generate HTML through templating. And when you
use the applications bundled with Django, you can get a lot of functionality for “free.” For
instance, you’ve seen how Django provides features such as user accounts and authentication,
RSS-feed generation, user-submitted comments, and even a dynamic administrative interface
for site content.

From there, the natural next step is to consider ways to write new applications that you
can reuse again and again, just as you reuse Django’s own components and the bundled appli-
cations in django.contrib. The applications in django.contrib provide good examples to look
at, because—aside from the fact that they’re included in the Django download—there’s noth-
ing special or magical about them. All of them, even the administrative interface, are simply
applications that have been written with flexibility and reusability in mind, so they’re no dif-
ferent from any other well-designed Django application.

As you gain experience with Django and start building up a library of applications you’ve
written yourself, you’ll find that developing your own reusable applications is surprisingly
easy. Plus, doing so puts a powerful resource at your fingertips: instead of reimplementing a
particular feature each time you need it, you can simply write it once and reuse it again and
again. This gives you an impressive head start on each new project.

In this chapter, I’ll take an in-depth look at some practical guidelines for developing these
sorts of reusable applications, and I’ll show you some specific techniques that can make the
process easier.

223

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS224

One Thing at a Time
A popular adage in software development states that a particular program should “do one
thing, and do it well.” This dates back to the early days of the UNIX operating system, which
consisted, in part, of a collection of small, simple programs that users could chain together to
create powerful effects. Because of this, UNIX is often contrasted with operating systems that
tend to use large, complex applications packed with lots of features.

While complex applications do have their place, the philosophy of building up a system
from a collection of smaller, self-contained parts opens up a lot of flexibility. Instead of making
changes to a large and complicated piece of software when you need new features and keeping
track of how all its features interact with one another, you can build up different arrangements
of simpler applications and write new code only when you don’t yet have the necessary pieces
to build what you need.

Although UNIX originally applied this idea to tasks like text processing, this approach is
just as powerful when applied to web development. By keeping a library of small, self-con-
tained applications that each handle some particular feature, you gain the ability to reuse them
over and over, in different combinations and configurations, as building blocks for new sites.

Staying Focused
One of the greatest dangers in software development is the process of feature creep or scope
creep. Suppose you have an idea for an interesting feature that’s at least somewhat related to
what you’re working on, so you go ahead and add it. But once that feature is in place, you start
coming up with ideas for ways to build on it and enhance it with even more features and capa-
bilities, and you start writing more and more code to support these features. Eventually, you
end up with a huge tangled mess that has strayed significantly from its original purpose.

However, when you’re writing code for a modular system like Django, it’s often a bit easier
to spot the warning signs of feature creep and get back on track. A complex site with a lot of
features but only a small number of applications listed in INSTALLED_APPS often indicates that
one or more of the applications it’s using is trying to do too much.

Similarly, the relatively simple structure of a Django application—models, views, URLs,
and maybe some custom forms or template tags—will quickly start to feel cluttered if you’re
trying to pack in too many features. Sometimes you’ll genuinely need to maintain a large num-
ber of model classes or logical groups of views and URL patterns in a single application, but
often the amount of bookkeeping work you’ll need to do to keep that much code organized
will hint that your application isn’t as tightly focused as it could be.

As a general rule, the easiest way to stay on track is to answer a simple question: “What
does this application do?” Rather than list out every feature, just try to summarize the applica-
tion’s purpose. For example, with the weblog application, the answer to this question would
be, “Give the site staff an easy interface for posting entries and links into a weblog, and keep
these entries organized through tags and topical categories.” For django.contrib.auth, the
answer would be, “Provide a mechanism for storing user-account information and for authen-
ticating users so they can interact with the site.”

If you find that your answer to this question is getting long—more than a sentence or two,
in a lot of cases—it might be time to step back and evaluate if your application is trying to do
too many things at once.

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS 225

Once you’re in this mindset, you’ll find that you approach new feature ideas with skepti-
cism. Rather than thinking of features solely in terms of how cool they’d be to have on your
site, you’ll also start thinking in terms of how they relate to your application’s purpose. This
makes it a lot easier to weed out things that don’t belong and either reject them or file them
away to be implemented somewhere else.

Advantages of Tightly Focused Applications
Once you’re developing applications with this sort of tight focus, you’ll find that it’s a lot easier
to reuse them. For example, a well-focused application is often a lot simpler to set up and
install, because you usually don’t have to worry about setting up large numbers of templates
or keeping track of (and possibly training your site staff to use) lots of new data models.

You’ll also find that it’s much easier to adapt a tightly focused application when you
encounter situations where you do need to add a new feature or build in more flexibility,
because you usually have less code to review and edit and it’s usually well-organized. Many
extremely useful Django applications consist of only three or four short files of code.

Finally, you’ll notice that you suddenly have a much easier time dealing with the real,
specific problems your application is trying to solve. When you’re no longer maintaining large
numbers of unrelated features in a single application, you’re free to examine its particular
problem domain in much greater detail and come up with many more thorough and flexible
solutions.

A good real-world example of this would be to expand the simple user-signup system
I presented in Chapter 9 to teach you about Django’s form-processing system. It would be
tempting to simply go from the system’s basic signup form and view and start adding features
that have less relevance to the user-signup process. For example, you could let the user fill out
a site-specific user profile or set up preferences to control how the site is presented to him.
However, that’s the beginning of feature creep. Although user profiles and preference systems
are important and useful features to have, they don’t have a whole lot to do with the user-
signup process, and just getting that process right can be complicated enough on its own.

On the other hand, a feature more relevant to the signup process might be an explicit acti-
vation step, in which you send the new user an e-mail instructing her to confirm the account.
Also, if you need to have user signups on multiple sites, you’ll probably need to specify differ-
ent ways to collect the initial account information. For example, some sites might need new
users to read and agree to terms of service or other policies, while others might have restric-
tions on who can sign up. Finally, many sites also want some way of preventing automated
signups by spambots. Many spambots can navigate automatically through an e-mail–based
activation system, so you might want to add additional wrinkles to the signup process, such as
optionally generating an image with some text in it and requiring the new user to read it and
type the text into a field on the form.

This is a common scenario in application development: even something that seems
simple at first glance can have a lot of complexity lurking just below the surface. Keeping your
applications tightly focused will help you keep your attention on dealing with that complexity,
so you don’t end up with only a partial solution to the problem you originally set out to solve.

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS226

Developing Multiple Applications
The idea that any given application should do one thing and do it well is only half of the pro-
cess of building complex systems from small, self-contained parts. The other half is the notion
that you should start with an initial idea and end up developing several applications that
implement different parts of it.

To a certain extent, this is a natural consequence of developing tightly focused applica-
tions. If you don’t let yourself fall into feature creep within a given application, you’ll naturally
end up with a list of features you’d like to have but that don’t logically belong to that applica-
tion. The obvious next step, then, is to develop a separate application with an appropriate
focus for the features you want to implement.

Getting into the habit of “spinning off” new applications whenever you have a new set of
features to implement can be tricky at first, not only because it’s easy to fall victim to feature
creep, but also because it’s extremely tempting to view web development in a way that equates
an application with a web site.

Now, sometimes this isn’t a bad idea. For example, many popular off-the-shelf weblog-
ging tools take this approach and provide not only basic features like entries and links, but
also their own administrative interfaces, their own user and authentication systems, their own
templating systems, and so on. Developing a single application that provides all the features
of your web site can be an extremely useful way to work for certain cases—for example, when
a particular application is geared toward nontechnical or only moderately technical users who
simply want to download and install a single package and have their site running immediately.

However, when you’re writing applications that are meant to be used and reused by other
developers, or just by you as you work on different projects, this can be a disastrous method
of developing an application. You’d quickly lose the ability to mix and match specific features
as you build new sites, and you’d typically have to compensate by adding systems that let you
develop plug-ins or other additions to a single large application. This just increases the com-
plexity of the code and the amount of work you have to do each time you need to add or reuse
a feature.

The alternative—viewing a web site as a collection of tightly focused applications, each
providing some particular feature or set of features—results in far more flexibility and often
encourages better code within each application, as you’ve already seen. Django is designed to
accommodate this style of development:

	 •	 Rather than handling everything through a single, monolithic application, Django
has you specify a list of applications to use (the INSTALLED_APPS setting): You can also
designate which applications are responsible for which functionality by setting up the
root URL configuration.

