

SECOND EDITION

PayPal APIs: Up and Running

Matthew A. Russell

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

PayPal APIs: Up and Running, Second Edition
by Matthew A. Russell

Copyright © 2012 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Holly Bauer
Proofreader: Holly Bauer

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Revision History for the Second Edition:
2012-04-04 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449318727 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Pay Pal APIs: Up and Running, the image of an African wildcat, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31872-7

[LSI]

1333467411

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449318727

Table of Contents

Preface . v

1. PayPal API Overview . 1
Overview of PayPal API Requests 1
Google App Engine Primer 3

Building and Deploying Your First App 4
Fetching URLs 6

Making PayPal API Requests with App Engine 7
Obtaining API Credentials for the Sandbox Environment 7
Making API Requests with 3-Token Credentials 9

Recommended Exercises 17

2. Express Checkout (Including Mobile Express Checkout) . 19
Checkout Process Workflows 19

Generic Checkout Workflow 19
Express Checkout Workflow 20

Express Checkout Flow 21
PayPal Express Checkout API Operations 23

SetExpressCheckout 25
GetExpressCheckoutDetails 27
DoExpressCheckoutPayment 27

Implementing a Checkout Experience for Tweet Relevance 32
Selecting a Payment Model 32
Injecting an Express Checkout Entry Point into Tweet Relevance 33

Mobile Express Checkout (MEC) 44
Recommended Exercises 45

3. Express Checkout for Digital Goods . 49
Everyone Wins with Digital Goods Transactions 49
Implementing a Digital Goods Checkout for Tweet Relevance 51

The User Experience 51

iii

Implementation Details 53
Recommended Exercises 59

4. Adaptive Payments (Simple, Parallel, and Chained Payments) 61
Overview of Adaptive Payments 61
Common Adaptive Payment Workflows 62

Who Pays the Fees? 64
Payment Approval and Payment Flows 65

Explicit Payments 65
Preapproved Payments 66
Implicit Payments 68
Guest Payments 68

The Pay and PaymentDetails APIs 69
Pay API Operation 69
The PaymentDetails API Operation 73
GAE Simple Adaptive Payments Example 76
GAE Chained Adaptive Payments Example 79
GAE Parallel Payments Example 80

Integrating a “Simple” Adaptive Payment into Tweet Relevance 81
There’s a Lot More 87
Recommended Exercises 88

5. Website Payments Pro (Direct Payment) . 89
Overview of Direct Payment 90
PayPal Direct Payment API Operations 91
Implementing DoDirectPayment 95

DoDirectPayment API Operation 95
Implementing DoDirectPayment with GAE 99

Integrating DoDirectPayment and Tweet Relevance 101
Recommended Exercises 107

6. Instant Payment Notifications (IPNs) . 109
Overview of IPNs 109

IPN Protocol and Architecture 111
Integrating IPNs Into Tweet Relevance 113
Recommended Exercises 120

A. Overview of Tweet Relevance . 123

B. Mobile Payment Libraries (MPLs) . 131

iv | Table of Contents

Preface

There has never been a better time to have a keen interest in commerce. The Web has
truly accelerated globalization and connected us all through a common network. In-
formation can now be shared at mind-boggling rates, and entrepreneurs everywhere
can truly reach a global audience if they’re clever (and sometimes lucky) enough to
supply the market with what it demands. However, this is old news. Back in the
mid-1990s, not long after the Internet officially birthed the Web, buyers and sellers
could already transact through eBay, and PayPal soon arrived as the de facto way for
money to change hands with the least amount of friction. Fast forward a decade or so,
and a lot of exciting things have happened. eBay acquired PayPal back in 2002, and
while PayPal continues to be the preferred way to exchange money on eBay, it has since
evolved into a powerful platform that offers a vast number of API-based products that
allow you to monetize your ideas as seamlessly as possible. If you’re interested in tap-
ping into these tremendous possibilities, this book is for you. As an “Up and Running”
title, it doesn’t provide complete or exhaustive documentation on all of PayPal’s products
or even provide very specific direction on handling some of the most common idiosyn-
crasies that you might encounter. However, it does aim to present some of the most
popular products in fully integrated realistic scenarios with sample project code that
you can study and adapt for your particular needs. As the title suggests, this book is
designed to get you up and running; it is not a definitive guide.

Each chapter focuses primarily on the topic of integrating commerce payment flows
into a reference application that’s provided in Appendix A. While one viable approach
to demonstrating the integration of PayPal products might have been to introduce a
distinct sample application in each chapter, a pragmatic decision to use a single appli-
cation as a foundation and customize it in various ways according to the content of
each chapter was chosen instead. This approach hopefully has the virtues of the sample
application being sophisticated enough that it’s realistic, fun, and useful, while still
allowing each chapter to stand alone and be as atomic and instructive as possible.

v

Notes About the Second Edition
The first edition version of this book, authored by Michael Balderas, essentially pre-
sented a consolidation of PayPal’s online documentation and PHP sample code that
focused on using the Name-Value Pairs (NVP) APIs for accessing a variety of the most
commonly used PayPal products such as Express Checkout, Website Payments Pro,
and Adaptive Payments. This edition builds upon that important—albeit fairly abstract
—foundation with expanded content, including additional coverage on the exciting
new Express Checkout for Digital Goods product and Instant Payment Notifications
(IPNs), and includes accompanying sample project code that concretely pulls it all
together with a realistic web application. As such, a primary goal of this book is to
present PayPal products in a fairly standalone, chapter-by-chapter fashion with the key
concepts for integrating each product fully implemented as a sample project. Like any
other book, this book tells a coherent (and hopefully enjoyable) story from cover to
cover. Although you should be able to skip directly to content of interest with minimal
difficulty, you’ll get the greatest benefit if you at least skim the entire book before
hopping around too much. Appropriate references will be included to any foundational
content from previous chapters as needed.

Intended Audience
This book is for any programmer who wants to accept payments for their goods or
services through PayPal by using some of PayPal’s most popular products. You might
be a multimillion-dollar corporation, an individual with an open source project looking
to accept donations, a nonprofit requesting donations to help a cause, or a software
developer writing mobile apps for cell phones. Regardless, PayPal can provide you with
solutions, no matter who you are or how much monetary volume you’re processing.
The code samples in this book are provided as Python web applications that can be
deployed on Google App Engine (GAE) with minimal fuss. Python code is inherently
highly readable, and reasonable efforts are made to keep it that way versus using any
advanced syntax or nonintuitive Python idioms. Furthermore, the code for the sample
web applications has been kept as austere and clear of common Python dependencies
—such as Django—as possible so that it is as universally reusable and portable to other
languages as possible.

The official Python tutorial is worth perusing if this is your first encounter with Python;
however, you really don’t need to actually do any Python programming to benefit from
this book. The source code and inline comments should be clear enough that it’s a fairly
trivial exercise for you to port them to your programming platform of choice, and the
choice of NVP APIs for PayPal interaction ensures that the payment flows are inherently
trivial to understand if you have any programming experience.

vi | Preface

http://docs.python.org/tutorial/

How This Book Is Organized
Here is a brief summary of the chapters in the book and what you can expect from each:

Chapter 1, PayPal API Overview
Provides a 10,000-foot overview of interacting with PayPal APIs as web services
and introduces GAE, the primary development platform that’s used throughout
the book.

Chapter 2, Express Checkout (Including Mobile Express Checkout)
Showcases Express Checkout, PayPal’s premier checkout solution, and demon-
strates how to implement a basic Express Checkout payment flow for Tweet
Relevance.

Chapter 3, Express Checkout for Digital Goods
Teaches you how to tailor and improve the Express Checkout flow established in
the previous chapter as an Express Checkout for Digital Goods payment flow.

Chapter 4, Adaptive Payments (Simple, Parallel, and Chained Payments)
Introduces Adaptive Payments and shows you how to implement an Adaptive
Payments checkout flow for Tweet Relevance in which funds are sent to multiple
recipients.

Chapter 5, Website Payments Pro (Direct Payment)
Teaches you how to accept credit cards directly from your site using Website Pay-
ments Pro’s Direct Payment option as a checkout option for Tweet Relevance.

Chapter 6, Instant Payment Notifications (IPNs)
Demonstrates how to use Instant Payment Notifications (IPNs) to handle custom
actions associated with a payment, such as sending a confirmation email to a cus-
tomer when a purchase is completed.

Appendix A
Introduces Tweet Relevance, the foundational reference application that’s used
throughout the book as a baseline project.