	 •	 Instead of forcing all the code for a particular site to exist within a single specific
directory, Django uses the standard Python import path to look for the applications
you list in INSTALLED_APPS: This prevents tying your code to any specific directory
structure, and it lets you reuse a single copy of an application in multiple projects
rather than requiring you to endlessly copy it into new project directories and keep all
those copies updated as you work on the code.

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS 227

	 •	 Through abstractions such as the Site model in django.contrib.sites, Django
encourages you to think in terms of reusing applications across multiple sites, even
when those sites share a database and possibly even a single instance of the adminis-
trative interface: django.contrib.admin can easily provide administration for multiple
sites through a setting called ADMIN_FOR, which lists the settings modules of all the sites
to administer.

The net effect of this is that, although you can do so if you’re really determined, trying to
build all of your features into one large application will often give you the feeling that you’re
swimming against the current. As soon as you start splitting things up logically according to
function, you’ll find development to be a lot easier.

Drawing the Lines Between Applications
Of course, this raises the question of how to tell when you should split off a feature or set of
features and start developing one or more new, separate applications. To some extent, learn-
ing how to recognize the need to spin off new applications is something that comes with
experience, but you can follow some good general guidelines to help with the decision-making
process.

The most obvious sign that you need to start developing a new, separate application is
when you find that there’s a particular feature, or some related features, that you want to have
but that doesn’t logically belong to the application you’re working on. For example, you’d
probably want to have some form of publicly accessible user-signup system to accompany the
cab code-sharing application you developed in the last few chapters, but that system obviously
doesn’t belong in that application, so you should develop it separately.

This decision-making process gets somewhat trickier when you’re considering sets of
features that are at least somewhat related. The discussion in the previous section about add-
ing user profiles and preferences to the signup system is a good example of this, because all of
the features involved relate in some way to handling user accounts. You can make a case for
handling them together, because they’ll almost always be used together. Most of the time, a
site that has users signing up through a public registration system will also have some sort of
profile features or preferences that they can take advantage of.

In these cases, it’s often useful to think in terms of orthogonality. Generally, in software
development, two features are orthogonal if a change to one doesn’t affect the other. User
preferences, then, are orthogonal to user signups, because you could, for example, change the
way the signup process works (say, by adding an explicit activation step or building in mea-
sures to defeat spambots) without changing the way users configure their preferences. When
features are clearly orthogonal to each other like this, they almost always belong in separate
applications.

Finally, reuse can be a good criterion for determining whether some particular feature
deserves to be split out into its own application. If you can imagine a case where you’d want to
use that feature, and just that feature, on another site, the odds are good that it ought to be in a
separate application to make that reuse easier.

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS228

Splitting Up the Code-Sharing Application
For an instructive example of applying these guidelines, consider the cab code-sharing appli-
cation you developed over the last few chapters. You developed it as a single application, but
you might have noticed that it contains several features that could just as easily be split out
into separate applications (although they’d all be necessary if you were to deploy an actual
code-sharing site publicly).

For example, the rating system you developed was useful and necessary for the social
features you wanted to have, but under all three of the guidelines listed previously (unrelated
features, orthogonality, and reuse), it would be a strong candidate for becoming its own appli-
cation:

	 •	 Unrelated features: Providing a mechanism for users to rate code snippets isn’t all that
closely related to the core purpose of the application, which is providing the means for
users to submit and edit the snippets in the first place.

	 •	 Orthogonality: The rating system is largely orthogonal to the rest of the application.
For example, you could change it from a simple “up” or “down” rating to a numeric
score or to a system where users give ratings such as “three stars out of four,” without
affecting the way people submit, edit, and bookmark snippets.

	 •	 Reuse: It’s easy to imagine other sites or projects where you’d want to have a system
for users to rate content, but where you wouldn’t necessarily want to have the code-
snippet features along with it.

The same is true of the bookmarking system, for almost precisely the same reasons: it’s not
related to the core “purpose” of the application (which, again, is the code-snippet functional-
ity). It’s orthogonal to the other features. And providing the ability for users to bookmark their
favorite pieces of site content is something that’d be useful on a lot of different types of sites.

Building for Flexibility
Logically splitting up functionality into multiple applications is only part of the process of mak-
ing that functionality reusable. As you’ve already seen, it’s easy to imagine a case where even a
seemingly “simple” feature can vary quite a bit from one project to the next. One good example
of this would be a contact form. Many different types of sites need some sort of function that
lets visitors fill out a form and submit some information to site staff, but the use cases can vary
wildly. For example, some sites might want a form that lets visitors send a message to the site
owner(s) to provide feedback or report problems. Other sites, often business sites, will probably
want to collect more information and might even want different types of forms for different
situations. For example, one form might handle sales inquiries, while another could handle
customer-service requests. Still other sites might want to supplement the form’s validation
rules with spam checks (perhaps by using Akismet or some other form of automated analysis).

At first it seems like there’d be no way to develop a single application that can handle all
these cases (and this is just a small sample of the use cases for a contact form). You might sus-
pect that you’ll just have to bite the bullet and write a different version of the application each
time you use it. However, with a bit of planning and a little bit of code, a Django application can
become flexible enough to handle all of these variations on the underlying theme, and more.

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS 229

Flexible Form Handling
If you’re going to write a contact-form application, you might start out by defining a simple
contact form like this:

from django import forms
from django.core.mail import mail_managers
class ContactForm(forms.Form):
 name = forms.CharField(max_length=255)
 email = forms.EmailField()
 message = forms.CharField(widget=forms.Textarea())
 def save(self):
 message = "%s (%s) wrote:\n\n%s" % (self.cleaned_data['name'],
 self.cleaned_data['email'],
 self.cleaned_data['message'])
 mail_managers(subject="Site feedback", message=message)

A simple view called contact_form could process this form:

from django.http import HttpResponseRedirect
from django.shortcuts import render_to_response
from django.template import RequestContext
def contact_form(request):
 if request.method == 'POST':
 form = ContactForm(data=request.POST)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect("/contact/sent/")
 else:
 form = ContactForm()
 return render_to_response('contact_form.html',
 { 'form': form },
 context_instance=RequestContext(request))

For the simplest cases, this would be fine. But how could you handle a situation in which
you need to use a different form—one with additional fields, for example, or additional valida-
tion rules?

The easiest solution is to remember that a Django view is simply a function and that you
can define it to take any additional arguments you want to handle. You can add a new argu-
ment to the view that specifies the form class to use, and you can reference that argument
whenever you need to instantiate a form from within the view:

def contact_form(request, form_class):
 if request.method == 'POST':
 form = form_class(data=request.POST)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect("/contact/sent/")

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS230

 else:
 form = form_class()
 return render_to_response('contact_form.html',
 { 'form': form },
 context_instance=RequestContext(request))

You can improve this slightly by supplying a default value for the new argument:

def contact_form(request, form_class=ContactForm):

This is how many of the optional parameters to Django’s generic views work: the view
function accepts a large number of arguments and supplies sensible default values. Then, if
you need to change the behavior slightly, you simply pass the appropriate argument.

If you’re developing a business site that wants to handle sales inquiries through a form,
you could define a form class to handle that—perhaps called SalesInquiryForm—and then set
up a URL pattern like this:

url(r'^inquiries/sales/$',
 contact_form,
 { 'form_class': SalesInquiryForm },
 name='sales_inquiry_form'),

The form_class argument you pass here overrides the default in the contact_form view,
and—as long as you remember to define a save() method on your SalesInquiryForm class—it
simply works. If you need multiple forms of different types, you can reuse the contact_form
view multiple times, passing a different form_class argument each time, in much the same
way you previously reused generic views by passing different sets of arguments.

Flexible Template Handling
Of course, simply changing the form class might not help very much, because the view will
always use the same template—contact_form.html—to render it. But once again, you can
make a small change to the view and add some flexibility to the template handling. In this
case, you can directly emulate Django’s generic views, which all accept an argument called
template_name to override the default template they’d use:

def contact_form(request, form_class=ContactForm,
 template_name='contact_form.html'):
 if request.method == 'POST':
 form = form_class(data=request.POST)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect("/contact/sent/")
 else:
 form = form_class()
 return render_to_response(template_name,
 { 'form': form },
 context_instance=RequestContext(request))

Then you can change the URL pattern to specify a different template:

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS 231

url(r'^inquiries/sales/$',
 contact_form,
 { 'form_class': SalesInquiryForm,
 'template_name': 'sales_inquiry.html' },
 name='sales_inquiry_form'),

Being able to change both the form that the view uses and the template it uses to display
that form gives you a huge amount of flexibility for reusing this view. Now you can easily set
up multiple forms and customize the templates for each one with any specific presentation or
instructions you want to add.