Appendix B
Provides a minimal overview of Mobile Payments Libraries (MPLs). This is also
where you can go to get started developing solutions for iOS, Android, and
BlackBerry.

It is highly recommended that you read Chapters 1 and 2 before diving into any other
chapter, because these initial chapters try to be as thorough as possible in establishing
a foundation that future chapters build upon.

Preface | vii

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “PayPal APIs: Up and Running (2nd Ed.) by
Matthew Russell. Copyright 2012 O’Reilly Media, Inc., 978-1-449-31872-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

viii | Preface

mailto:permissions@oreilly.com

All sample code for this book is available online at GitHub and is con-
veniently organized by chapter. Although much of the code is included
in the text of this book so that it’s as instructional as possible, always
reference the latest bug-fixed code on GitHub as the definitive reference
for sample code. Bug tickets and patches are welcome!

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/paypal-apis-2e

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Preface | ix

https://github.com/ptwobrussell/PayPal-APIs-Up-and-Running
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/paypal-apis-2e
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

x | Preface

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

PayPal API Overview

This chapter provides a very brief overview of PayPal’s Name-Value Pair (NVP) APIs,
the primary way that you’ll interact with PayPal products throughout the remainder of
this book. Since using the NVP APIs is as simple as making some HTTP requests and
parsing the responses, we’ll get a Python project up and running with Google App
Engine (GAE) as part of this initial overview. Future chapters all use Python-based GAE
projects, so unless you’re definitely planning to port the code without running it, you
should make the most of this opportunity to learn the basics. After reading this chapter,
it is highly recommended that you check out and run the sample code for Tweet Rele-
vance as introduced in Appendix A.

Overview of PayPal API Requests
PayPal’s NVP API makes it simple to integrate payments into your application. As the
merchant, your web application constructs an NVP string and transmit it via HTTPS
(HTTP Secure) to the PayPal authorization server, and PayPal sends back an NVP-
formatted response that your web application parses for the information relevant to
the payment. Figure 1-1 shows this basic request and response workflow, which is
typical of just about any web application.

Figure 1-1. Typical NVP request and response

1

The request identifies:

• The name or method of the API operation to be performed and its version

• PayPal API credentials

• Operation-specific parameters formatted as name/value pairs

Various PayPal products may require additional specific request pa-
rameters as indicated by PayPal’s official documentation. For example,
Adaptive Payments APIs also require an APP ID field to be specified.

The PayPal API server executes the operation and returns a response containing:

• Acknowledgment of success or failure (including any warnings returned in case of
failure)

• PayPal tracking information specific to the API operation

• Response-specific information required to fulfill the request

Some PayPal products such as Express Checkout require calls to multiple API opera-
tions, while others such as Direct Pay (part of Website Payments Pro) only require one
call. We’ll review Express Checkout in the next chapter, but Figure 1-2 is included to
illustrate its typical flow, which should look pretty familiar and intuitive if you’ve ever
used PayPal. Either way, interacting with PayPal products is just a series of API calls
that allow you to accomplish a wide variety of tasks. A few examples of the possible
transactions PayPal products support include:

• Accepting PayPal as part of a streamlined checkout process

• Charging a credit card

• Capturing previously authorized payments

• Reauthorizing or voiding previous authorizations

• Paying single or multiple recipients

• Issuing full or partial refunds

• Searching transactions histories

• Retrieving details of specific transactions

• Processing payments involving more than one party

• Setting up recurring subscription charges

• Accepting Donations

With a broad understanding of how payment transactions are implemented, let’s briefly
segue into an overview of GAE and how to implement HTTP requests, the essential
skill required to interact with PayPal APIs.

2 | Chapter 1: PayPal API Overview

Google App Engine Primer
GAE is a terrific platform, and this book takes advantage of its simplicity and uses it as
the standard for communicating how to build web applications that interact with Pay-
Pal APIs. It’s very easy to get an application up and running locally for test purposes,
yet the same applications that you’ve implemented can be run and scaled out on the
very same infrastructure that Google uses for its own applications with virtually no
additional work! A vast amount of documentation about GAE is available online, so
let’s assume that you’ll take a little time to familiarize yourself by reviewing the App

Figure 1-2. A typical Express Checkout in which a merchant site establishes a session with PayPal
and then redirects the buyer to PayPal for specification of shipping and payment information. Once
the buyer confirms transaction details, PayPal redirects the buyer back to the merchant site where it
regains control of the checkout and can issue additional requests to PayPal for final payment
processing.

Google App Engine Primer | 3

http://code.google.com/appengine/
http://code.google.com/appengine/docs/python/overview.html

Engine Python Overview, which includes a “getting started” guide that walks you
through installation of the Python Software Development Kit (SDK).

Building and Deploying Your First App
Assuming you’ve installed the Python SDK1 and done little more than use Google App
Engine Launcher to create a new sample project, you’ve essentially already imple-
mented a traditional “Hello, world” program that you can run on your local machine.
Launch the program by clicking the Run button, and then click the Browse button to
launch and navigate your browser so that you successfully see “Hello world!” to make
sure that everything is up and running. Then, take a peek at the contents of app.yaml
and main.py, which are reproduced in Examples 1-1 and 1-2 for convenience. At a high
level, the salient points are that the name of the application is helloworld; that Main-
Handler is assigned to the root context of the web application, as indicated by the
presence of ('/', MainHandler) in the list that’s supplied to the WSGIApplication class
constructor; and a get method is defined for MainHandler, which allows the web appli-
cation to respond to your browser’s GET request when you click the Browse button
from the Google App Engine Launcher.

Example 1-1. app.yaml from a stock GAE project

application: helloworld
version: 1
runtime: python
api_version: 1

handlers:
- url: /favicon\.ico
 static_files: favicon.ico
 upload: favicon\.ico

- url: .*
 script: main.py

Example 1-2. main.py from a stock GAE project

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util

class MainHandler(webapp.RequestHandler):
 def get(self):
 self.response.out.write('Hello world!')

def main():
 application = webapp.WSGIApplication([('/', MainHandler)],
 debug=True)

1. As of this writing, version 1.6.0 is the latest SDK, which supports the Python 2.5 runtime by default. The
Python 2.7 runtime is a stable—but still considered experimental—feature.

4 | Chapter 1: PayPal API Overview

http://code.google.com/appengine/docs/python/overview.html
http://code.google.com/appengine/docs/python/gettingstarted/helloworld.html

 util.run_wsgi_app(application)

if __name__ == '__main__':
main()

At this point, if you naively click the Deploy button to try to deploy the application to
the Web, you’ll get an unfortunate error in the logging console to the effect of, “You
do not have permission to modify this app (app_id=u'helloworld').” In other words,
it’s telling you that the application id of helloworld that’s specified in app.yaml is al-
ready registered by someone else and that you’ll need to try another one. It’s unfortu-
nate that the error message doesn’t give you a bit more information, because what you
really need to do at this point is click the Dashboard button to log into your GAE
account and register a web application with a unique identifier, which in turn corre-
sponds to a unique appspot.com subdomain. For example, a GAE web application with
an application identifier of helloworld would correspond to http://helloworld.app-
spot.com. You can only register a limited number of application identifiers for free, so
it’s recommended that you create a generic identifier that you can reuse for multiple
test applications. The identifier that’ll be used throughout this book is ppapis2e, which
somewhat corresponds to this book’s title, PayPal APIs: Up and Running (Second Ed-
ition). You can use whatever identifier you’d like.

You should verify that you can register an application identifier and deploy it to app-
spot.com before reading further. The steps you should take simply involve:

• Clicking the Dashboard button in the Google App Engine Launcher

• Authenticating into the dashboard with your Google account

• Creating an application in the dashboard

• Changing the top line of your local app.yaml file to reflect your web application’s
name you’ve chosen

• Clicking the Deploy button in the Google App Engine Launcher

• Navigating your web browser to the corresponding URL on appspot.com that cor-
responds to the subdomain that you’ve chosen, i.e., a URL such as http://ppa-
pis2e.appspot.com

There’s lots more that could be said about GAE, but we should review at least one more
important skill that you’ll need before leaving you to the online documentation: im-
plementing HTTP requests. In GAE parlance, this skill is filed under the URL Fetch
Python API.