Flexible Post-Form Processing
There’s one more thing missing here: no matter what arguments you pass to the view, it will
always redirect to the URL /contact/sent/ after successful submission. Let’s fix that by adding
one final argument called success_url:

def contact_form(request, form_class=ContactForm,
 template_name='contact_form.html',
 success_url='/contact/sent/'):
 if request.method == 'POST':
 form = form_class(data=request.POST)
 if form.is_valid():
 form.save()
 return HttpResponseRedirect(success_url)
 else:
 form = form_class()
 return render_to_response(template_name,
 { 'form': form },
 context_instance=RequestContext(request))

Now you have full control over the entire process of displaying, validating, and processing
the form:

url(r'^inquiries/sales/$',
 contact_form,
 { 'form_class': SalesInquiryForm,
 'template_name': 'sales_inquiry.html',
 'success_url': 'inquiries/sales/sent/' },
 name='sales_inquiry_form'),

You can now handle all of the cases listed previously—different combinations of forms,
additional fields, and additional validation—by nothing more complicated than passing the
right arguments to the contact_form view, in exactly the same way you’ve been passing argu-
ments to Django’s generic views. You could add even more flexibility to this view by emulating
some other common arguments accepted by generic views. For example, the extra_context
argument would be handy to support so that additional custom template variables could be
made available.

Of course, it’s important not to go overboard and add so many arguments that the view
becomes too complex to use or to write, and supporting large numbers of optional arguments

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS232

can be tricky. The right balance between flexibility and complexity will vary from one situa-
tion to the next, but you should try to support at least a few arguments. While you don’t have
to use the following names for them, picking a standard set of argument names and sticking to
them will greatly improve the readability of your code. Also, when you’re writing a view, it’s a
good idea to give your arguments the same names as similar arguments accepted by Django’s
generic views. In my own applications, I generally try to support at least the following argu-
ments:

	 •	 form_class, when I’m writing a view that handles a form

	 •	 success_url, when I’m writing a view that redirects after successful processing (of a
form, for example)

	 •	 template_name, as in generic views

	 •	 extra_context, also as in generic views

Also, I always make sure to use RequestContext for template rendering. This enables both
the standard set of context processors, which add things to the context like the identity of the
currently logged-in user, as well as any custom context processors that have been added to the
site’s settings.

Flexible URL Handling
In the previous examples, the default value for the success_url argument was a hard-coded
URL. In the applications you’ve developed in this book, though, you’ve worked hard to stay
away from ever doing that. For example, in the models, when you defined get_absolute_url(),
you always used the permalink() decorator to ensure that it uses a reverse URL lookup based
on the current URL configuration. And in your templates, you saw how to use the {% url %}
tag to perform a similar reverse URL lookup and to ensure you always output the correct URLs
for links.

You haven’t encountered this issue in a view, however, and neither of the solutions you’ve
seen so far will work in this context. But there is another function that will do what you want:
django.core.urlresolvers.reverse(). This is actually the underlying mechanism for both the
permalink() decorator and the {% url %} tag. Using reverse, you can easily refer to any URL
pattern and have it automatically look up and generate the correct URL. So if you set up a URL
pattern with a name of contact_form_sent, for example, you could rewrite the contact_form
view’s argument list like this (after importing reverse(), of course):

def contact_form(request, form_class=ContactForm,
 template_name='contact_form.html',
 success_url=reverse('contact_form_sent')):

And the proper URL would be filled in by a reverse lookup at your live URLConf module.
Whenever you need to refer to or return a URL, you should always use the reverse lookup

utility that’s appropriate for what you’re writing:

	 •	 django.db.models.permalink(): Use this decorator when you’re writing a model’s get_
absolute_url() method or other methods on a model that return a URL.

	 •	 {% url %}: Use this tag when you’re writing a template.

	 •	 django.core.urlresolvers.reverse(): Use this function in any other Python code.

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS 233

To make the reverse lookups easier to use, any URLConf module included in your applica-
tion should give sensible names to all of its URL patterns (preferably prefixed with the name
of the application to avoid name clashes, as you’ve been doing previously with URL pattern
names like cab_snippet_detail).

Taking Advantage of Django’s APIs
It’s also worth noting that many of Django’s own APIs work the same way, or in extremely sim-
ilar ways, with many different types of models. For example, a Django QuerySet has the same
methods—all(), filter(), get(), and so on—regardless of which model it ends up querying
against. This means that you can often write code that accepts a QuerySet as an argument and
simply applies standard methods to it.

ADMOniTiOn: QuErySET evAluATiOn

Keep in mind that each individual QuerySet object evaluates and performs its query only once. After that, it
simply stores a copy of its results. In many cases, this won’t be a problem, because your code calls methods
such as filter(), which modify the original QuerySet and force a new query when you ask for results.
However, if you’re not modifying the QuerySet, you’ll want to call its all() method and work with the new
QuerySet object it returns. This will prevent any potential problems from an already-evaluated QuerySet
with stale results.

Similarly, you can use the ModelForm helper you saw in Chapter 9 as a way to quickly and
easily generate a form for adding or editing any type of object. Because ModelForm works the
same way for any model (although customizations such as the exclude feature are typically
filled in on a per-model basis), you can use it with any of multiple models, even if you don’t
know in advance what model you’ll be working with.

Staying Generic
In addition to writing views that take optional arguments to customize their behavior, you can
also build flexibility into your nonview code by not tying it to specific models or specific ideas
of how it ought to work. To see what I mean, think back to the weblog application: when you
added the comment-moderation feature, you made some assumptions that limited its flexibil-
ity. The solution in that case was to instead use Django’s built-in moderation system, which
was designed to be truly generic.

And although Django’s moderation system is a bit more complex than the comment-
moderation feature you originally wrote for the weblog, it pays off in incredible flexibility. You
can set up a different set of moderation rules for each model you allow comments on, and
when you need to support custom moderation rules that aren’t covered by the code in the
CommentModerator class, you can subclass it, write the appropriate code for your custom mod-
eration rules, and then use that subclass to handle your comment moderation.

This is a type of situation that recurs frequently in Django application development: a fea-
ture that starts out tied to a particular application, or even to a particular model, turns out to be
useful in other contexts and gets rewritten to be generic. In fact, that’s precisely how Django’s

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS234

comment-moderation system was developed. It began as a piece of code tightly tied to one
particular third-party weblogging application, and then evolved into a generic moderation
system that could work with any model in any application. At that point, it was spun off into
a separate (still third-party) application, designed to enhance and extend Django’s comments
system. That application turned out to be quite popular, so in Django 1.1 the moderation fea-
tures were incorporated directly into django.contrib.comments, which is the most logical place
for them to be.

Distributing Django Applications
Once you’ve written an application so that you can reuse it easily, the final step is to make it
easily distributable. Even if you never intend to publicly release an application you’ve written,
going through this step can still be useful. You’ll end up with a nice, packaged version of your
application that you can easily copy from one computer to another, and a simple mechanism
for installing it, which ensures that the application will end up in a location that’s on the Python
import path.

The first step in creating an easily distributed Django application is to make sure you’re
developing your application as a module that can live directly on the Python import path,
rather than one that needs to be placed inside a project directory. Developing in this fashion
makes it much easier to move a copy of an application from one computer to another, or to
have multiple projects using the same application. You’ll recall that the last two applications
you built in this book have followed this pattern, and in general, you should always develop
standalone applications in this fashion.

ADMOniTiOn: CODe ThAT’S TighTly COupleD TO A prOjeCT

Sometimes you will have code that’s tightly coupled to a particular project. For example, it’s somewhat com-
mon to write a view that handles the home page of a site, and have that view handle requirements that are so
site-specific that it wouldn’t make sense to reuse that view in other projects.

If you’d like, you can place code like this in an application that’s directly inside the project directory, but
keep in mind that for common cases like this, there’s no need for an application. Django doesn’t require that
view functions be within an application module (Django’s own generic views aren’t, for example). So you can
simply put project-specific views directly inside the project. You only need to create an application if you’re
also defining models or custom template tags.