Google App Engine Primer | 5

http://appengine.google.com/
http://appengine.google.com/
http://code.google.com/appengine/docs/python/urlfetch/
http://code.google.com/appengine/docs/python/urlfetch/

Fetching URLs
One thing that should be mentioned about GAE is that there are some modules from
the standard library that are not accessible because of the sensitive nature of running
applications in a shared environment. Unfortunately, urllib, urllib2, and httplib are
some common modules that you may have used for implementing HTTP requests that
are off limits to your GAE application; however, GAE naturally provides ways to make
both synchronous and asynchronous requests in a familiar enough manner. Exam-
ple 1-3 is an updated version of Example 1-2 that makes use of the urlfetch function
to perform a synchronous HTTP request. (Asynchronous requests are made in a very
similar manner except that a callback function defines what should happen once the
request completes.) Note the use of the keyword parameter validate_certificate,
which is employed to ensure that the request is securely completed so as to avoid po-
tential man-in-the-middle attacks. You should be able to deploy the application and
verify that it can indeed securely fetch the URL https://paypal.com/ before continuing.

When implementing an online commerce application, always be a bit
paranoid and routinely double-check security assumptions.

Example 1-3. An updated main.py that illustrates how to use the urlfetch function to perform a secure
HTTP request

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util
from google.appengine.api import urlfetch

class MainHandler(webapp.RequestHandler):
 def get(self):
 url = "https://www.paypal.com/"
 result = urlfetch.fetch(
 url,
 validate_certificate=True # Avoid man-in-the-middle attacks
)
 if result.status_code == 200:
 self.response.out.write('Successfully fetched ' + url)
 else:
 self.response.out.write('Could note fetch %s (%i)' % (url, result.status_code,))

def main():
 application = webapp.WSGIApplication([('/', MainHandler)],
 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

6 | Chapter 1: PayPal API Overview

http://en.wikipedia.org/wiki/Man-in-the-middle_attack

Hopefully, you are now comfortable enough with GAE that you can find your way
around and use the online documentation to fill in basic knowledge gaps. Generally
speaking, the overall flow for each application is discussed to some degree when sample
code is introduced, and inline source code comments are provided wherever helpful,
but a basic working knowledge of GAE is assumed moving forward.

Making PayPal API Requests with App Engine

Although PayPal offers a number of SDKs for a number of common
programming languages including Java, ASP.NET, Ruby, PHP, and
Cold Fusion, the applications in this book use the NVP APIs directly.
Visit the SDKs and Downloads section of PayPal’s Integration Center
for more details about the various SDKs that are available.

In order to make PayPal API requests, you’ll first need to register a merchant account
and obtain API credentials. Since it wouldn’t be a very good idea to implement a com-
merce application in a live production environment that involves real accounts and real
money, PayPal offers a wonderful sandbox environment to use while developing your
application. Using the sandbox environment, you can set up faux buyer and seller
accounts to fully test the payment flows and track the flow of funds before flipping the
switch on your application code and going live. The faux buyer account acts like some-
one buying a product from a marketplace, and the faux seller account acts like the
marketplace that’s selling the products. For the most part, switching between the two
is as simple as changing the target server URL and the API credentials from sandbox
values to production values. The rest of your application will remain unchanged, so
it’s a fairly painless experience to go live. The remainder of this chapter steps through
the process of obtaining API credentials for the sandbox environment, and shows you
how to use them to make a PayPal API request.

Obtaining API Credentials for the Sandbox Environment
Developing your application only requires access to the PayPal API sandbox. You can
sign up for access to the sandbox environment at https://developer.paypal.com. Once
your account is established, you can create test accounts for buyers and sellers as well
as obtain API credentials. Sandbox accounts and live accounts require different pro-
cesses to obtain credentials.

Making PayPal API Requests with App Engine | 7

https://developer.paypal.com

This book doesn’t cover some of the nuances of transitioning to a live
environment, but you’ll essentially just sign up for a merchant ac-
count, substitute the production API credentials that come with your
merchant account into your web application, and update the API end-
points that your web application uses for making requests. There’s also
a handy Go Live Checklist that’s maintained in PayPal’s official docu-
mentation that summarizes the key steps.

Use the following steps for a sandbox account:

1. Go to https://developer.paypal.com and click Sign Up Now.

2. Enter the requested information and click Agree and Submit.

3. PayPal will send you an email to complete the signup process.

4. After confirming your email address, you can create test accounts and access API
credentials by logging into https://developer.paypal.com/ with the email/password
combination you provided during the signup process.

5. Click the Test Accounts link.

6. Click the Create Test Account link.

7. Choose Seller for the account type and select the other appropriate options. Going
with the defaults is highly recommended and results in API credentials being cre-
ated automatically.