Python Packaging Tools
Because a Django application is just a collection of Python code, you should simply use stan-
dard Python packaging tools to distribute it. The Python standard library includes the module
distutils, which provides the basic functionality you’ll need: creating packages, installing
them, and registering them with the Python Package Index (if you want to distribute your
application to the public).

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS 235

The primary way you’ll use distutils is by writing a script—conventionally called
setup.py—that contains some information about your package. Then you’ll use that script
to generate the package. In the simplest case, this is a three-step process:

 1. In a temporary directory (not one on your Python import path), create an empty
setup.py file and a copy of your application’s directory, containing its code.

 2. Fill out the setup.py script with the appropriate information.

 3. Run python setup.py sdist to generate the package; this creates a directory called dist
that contains the package.

ADMOniTiOn: A SeTup FOr COnTinuOuS pACkAging

One minor annoyance with this process is that, as the developer of a package, you must have a copy of the
application code in the same directory as the setup.py file; otherwise, you won’t be able to generate the
package. (If you’re simply installing a package someone else has produced, you don’t need to do this.)

While it’s easy enough to temporarily make a copy of your application’s code so that you can create the
package, this can be tedious to do over and over. Instead, I often maintain a permanent directory structure
that has one directory for each package I maintain. Inside each directory is the setup.py script, any other
files related to the packaging, and the actual application code. Then I place a link (a symlink on UNIX systems
or a shortcut on Windows) to the application code in a directory on my Python import path.

I’ve found this to be a much easier way to work with an application that evolves over time (and hence
needs to be packaged several times for different versions). You should feel free to use a similar technique or
experiment to find a setup that suits you.

The other common method of distributing Python packages uses a system called
setuptools. setuptools has some similarities to distutils—both use a script called setup.py,
and the way you use that script to create and install packages is the same. But setuptools
adds a large number of features on top of the standard distutils, including ways to specify
dependencies between packages and ways to automatically download and install packages
and all their dependencies. You can learn more about setuptools online at http://peak.
telecommunity.com/DevCenter/setuptools. However, let’s use distutils for the example here,
because it’s part of Python’s standard library and thus doesn’t require you to install any addi-
tional tools to generate packages.

Writing a setup.py Script with distutils
To see how Python’s standard distutils library works, let’s walk through packaging a simple
application. Go to a directory that’s not on your Python import path, and in it place the
following:

	 •	 An	empty	file	named	setup.py

	 •	 An	empty	file	named	hello.py

http://peak

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS236

In hello.py, add the following code:

print "Hello! I'm a packaged Python application!"

Obviously, this isn’t the most useful Python application ever written, but now that you
have a bit of code, you can see how to write the packaging script in setup.py:

from distutils.core import setup
setup(name="hello",
 version="0.1",
 description="A simple packaged Python application",
 author="Your name here",
 author_email="Your e-mail address here",
 url="Your website URL here",
 py_modules=["hello"],
 download_url="URL to download this package here")

Now you can run python setup.py sdist, which creates a dist directory containing a file
named hello-0.1.tar.gz. This is a Python package, and you can install it on any computer
that has Python available. The installation process is simple: open up the package (the file is a
standard compressed archive file that most operating systems can unpack), and it will create a
directory called hello-0.1 containing a setup.py script. Running python setup.py install in
that directory installs the package on the Python import path.

Of course, this is a very basic example, but it shows most of what you’ll need to know to
create Python packages. The various arguments to the setup function in your setup.py file pro-
vide information about the package, and distutils does the rest. This only gets tricky if your
application consists of several modules or submodules, or if it also includes non-Python files
(such as documentation files) that need to be included in the package.

To handle multiple modules or submodules, you simply list them in the py_modules argu-
ment. For example, if you have an application named foo, which contains a submodule named
foo.templatetags, you’d use this argument to tell distutils to include them:

py_modules=["foo", "foo.templatetags"],

The setup script expects the foo module to be alongside it in the same directory, so it
looks inside foo to find foo.templatetags for inclusion.

Standard Files to Include in a Package
When you created the previous example package, the setup.py script probably complained
about some standard files not being found. Although they’re not technically required, several
files are typically included with a Python package, and distutils warns you when they’re
absent. At a minimum, you should include two files in any package you plan to distribute:

	 •	 A file named LICENSE or LICENSE.txt: This should contain copyright information. For
many Python packages, this is simply a copy of a standard open source license with the
author’s name filled in appropriately.

	 •	 A file named rEADME or rEADME.txt: This should provide some basic human-readable
information about the package, its contents, and pointers to documentation or further
information.

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS 237

You might also find these other common files in many packages:

	 •	 AuTHOrS or AuTHOrS.txt: For software developed by a team of contributors, this is often
a list of everyone who has contributed code. For large projects, this can grow to an
impressive size. Django’s AUTHORS file, for example, lists everyone who has contributed
code to the project and runs several hundred lines long.

	 •	 INSTALL or INSTALL.txt: This often contains installation instructions. Even though
Python packages all offer the standard setup.py install mechanism, some packages
might also offer alternative installation methods or include detailed instructions for
specialized cases.

	 •	 CHANGELOG or CHANGELOG.txt: This usually includes a brief summary of the application’s
history, noting the changes between each released version.

Including these sorts of files in a Python package is fairly easy. While the setup.py script
specifies the Python modules to be packaged, you can list additional files like these in a file
named MANIFEST.in (in the same directory as setup.py). The format of this file is extremely
simple and often looks something like this:

include LICENSE.txt
include README.txt
include CHANGELOG.txt

Each include statement goes on a separate line and names a file to be included in the
package. For advanced use, such as packaging a directory of documentation files, you can use
a recursive-include statement. For example, if documentation files reside in a directory called
docs, you could use this statement to include them in the package:

recursive-include docs *

Documenting an Application
Finally, one of the most important parts of a distributable, reusable Django application is
good documentation. I haven’t talked much about documentation because I’ve mostly been
focused on code, but documentation is essential whenever you’re writing code that someone
else might end up using (or that you might need to use again after not looking at it for a while).

One thing you can and often should do is include some documentation files in your appli-
cation’s package. You can generally assume that other developers will know how Python and
Django work, so you don’t need to document things like using setup.py install or adding the
application to the INSTALLED_APPS list of a Django project. However, you should explain what
your application does and how it works, and you should give at least an outline of each of the
following items:

	 •	 Any	models	provided	by	your	application,	their	intended	uses,	and	any	custom	manag-
ers or useful custom methods you’ve set up for them

	 •	 A	list	of	views	in	your	application,	along	with	the	template	names	they	expect	and	any	
variables they make available in the template context

	 •	 A	list	of	any	custom	template	tags	or	filters	you’ve	provided	and	what	they	do

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS238

	 •	 A	list	of	any	custom	forms	you’ve	provided	and	what	purposes	they	serve

	 •	 A	list	of	any	third-party	Python	modules	or	Django	applications	your	application	relies	
on and information on how to obtain them

In addition to these outlines, or, more often, as a precursor to them, you should also
include documentation directly in your code. Python makes it easy to provide documentation
alongside the code you’re writing by giving docstrings to your Python modules, classes, and
functions. A docstring is simply a literal string of text, included as the first thing in the defini-
tion of a module, class, or function. To see an example of how this works, launch a Python
interpreter and type:

>>> def add(n1, n2):
... """
... Add two numbers and return the result.
...
... """
... return n1 + n2
...

This defines a simple function and gives it a docstring. You use triple quotes (the """ at the
beginning and end of the docstring) because Python allows triple-quoted strings to run over
multiple lines.

Docstrings end up being useful in three primary ways:

	 •	 Anyone who’s reading your code can also see the docstrings and pick up additional
information from them: This is possible because they’re included directly in the code.

	 •	 Python’s automated help tool knows how to read a docstring and show you useful
information: In the previous example, you could type help(add) in the interpreter, and
Python would show you the function’s argument signature and print its docstring.

	 •	 Other tools can read docstrings and assemble them automatically into documenta-
tion in a variety of formats: Several standard or semistandard tools can read through
an entire application, for example, and print out organized documentation from the
docstrings in HTML or PDF format.

Documentation Displayed Within Django
This last point is particularly important, because Django can sift through your code for doc-
strings and use them to display useful documentation to users. The administrative interface
usually contains a link labeled “Documentation” (in the upper right-hand corner of the main
page), which takes the user to a page listing all of the documentation Django can produce
(if the necessary Python documentation tools are available; see the next section for details).
This includes:

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS 239

	 •	 A list of all the installed models, organized by the applications they belong to: For
each model, Django shows a table listing the fields defined on the model and any cus-
tom methods, as well as the docstring of the model class.

	 •	 A list of all the URL patterns and the views they map to: For each view, Django displays
the docstring.

	 •	 Lists of all available template tags and filters, both from Django’s own built-in set
and from any custom tag libraries included in your installed applications: For each
tag or filter, Django shows the docstring.

Finally, giving your code good docstrings gives you a head start on producing standalone
documentation for your application. It’s a good practice to write useful docstrings anyway,
because so many tools in Python make use of them. Once you have them, you can copy them
into files to use as standalone reference documentation to distribute with your applications.

What to Document
In general, you should be liberal about writing docstrings for classes and functions in your
code. It’s better to have documentation when you don’t need it than to need documentation
when you don’t have it. Generally, the only time you shouldn’t worry about giving something a
docstring is when you’re writing something that’s standard and well-known. For example, you
don’t need to supply a docstring for the get_absolute_url() method of a model, because that’s
a standard method to define on models, and you can trust that people reading your code will
know why it’s there and what it’s doing. However, if you’re providing a custom save() method,
you often should document it, because an explanation of any special behavior it provides will
be useful to people reading your code.

Typically, a good docstring provides a short overview of what the associated code is doing.
The docstring for a class should explain what the class represents, for example, and how it’s
intended to be used. The docstring for a function or method should explain what it does and
mention any constraints on the arguments or the return value.

Additionally, when writing docstrings you should keep in mind the following items, which
are specific to Django:

	 •	 Model classes should include information about any custom managers attached
to the model: However, they don’t need to include a list of fields in their docstrings,
because that’s generated automatically.

	 •	 Docstrings for view functions should always mention the template name that will be
used: In addition, they should provide a list of variables that are made available to the
template.

	 •	 Docstrings for custom template tags should explain the syntax and arguments the
tags expect: Ideally, they should also give at least one example of how the tag works.

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS240

Within the admin interface, Django can automatically format much of this documenta-
tion for you if you have the Python docutils module installed (you can obtain it from http://
docutils.sourceforge.net/ if it’s not already installed on your computer). The docutils pack-
age includes a lightweight syntax called reStructuredText (commonly abbreviated as reST),
and Django knows how to transform this into HTML. If you’d like, you can use this syntax in
your docstrings to get nicely formatted documentation.

Django also makes use of a couple customized extensions to the reST syntax to allow you
to easily refer to Django-specific elements such as model classes or view functions. To see how
this works, consider a simple view that might go into your coltrane weblog application:

def latest_entries(request):
 return render_to_response('coltrane/entry_archive.html',
 { 'latest': Entry.objects.all()[:15] })

Now, you wouldn’t ever need to write this view, because Django provides a generic view
that serves the same purpose, but you can use it to show off some documentation tricks.
Here’s the same view with a useful docstring:

def latest_entries(request):
 """
 View of the latest 15 entries published. This is similar to
 the :view:'django.views.generic.date_based.archive_index'
 generic view.
 Template:'
 ''coltrane/entry_archive.html''
 Context:
 ''latest''
 A list of :model'coltrane.Entry' objects.
 """
 return render_to_response('coltrane/entry_archive.html',
 { 'latest': Entry.live.all()[:15] })

A lot of what’s going on here is fairly simple: line breaks become paragraph breaks in
the HTML-formatted documentation; double asterisks become bold text for headings; and
the list of context variables becomes an HTML definition list, with the variable name latest
(surrounded by backticks) in a monospaced font.

ADMOniTiOn: leArning reSTruCTureDTexT

For most uses, you won’t need to know much more about reST syntax than what’s covered in the example. If
you’d like to learn more about it, though, a full primer and extensive documentation (as you’d expect from a
tool that’s designed to make documentation easy) is available online at http://docutils.sourceforge.
net/docs/user/rst/quickstart.html. The docutils package also includes tools for reading files
written with reST syntax and generating nicely formatted output in HTML and other formats. It’s an extremely
useful tool to be familiar with, and it scales up to large documentation projects. For example, I originally wrote
and edited the text of this book in reST syntax before translating it into other formats for publication.

http://docutils.sourceforge.net/
http://docutils.sourceforge.net/
http://docutils.sourceforge

Chapter 12 ■ WrIt ING reUSaBLe DJaNGO appLICatIONS 241

However, two specialized things are going on here: the mention of a generic view, and
the mention of the Entry model. These make use of the Django-specific extensions and are
transformed into a link to the generic view’s documentation and a link to the Entry model’s
documentation, respectively.

In addition to the :view: and :model: shortcuts shown in the previous example, three oth-
ers are available:

	 •	 :tag:: This should be followed by the name of a template tag. It links to the tag’s
documentation.

	 •	 :filter:: This should be followed by the name of a template filter. It links to the filter’s
documentation.

	 •	 :template:: This should be followed by a template name. It links to a page that either
shows locations in your project’s TEMPLATE_DIRS setting where that template can be
found, or shows nothing if the template can’t be found.

looking Ahead
A lot more can be said about developing Django applications to get the maximum possible use
and reuse out of them, but what I’ve covered here is a good start.

Learning when to apply these general principles to specific applications—and, just as
important, when not to apply them (there are no universal rules of software development)—is
best accomplished through the experience of writing and using Django applications. Consider
making a list of application ideas that interest you, and try your hand at a few of them, even if
you never end up using them in any serious situation. Feel free to go back and tinker with the
applications you’ve built in this book. There’s a lot of room to expand them and add new fea-
tures, or even to spin off entire new applications from them. Also, keep in mind that there’s a
whole ecosystem of Django applications already written and available online, providing a large
base of code you can study.

Always remember that Django has a large and friendly community of developers and users
who answer questions on mailing lists and in chat rooms. So whenever you get stumped (and
we all get stumped once in a while), you can turn to them for help.

Above all, remember what I mentioned back in Chapter 1, when you got your first look at
Django: Django’s job is to make web development fun again, by relieving you of all the tedium
and repetitive busy work that has traditionally been part of the process. So find an idea or two
that you like, let Django take care of the heavy lifting for you, and just have fun writing your
code.

243

Index

SYMBOLS
(pound sign) for Python comments, 13
% extends % tag, 99
?P construct, 66
__import__() function, 117
__init__.py file, 7, 27
__unicode_ () method, 34, 62, 198
_default_manager, 120
+= (plus equal) in Link model, 85
% for % loop, 108–109
% free_comment_form % tag, 126
% if_bookmarked % template tag, 191–192
% load % tag, 128
% url % template tag, 102, 232
500 Internal Server Error, 78

A
abstract inheritance, 124
activate script, 211
add() function, arguments for, 79
add_snippet view, 178–179, 184
admin application

adding new flat page to, 15–16
templates and, 24–25

admin documentation system, 22
admin form

for adding a category, 51
for search keywords, 36

admin interface, adding categories to, 51
admin/ URL pattern, 13
admin/change_form.html template, 25
admin/flatpages/change_form.html tem-

plate, 25
admin/flatpages/flatpage/change_form.html

template, 25
administrative interface

home page, 13
templates/ directory use by, 19

admin.py files, 156
ADMINS setting, 136
aggregate method, 199
aggregate queries, 160
Akismet API key, 131
Akismet class

importing, 132
methods in, 132

annotate method, 161
APIs, Django, 233

applications
building for flexibility, 228
developing multiple, 226–228
vs. projects in Django, 44–45
reasons to make separate, 228
recognizing need to spin off new, 227
techniques for developing reusable, 224
tightly focused, 225
unit-testing, 219–221

archive_day, 71
archive_index, 71
archive_month, 71
archive_year, 71
arguments, supplying default value for new,

230
as_li() method, 183
as_p() method, 182
as_table() method, 182–183
as_ul() method, 182
associative arrays, 27
Atom feeds, 140–141, 147
AUTHORS/AUTHORS.txt file, 237