8. Click the API credentials link to access your API credentials.

9. Click the Enter Sandbox Test Site button to log in to faux buyer and seller accounts.
Note that after the initial login to https://developer.paypal.com/, you can log in to
individual sandbox accounts by accessing https://www.sandbox.paypal.com
directly.

You cannot use the same email/password combination to log in to your
sandbox account at https://developer.paypal.com/ that you use to log in
to your ordinary PayPal account (unless, of course, you intentionally
used the very same email/password combination for both accounts,
which is not recommended).

If this is your first encounter with the PayPal Sandbox Test Environment, these steps
can seem slightly confusing at first since you end up with so many accounts. The key
takeaways are that you can create a developer account and log in to the sandbox envi-
ronment. From within the sandbox environment, you can create faux buyer and seller
accounts, and the creation of a faux seller account provides you with API credentials
for the faux merchant account. Note, however, that in order to log in to these faux
accounts, you’ll need to establish a session by first logging in through https://www
.sandbox.paypal.com and using the faux account credentials for each individual ac-

8 | Chapter 1: PayPal API Overview

https://www.paypal.com/webapps/mpp/merchant
https://www.paypal.com/webapps/mpp/merchant
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/howto_api_endpoints
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/howto_api_endpoints
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/howto_api_golivechecklist
https://developer.paypal.com
https://developer.paypal.com/
https://developer.paypal.com/
https://www.sandbox.paypal.com
https://developer.paypal.com/
https://www.sandbox.paypal.com
https://www.sandbox.paypal.com

count; you cannot log in to http://paypal.com with the faux credentials. Figures 1-3
through 1-7 show the overall login flow.

Figure 1-3. Log in to the sandbox environment with your developer account (which is separate from
your ordinary PayPal account).

Once you’ve successfully worked your way through the developer sandbox fundamen-
tals, you’re ready to use your faux merchant account’s API credentials to programati-
cally make a request.

Making API Requests with 3-Token Credentials
PayPal offers two methods for authenticating requests: certificates and “3-token cre-
dentials,” which are comprised of a username, password, and signature. You are already
familiar with the concept of securing an account by using a username and a password,
but perhaps you’re not familiar with the additional signature. Essentially, the signature
is an additional password that is intrinsically virtually impossible to guess or crack, and
the addition of it to the authentication process results in a scheme known as multi-
factor authentication since the signature is an additional factor that is used in addition
to the password. By default, faux accounts are set up with 3-token credentials, and we’ll
use the API Signature method of specifying credentials throughout this book. Fig-
ure 1-8 illustrates the 3-token credentials in a developer sandbox account.

Making PayPal API Requests with App Engine | 9

http://en.wikipedia.org/wiki/Multi-factor_authentication
http://en.wikipedia.org/wiki/Multi-factor_authentication

The remainder of this section works through a few implementation details and culmi-
nates with the equivalent of a working “Hello, world!” example to illustrate how to
make a PayPal API request and parse the response. Specifically, we’ll call the SetEx
pressCheckout API, which is the first step involved in using the Express Checkout
product. Express Checkout is featured in depth in the next chapter, so for now, don’t
worry about the details of what it does. At this point, just think of it as an opaque API
operation, and focus on the details of making the request and parsing the response.
The key steps your application must accomplish to post to the NVP API include URL
encoding, constructing the request in a format the NVP API can interpret, and posting
the request via HTTPS to the server. The remainder of this section works through these
details.

Figure 1-4. Once logged into the sandbox environment, you can create and manage test accounts from
the Test Accounts menu item.

10 | Chapter 1: PayPal API Overview

URL encoding and decoding

Both the request to the PayPal server and the response from the server are URL encoded.
This method ensures that you can transmit special characters, characters not typically
allowed in a URL, and characters that have reserved meanings in a URL. For example:

NAME=John Doe&COMPANY=Acme Goods & Services

is URL encoded as follows:

NAME=John+Doe&Company=Acme+Goods+%26+Services

Each application language typically has a specific built-in URL encode method. Refer
to the list in Table 1-1 for some specific functions in common programming languages.

Figure 1-5. Create faux buyer and seller accounts.