B
base_entries.html template, 103
base_links.html template, 104
base_tags.html template, 104
BaseCommentAbstractModel, 123
base.html template, 98
bisecting feature (VCS), 221
Bitbucket, 208
blank fields vs. null fields, 54
block.super variable, 99
blog

adding block in body tag, 102
blog_url keyword argument, 132
filling in header for, 101
sidebar block, 109

Bookmark model
querying for user’s bookmarks, 188
running queries on, 188

bookmark_set attribute, 188
bookmarking

basic bookmark views, 188
deleting bookmarks, 189
snippets, 187–188

BooleanField, 56
braces, using in template tags, 126

nINDEX244

brochureware sites, 9
build tools, 212–214
bytecode, Python storage of, 8

C
cab application, 149–150
cab/models.py, 187
cab/snippet_form.html template, 184
cab/templatetags/snippets.py, 192
cab/urls/popular.py, 163
cab/urls/snippets.py

adding new URL pattern to, 182
changing import line in, 184

cab/views file, 188–189
cab/views/popular.py, 163
cab/views/snippets.py file

adding imports for editing snippets, 183
finished, 185

categories
Category model, 95
Category object, 85
CategoryAdmin class, 50
considerations for showing, 108
looping over, 108
setting up views for, 84–85

categorization for Link model, 77
categorized feeds

adding items to import statements, 144
problems associated with, 144
writing feed class for, 144

change_form.html template, 25
CHANGELOG/CHANGELOG.txt files, 237
CharField, 57
choices option, 57
clean() method, 171
clean() validation method, 168
clean_username() method, 167
cleaned_data dictionary, 171
CMS project

choosing template directory for, 19–20
customizing simple, 23
putting together, 12–18

cms subdirectory, creating, 6
code

coupled to projects, 234
form for adding snippets, 174–176
version control systems to track, 205–209

coltrane directory, 65–66
coltrane_tags.py file, 114
coltrane/entry_archive_year.html template,

105
coltrane/entry_archive.html template, 104
coltrane/entry_detail.html template

adding comment form header to, 125
creating, 68
editing, 99

coltrane/link_detail.html template, 99, 111

commas, trailing, 20
Comment model, 123
comment moderator, 130
comment_check() method, 133

in akismet module, 132
arguments expected by, 132

commenting, 123
comment-moderation function, 134
comment-moderation system, features of,

138–140
CommentModerator class, 233
comments

allowing and disallowing, 56
application (Django), 124–125
comments tag library, 125
comment-submission system, 129
e-mail notification of, 135
moderating, 129
Python, 13
retrieving and displaying, 127

commit=False on forms, 182
compilation function

changing to retrieve model class, 118
error checking, 119
problems with changing, 118
writing for % if_bookmarked % tag, 193

concrete inheritance, 124
connect method, 130
contact_form view

argument, rewriting, 232
effect of passing right arguments to,

231–232
contact-form application

building for flexibility, 228–229
flexible post-form processing, 231–232
simple view for processing, 229

Context class, 27
context processor function, 111, 196
conversion programs, HTML, 60
count() method (QuerySet), 40
create() method, 176
create_user() method, 169
cross-site request forgery (CSRF), 189–190
custom tags

creating simple, 113
registering new, 114
writing compilation function for, 113

D
databases

DATABASE settings, 9–10, 217
using different, 10

date filter for weblog application, 66
date-based archives, 70
date-based constraints supported by Django,

55
datetime class, 53

nINDEX 245

datetime module, 154
DateTimeField, 53
.db file extension, 10
DEBUG setting (Django), 218–219
decorators, 74
def keyword, 28
default.html file, 20
del.icio.us, 77
Delicious, 77–78
deployment tools, 214–215
development process, Django

relative paths in settings, 217–218
settings changing with environments,

218–219
unit-testing applications, 219–221
without projects, 215–216

distinct() method, 38
distributing Django applications, 234
distutils module

for distributing Django applications, 234
writing setup.py script with, 235–236

div tags (elements), 100–101
Django

accessing settings file, 80
APIs, 233
building first site, 9
built-in management script, 6
contrib applications in, 12
database lookup syntax, 29
default site object created by, 15
development of, 2
DJANGO_SETTINGS_MODULE environ-

ment variable, 215–216
django-admin.py, 9, 150, 216
django.contrib, 123
django.contrib.admin application, 12
django.contrib.auth, 11, 56
django.contrib.comments, 123, 126, 127
django.contrib.comments.moderation.

CommentModerator, 138
django.contrib.flatpages application, 12
django.contrib.sites, 11, 15
django.contrib.syndication application,

123
django.contrib.syndication.feeds.Feed

class, 141
django.core.mail, 137
django.core.urlresolvers.reverse() func-

tion, 232
django.db.models.Count, 160
django.db.models.get_model() function,

117
django.db.models.permalink(), 232
django.db.models.Sum filter, 198
django.shortcuts.render_to_response

function, 31
django-tagging application, 59

django.template module, 18
django.template.Context class, 196
django.template.loader.select_template,

25
django.template.Node, 114
django.template.Template class, 112
django.utils.encoding.smart_str() func-

tion, 80, 133
django.views.generic.date_based module,

70
django.views.generic.list_detail module, 86
documentation displayed within, 238–239
flat page example, 20
handling of database queries, 94
installing, 4–5
introduction to, 5
looking ahead, 8
packaged releases vs. development code, 4
process for loading templates, 112
server error page, 17
setting up database in, 8, 11
use of customized extensions to reST

syntax, 240
Django applications

distributing, 234
what to document in, 239
writing, 44

Django project
changing address and port, 6
configuring cms, 9–12
creating, 5
exploring, 8

Django templates
for categories, 109
parsing ahead in, 192
workings of, 112

docstrings, Python, 238–240
documentation

for distributable applications, 237
links, 22

E
editing

edit_snippet view, 197
snippets, 183–186

e-mail
sending from within Django, 136
verifying settings for, 136

entries
adding list of latest, 115
categorizing and tagging, 58
entries.py file, breaking down, 91
entry detail, 107
entry index, 104, 105
Entry model class, 61–62, 130
entry templates, 72
entry_detail template, 97

nINDEX246

entry_detail view, 67
entry_detail.html template, 127–128
entry_info_dict variable, 69
Entry.HIDDEN_STATUS, 58
Entry.LIVE_STATUS, 58
Entry.objects.all(), 70
querying with status field set to Live, 93
types of, 57
writing without HTML, 60

error checking, 117
excerpt field, 54

F
Fabric software, 214, 215
feature creep, 224
featured entries, 55–56
feed class example, 142
feed GUID, 142
feeds

adding to weblog application, 140
categorized, 144–147
directory, creating files in, 143
feeds.py file, 145, 147

fields
classes in django.newforms module, 165
core needed for Link model, 77–78
in Django, 29, 34

filter() method
in QuerySet, 40
using for entries, 93

:filter shortcut, 241
fixtures (files), 221
FlatPage class, 27–28
FlatPage object, 21
flatpages/default.html template, 30
flatpage.title variable, 21
Foord, Michael, 132
ForeignKey field, 55
for/endfor tags, 30
Form class

adding fields to, 175
in django.newforms module, 165

forms
for adding code snippets, 174
adding custom _init_() method to, 174
fields, requirement for, 168
form and /form tags, 182
form-handling code in django.newforms

module, 165
forms.py, 175
generating from model definition, 179–182
processing in code-sharing application, 165
rendering into different types of HTML, 182
simplifying templates that display, 182–183
validation, 170–172

full_clean() method, 171
functions vs. return values, 55

G
generic relations, 59, 60
generic views, 86–87, 230
get_absolute_url() method

adding to admin interface, 62
adding to model, 52
defining, 151
on Entry model, 66
rewriting on Entry model, 74

get_comment_list tag, 137
get_content_object() method, 131
get_model() method, 117–118
get_object() method, 144
get_object_or_404() function, 68
get_template function, 29–30
GitHub, 208
Google Project Hosting, 208
GUIDs (globally unique identifiers), 141–142

H
hash tables, 27
help_text

adding to admin interface fields, 62
argument, adding to field in model, 51

hidden option, 58
highlighted code, styling, 158
History button on flat page, 16
hosting options (VCS), 208
HTML, adding fields for storing, 60
HTTP (HyperText Transfer Protocol)

headers, 134
HttpResponse class, 27
HttpResponseForbidden class, 183

I
idempotent HTTP methods, 190
if tags, 33, 66
IfRatedNode, 200
import statement, changing for Rating

model, 200
include() directives, 90
include() function, 72
index page, items listed on, 15
inheritance

abstract, 124
concrete, 124
template, 98–99

input type=, 166, 182
INSTALL or INSTALL.txt file, 237
INSTALLED_APPS setting

adding applications to, 12–13
adding coltrane application to, 48
changing, 11

instance argument, 131
IntegerField, 57
is_public field, 131
item_pubdate() method, 141

nINDEX 247

items() method
adding to the feed class, 141
changing for categorized feeds, 145

J
jscripts/ directory, 23

K
keyword arguments

in Python, 68
unique constraint generated by, 78

keywords
improving CMS search function with, 33
keyword field in Django data model, 34
keyword_results[0].get_absolute_url()

method, 40

L
Language model, 151, 176
LatestContentNode, writing, 119–120
LatestEntriesFeed, setting up, 140
lexers in pygments download, 151
libraries, Django, 2–3
LICENSE/LICENSE.txt file, 236
linebreaks filter, 127
Link class, 77–81
Link model

adding customized save() method to, 79
adding foreign key to, 78
adding more patterns to, 88
basic core fields for, 77
defining dictionary for generic views, 83
full model definition, 81
installing database table for, 81
link_detail template, 98
link-aggregation service, 78
links.py file, 91–92
template used for generic view, 97
using _unicode_() method with, 79
writing, 77–83

Live entries, 93–95
loader module, 27
login_required decorator, 177–178
login/logout views, 178

M
magic numbers, 58
mail_managers() function, 136–137
manage.py file, 7
manage.py script, 6, 216
manage.py startapp command, 45
manage.py syncdb

database tables created by, 13
installing Category model table with, 48
running, 12
running to install model into database, 188

managers
in Django model system, 94

Manager, writing subclass of, 94
MANAGERS setting, 136
managers.py file, 161

many-to-many relationships
commit=False and, 182
how they work, 59

ManyToManyField, 58–59
markdown filter, 127
media files, 24
Mercurial software, 208, 214
Mercurial: The Definitive Guide, 209
Meta class, 50
metadata, 78
mod_wsgi module, 211
ModelForm class

adding URL pattern for, 184
customization supported by, 180
telling to edit existing object, 184
using, 180

models
designing for weblog application, 47–52
model classes, 62–63
model definitions, 179–182
ModelChoiceField, 175
ModelForm helper, 233
retrieving content from, 117–119

models.py file
adding category to, 50
creating Django data model in, 33–34
partial for weblog application, 63

moderate_comment function, 134
moderation rules, setting up, 233
moderation system for screening incoming

comments, 129
monthly archive template, 107
monthly/daily archives, 106
multiple applications, developing, 226–228
MyModel.object_fetcher.all() method, 94

N
naming style in Python, 28
newforms package, 186
NodeList, 194
null fields vs. blank fields, 54

O
object_detail generic view, 86, 97
object_detail view, 72
object_list generic view, 86, 158
object-relational mapper (ORM), 22
objects attribute (django.db.models.Manager

class), 94
ORDER BY title ASC, 52
order of URL patterns, 17
order_by method, 161
orthogonality, 227–228
os.path module (Python), 217

nINDEX248

P
?P construct, 66
packaging tools, Python, 234–235
page field (Django data model), 34
Page not found error, 17
page/paginator variables (Snippet model),

158
parser argument, 193
passwords

PasswordInput widget, 167
validating, 168

patterns() function, 85
permalink decorator, 74, 81
permission errors, 6
pip software, 212, 214
placeholders, writing templates with, 98
plain attributes vs. methods of feeds, 145
post_save signal, 130
pre_save signal, 131
prepopulated_fields argument, 50
preview.html template, 126
primary keys, 35
projects

vs. applications in Django, 44–45
creating Django, 5

pub_date field
adding default ordering for, 79
providing default value for, 55
showing for blog, 107

py_modules argument, 236
.pyc extension, 8
pydelicious module, 79
pygments

highlight function, 154
pygments.lexers.get_lexer_by_name()

method, 152
Python library, 150
syntax highlighting, 158–159

Python
admonition about learning, 3
decorator syntax, 75
importance of reading tutorial, 9
interactive interpreter, 3
introduction to, 3–4
isolated environments for software man-

agement, 209, 211
Markdown module, importing, 154
naming applications, 45
naming style, 28
python setup.py install, 236
python setup.py sdist, 236
regular-expression syntax, 66–67
stopping the server, 7
understanding function arguments, 68

Python modules
giving docstrings to, 238
installing third-party, 79

Python package
Index, 150
packaging tools, 234–235
standard files to include in, 236–237

Python path
changing, 46
putting code in directory on, 46

Q
q variable, 32
queries

aggregate, 160
execution (Django), 40

QuerySet
class (Django), 40
object, methods in, 233
queryset argument, 70
queryset_or_model argument, 88

R
Rating model/object, 199
README/README.txt file (Python), 236
recursive-include statements, 237
regular expressions, 14
Reinhardt, Django, 2
related_name argument, 188
relative paths in settings, 217–218
render() method, 113, 194–195
render_to_response function, 31
reproducible builds, 212
RequestContext

vs. Context, 196
importing, 196
populating template variables with, 197
for template rendering, 232
using repetitively, 197
writing shortcut for, 197

request.GET.get(‘q’, ‘’) method, 32
resolve() method, 194
reStructuredText (reST)

learning, 240
syntax, 240

return values vs. functions, 55
rich-text editors (RTEs), 23–26

S
safe HTTP methods, 190
SalesInquiryForm example, 230
save() method

adding code for Link model to, 80–81
creating a User object with, 169
in Model class, 61
reason not to highlight in, 154
saving new User object with, 169
writing for Snippet model, 154–155

scope creep, 224
search/ directory, 27

nINDEX 249

search keywords, 36, 45
search systems

adding to CMS project, 26
writing search view for, 27

search view
adding HttpResponseRedirect to, 39–40
adding keyword_results to, 38–39
adding keywords support in, 38
improving in CMS project, 31–33
rewriting to display empty search form, 32
working without adding to INSTALLED_

APPS, 35
security considerations in web applications, 33
SELECT COUNT method (QuerySet), 40
self.id, checking for, 81
self.post_elsewhere+, 81
send method, 130
server error page (Django), 17
settings

changing with environments, 218–219
file, accessing (Django), 80
relative paths in, 217, 218
settings.py file, 8

setup.py script
for continuous packaging, 235
to generate distribution package, 235
writing with distutils, 235–236

setuptools system (Python packages), 235
sidebars

adding explanations in, 102
adding lines to, 128
for blogs, 101–102
rewriting in base.html template, 121

signals
class, 130
and Django dispatcher, 129–130

Signup form, 170
signup.html template, 173
Site object, 132
site-packages directories, 46
slug fields

changing definition of, 50
field type, 47

slugs
adding to Link model, 78
and normalization, 50

Snippet model
adding custom manager to definition of,

162
building out basic fields, 153
extra variables for snippets, 157
fields in, 153
filling in author field, 174
finished, 155–156
finished form for, 176
setting up templates for, 157
snippet_list template, 158

snippets
automatically generating form for adding,

182
bookmarking favorites, 187–188
editing, 183–186
and languages, 156
logical ordering for, 153
rating, 199
SnippetManager, 199

Snippets application
splitting up, 228
testing, 156

social code-sharing site
building in Django, 149
building initial models, 150
feature checklist, 149
setting up application, 150

software development
general rule for staying on track with, 224
importance of staying focused, 224–225
scope creep in, 224
writing reusable applications in Django,

223
spam, filtering comments for, 129
split_contents method, 116
SQL injection attacks, 33
SQLite, 10
stack trace, 18
standalone and coupled applications, 45
startapp command, 27–31
startproject command (django-admin.py), 7
statistical spam analysis, 131–135
status fields, 58, 93
stop words in slug fields, 50
str() vs. smart_str() function (Django), 80
strings (Python)

formatting, 52
types of, 34

strptime function (Python), 67
style guide (Python), 62
Subversion, 208
success_url argument, 231
super() method

calling, 175
using, 61

syncdb command, 156

T
tagging application, 87
tagging.views.tagged_object_list view, 88
tags

adding to Link model, 78
applying to models, 59
entry detail template for, 110
extending template system with custom,