Making PayPal API Requests with App Engine | 11

Table 1-1. URL encoding and decoding methods for common programming languages

Application language Encoding Function Name Decoding Function Name

ASP.NET System.Web.HttpUtility.UrlEncode System.Web.HttpUtility.UrlDecode

Classic ASP Server.URLEncode No built-in function

Java java.net.URLEncoder.encode java.net.URLEncoder.decode

PHP urlencode urldecode

ColdFusion URLEncode URLDecode

Python urllib.urlencode urlparse.parse_qs

Since Python is used as the primary programming language in this book, Exam-
ple 1-4 illustrates a Python interpreter session showing you how to decode and encode
URL query string parameters. The very same logic holds for your GAE app, except that
the parse_qs function may need be imported from the cgi module instead of the url
parse module because of changes to Python packages between versions 2.6 and 2.7.

Figure 1-6. Select an account and click Enter Sandbox Test Site to launch a login. (Notice the message
in the upper-right corner of the screen that alerts you that you have already established a developer
session.)

12 | Chapter 1: PayPal API Overview

At the time of this writing, Python 2.5 was still the default version to
run on GAE, but Python 2.7 seemed imminently releasable and was in
an experimental state. Note that as of Python 2.6, parse_qs was moved
into the urlparse module, so attempting to import it from cgi will fail
if and when GAE defaults to Python version 2.7.

Example 1-4. Encoding and decoding a URL with Python version 2.7

>>> import urllib
>>> encoded_qs = urllib.urlencode({'NAME' : 'John Doe', 'COMPANY' : 'Acme Goods &
Services'})
>>> print encoded_qs
'COMPANY=Acme+Goods+%26+Services&NAME=John+Doe'

>>> import urlparse
>>> decoded_qs = urlparse.parse_qs(encoded_qs) # use cgi.parse_qs for Python 2.5 and older
>>> print decoded_qs
{'COMPANY': ['Acme Goods & Services'], 'NAME': ['John Doe']}

One very minor nuance to observe is that parse_qs returns lists of values for each field
in the dictionary result. The reason is that it is legal for URL query string items to be
keyed by duplicate field names. For example, foo=1&foo=2&foo=3 is a valid query string,
so parse_qs needs to be able to return all of these values back to you uniformly.

Figure 1-7. Use the faux account credentials to log in to the account—it provides the same view as if
it were a real merchant account!

Making PayPal API Requests with App Engine | 13

Request and response format

Each NVP API request is composed of required and optional parameters and their
corresponding values. Parameters are not case-sensitive, but certain values such as the
API Password, (PWD), are case-sensitive. The required parameters for all NVP API trans-
actions are USER, PWD, METHOD, and VERSION. The METHOD, or type of transaction you are
calling the NVP API to process, has an associated VERSION. Together the METHOD and
VERSION define the exact behavior of the API operation you want performed. This will
be followed by the information posted from your application, including things such as
Item, Quantity, and Cost.

API operations can change between versions, so when you change a
version number, be sure to test your application code again before going
live.

Figure 1-8. PayPal API credentials are available through the developer sandbox environment

14 | Chapter 1: PayPal API Overview

Each NVP API response is composed of an acknowledgment (or ACK), a timestamp,
a CorrelationID unique to the transaction, and a build number stating the API version
used to process the transaction. This basic response is then followed by a series of name/
value pairs holding the transaction data, which you can parse and handle accordingly
in your application. The acknowledgment will be one of the responses outlined in
Table 1-2.

PayPal maintains a fairly detailed list of error codes that is very handy
to bookmark and consult during debugging situations.

Table 1-2. ACK parameter values

Type of response Value

Successful response Success, SuccessWithWarning

Partially successful response (relevant only for parallel payments; some of
the payments were successful and others were not)

PartialSuccess

Error response code Failure, FailureWithWarning, Warning

Making a PayPal Request with GAE

Now that we have established some of the fundamentals, let’s make a PayPal API re-
quest using GAE. Example 1-5 ties together the common concepts from this chapter
and shows you how do it.