111
provided by Django template system, 19

nINDEX250

registering and using new, 120–122
tag() method, 114
Tag model, 87
:tag shortcut, 241
tag URI, 141–142
TagField, importing into Snippet model, 153
tagging.views.tagged_object_list view, 88
tags.py file, 92
using new, 114–115
views for, 87–88
writing compilation function for, 116–117
writing more flexible with arguments,

115–116
templates

calling object’s methods in, 30
chaining inherited, 100
choosing from multiple, 25
creating to generate HTML, 29–30
defining base for blog, 100
for displaying entries, 104
displaying forms with, 182–183
filters, applying, 60
flexible handling of, 230
how names are determined, 71
inheritance, 97–100
for Link model generic views, 84
loaders, 19
for other types of content, 110
shortcut, 241
tagging.views.tagged_object_list view, 88
TEMPLATE_CONTEXT_PROCESSORS set,

196
TEMPLATE_DIRS, 19
template.Node, 193–195
templates/ directory, 19–20
TemplateSyntaxError, 193
templatetags directory, 192
templating system in Django, 18–22
variables, 196

testing (unit-testing) applications, 27, 219, 221
TextFields, 47, 175
text-to-HTML converter

Markdown as, 61
save() method to apply, 78

third-party Python modules, installing, 79
TIME_ZONE setting, 11
timedelta class instance, 131
TinyMCE, 23
title elements, adding blocks for, 101
title templates, rendering for feed items,

143–144
tools, VCS, 208
top authors, 160–161
top_languages view, 162–163
top_user view, rewriting, 162
tracking code with VCS, 205–209
trailing commas, 20
trans tag, 127

truncatewords_html filter, 66
tuples

representing sequences of items with, 20
used by Python for version number, 5

U
uncommenting code, 13
unique_for_date constraint

supported by Django, 54
used on slug field, 68

unique_for_year constraint, 55
uniqueness constraints, 54–55
unit-testing applications, 27, 219–221
URL patterns

adding new to Link model, 83–84
changing to specify different templates,

230–231
order of, 17
replacing, 73
setting up for Rating model, 200

URLConf module
cleaning up, 93
making change to weblog, 74
provided by Django application, 44
pulling individual bits into, 93
in weblog application, 88–90

URLs (Uniform Resource Locators)
configuration, 14
decoupling, 72–75
directory, 157
flexible handling of, 232–233
pattern naming, 152
setting up for adding and deleting book-

marks, 190
setting up for LatestEntriesFeed, 143
URLConf file (urls.py), 124
URLField (Link model), 77–79
urls/snippets.py, 157
wiring up, 192

urls.py file
adding new line to, 23–24
copying import statements and URL

patterns into, 72–73
fixing, 17
rewriting to use generic views for entries, 70
setting up in cms directory, 66

users
creating new, 168
not specifying current as default, 56
and passwords, 169
rating system, 198–202
signups, 165–167
User model, importing into Snippet

model, 153
User.DoesNotExist exception, 167
username field, validating, 167–168
username/password in del.icio.us, 80
variable, 196

nINDEX 251

V
validation

custom for registration forms, 166
forms, displaying/processing, 172–174
order of, 171–172

ValidationError exception, 168
variables

provided by Django template system, 19
Variable class, 194

verbose_name options, 50
verify_key() method, 132
version control systems (VCS)

choosing/using, 208–209
example, 206–207
overview, 205–206
tools and hosting options, 208
version control with Subversion, 209

view function, 28
View on Site button, 16
views

adding new arguments to (Django), 229–230
adding top_languages to Snippet model,

163
creating file for rating snippets, 199–200
disadvantages of changing handwritten,

196
generic (Django), 70, 233
handling project specific, 234
for HttpResponseForbidden class, 183–184
improving of top authors, 161–162
for languages, 159–160
for listing current user bookmarks, 191
login/logout, 178
querying for most-bookmarked snippets,

191
setting up for categories, 84–85
setting up for Snippet model, 158
specifying prefixes for, 73
starting with simple index, 65
for tags, 87–88
using coltrane/category_detail, 85
using generic (Django), 69, 86–87
views.py file, 27, 65
writing to process form, 177–179

virtualenv tool, 210–211

W
web applications, security and, 33
web development, 226–228
web framework

definition and use of, 1–2
using Django as, 1–8

web pages, Django vs. hand-written, 19
web servers, launching to see administrative

interface, 13
web sites, for downloading

Fabric software, 214
GitHub, 208

pip, 212
virtualenv tool, 210
zc.buildout, 212

web sites, for further information
Akismet web service, 129, 131
Apress Source Code/Download area, 163
content types framework documentation,

163
Django authentication system documen-

tation, 178
Django database API documentation, 41, 94
Django installation instructions, 10
Django settings documentation, 10
django.contrib.syndication application, 141
django.newforms documentation, 186
django-tagging application, 59
docutils module, 240
for downloading Django, 4
for downloading Python, 3
Google Project Hosting, 208
IETF RFC 4151 standard, 141
Mercurial, 208
pydelicious, 79
pygments Python library, 150
Python documentation, 52
Python style guide online, 28
setuptools system information, 235
snippets application, 149
TinyMCE RTE, 23

weblog application
basic fields in, 53–54
building model for entries, 52
creating standalone, 45–47
creating templates for each view, 71–72
creating urls directory in, 90
Django-powered, 43
expanding, 77–95
feature checklist, 43–44
finishing, 61–62, 123
generic view tasks, 69
installing django.contrib.comments,

124–125
new field types in, 47
section templates for, 103–104
templates for, 97
viewing index of all entries created in, 66
writing Link model for, 62–65
writing the first views for, 65–69

widget classes (django.newforms module),
165

Windows, time zones in, 11

Y
yearly archive, 105–106

Z
zc.buildout software, 212
zoneinfo format, 11

Offer valid through 12/09.

	Prelims
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Welcome to Django
	What’s a Web Framework and Why Should I Want One?
	Saying Hello to Django
	Saying Hello to Python
	Installing Django
	taking your First Steps with Django
	exploring your Django Project
	Looking Ahead

	Your First Django Site: a Simple CMS
	Configuring Your First Django Project
	Putting together the Cms
	introducing the Django template system
	Looking Ahead

	Customizing the Simple CMS
	Adding Rich-Text Editing
	Adding a search system to the cms
	improving the search view
	improving the search Function with keywords
	looking Ahead

	a Django-powered Weblog
	Compiling a Feature Checklist
	Writing a Django Application
	Creating the Weblog Application
	Designing the models
	Building the entry model
	The Weblog models So Far
	Writing the First views
	using Django’s generic views
	Decoupling the urls
	looking Ahead

	expanding the Weblog
	Writing the
	Model
	Views for the
	Model
	Setting up Views for categories
	using generic Views (Again)
	Views for tags
	cleaning up the urlconf Module
	handling live entries
	looking Ahead

	templates for the Weblog
	Dealing with Repetitive Elements: The Power of Inheritance
	Defining the Base Template for the Blog
	Setting Up Section Templates
	Displaying Archives of Entries
	Defining Templates for Other Types of Content
	Extending the Template System with Custom Tags
	looking Ahead

	Finishing the Weblog
	Comments and
	Implementing Model Inheritance and Abstract Models
	Moderating Comments
	Adding feeds
	looking Ahead

	a Social Code-Sharing Site
	Compiling a Feature Checklist
	Setting Up the Application
	Building the Initial Models
	testing the Application
	Building Initial Views for Snippets and Languages
	Looking Ahead

	Form processing in the Code-Sharing application
	A Brief Tour of Django’s Form System
	Writing a Form for Adding code Snippets
	Automatically generating the Form from a model Definition
	Simplifying Templates That Display Forms
	editing Snippets
	looking Ahead

	Finishing the Code-Sharing application
	Bookmarking Snippets
	Adding Basic Bookmark Views
	creating a new template tag:
	using
	to Automatically populate template Variables
	Adding the user rating System
	Looking Ahead

	Practical Development Techniques
	Using Version-Control Systems to Track Your Code
	Using Isolated Python Environments to Manage Software
	Using Build Tools
	Using a Deployment Tool
	Simplifying Your Django Development Process
	Looking Ahead

	Writing reusable Django applications
	One Thing at a Time
	Developing Multiple Applications
	Building for Flexibility
	Distributing Django Applications
	looking Ahead

	Index