Example 1-5. An updated main.py that illustrates how to make a PayPal API request and parse the
response

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util
from google.appengine.api import urlfetch

import urllib
import cgi

class MainHandler(webapp.RequestHandler):
 def get(self):

 # Sandbox NVP API endpoint

 sandbox_api_url = 'https://api-3t.sandbox.paypal.com/nvp'

 nvp_params = {
 # 3 Token Credentials - Replace XXX with your own values

 'USER' : 'XXX',
 'PWD' : 'XXX',
 'SIGNATURE' : 'XXX',

Making PayPal API Requests with App Engine | 15

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_errorcodes

 # API Version and Operation
 'METHOD' : 'SetExpressCheckout',
 'VERSION' : '82.0',

 # API specifics for SetExpressCheckout
 'PAYMENTREQUEST_0_AMT' : '1.00',
 'RETURNURL' : 'http://ppapis2e.appspot.com/xxx_returnurl_xxx',
 'CANCELURL' : 'http://ppapis2e.appspot.com/xxx_cancelurl_xxx'
 }

 # Make a secure request and pass in nvp_params as a POST payload

 result = urlfetch.fetch(
 sandbox_api_url,
 payload = urllib.urlencode(nvp_params),
 method=urlfetch.POST,
 validate_certificate=True
)

 if result.status_code == 200: # OK

 decoded_url = cgi.parse_qs(result.content)

 for (k,v) in decoded_url.items():
 self.response.out.write('<pre>%s=%s</pre>' % (k,v[0],))
 else:

 self.response.out.write('Could note fetch %s (%i)' %
 (url, result.status_code,))

def main():
 application = webapp.WSGIApplication([('/', MainHandler)],
 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

Hopefully, the code is pretty self-explanatory. GAE’s urlfetch.fetch function is used
to make a secure request to the sandbox API endpoint, which includes the standard
USER, PWD, and SIGNATURE parameters from under the “API Credentials” tab of the sand-
box environment, along with an API operation and version as defined by METHOD and
VERSION, respectively. The SetExpressCheckout API requires a minimum of a request
amount and redirect URL.

Keeping up with updates to PayPal’s API isn’t quite as simple as one
would imagine. The simplest way to keep up with developments is to
consult About Previous Versions of the API.

16 | Chapter 1: PayPal API Overview

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/howto_api_endpoints
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_r_SetExpressCheckout
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_PreviousAPIVersionsNVP

The important thing to take away from this particular example is just that you can
substitute in your own 3-token credentials and successfully execute the code. It should
run on your local development machine, but also take the opportunity to deploy it as
a live application and see it run out on the Web as well.

Example 1-6. Sample results from executing Example 1-5, which calls SetExpressCheckout and
displays the results

ACK=Success
TIMESTAMP=2011-11-16T15:38:28Z
TOKEN=EC-7JK870639U925801V
VERSION=82.0
BUILD=2256005
CORRELATIONID=f7f4dbb891723

Once you’ve successfully run the code and get back a sample response as shown in
Example 1-6, you should be ready to move on to the next chapter, where we’ll explore
the Express Checkout product in more detail and build a (hopefully) fun and realistic
sample app that incorporates it to implement the payment flow. However, before turn-
ing to the next chapter, you should definitely check out, review, and run the sample
code for Tweet Relevance, the foundational sample project that’s used throughout this
book and introduced in Appendix A.

Recommended Exercises
• Complete the (official) Python tutorial.

• Review and execute the examples in the Getting Started with Python documenta-
tion for GAE.

• Check out, review, and run the sample code for Tweet Relevance, as introduced
in Appendix A.

• Bookmark and spend a few minutes browsing PayPal’s official documentation.

• Take some time to explore the GAE development console. It provides extensive
options for interacting with objects persisted in the data store, an interactive con-
sole, and much more. Familiarity with it is essential to efficient GAE software
development.

All sample code for this book is available online at GitHub and is con-
veniently organized by chapter. Although much of the code is included
in the text of this book so that it’s as instructional as possible, always
reference the latest bug-fixed code on GitHub as the definitive reference
for sample code. Bug tickets and patches are welcome!

Recommended Exercises | 17

http://docs.python.org/tutorial/
http://code.google.com/appengine/docs/python/gettingstarted/
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/library_documentation
https://github.com/ptwobrussell/PayPal-APIs-Up-and-Running

CHAPTER 2

Express Checkout (Including Mobile
Express Checkout)

Express Checkout is PayPal’s premier checkout solution. It allows a customer to check
out on your site, log into a PayPal account, and purchase your goods or services. Express
Checkout puts PayPal in charge of data security with regard to the customer’s billing
and credit card information and removes that non-trivial PCI compliance burden and
liability from you as the merchant, allowing you to focus on the aspects of your appli-
cation that differentiate you in the marketplace. In this chapter, we will look at what
distinguishes Express Checkout from other generic workflows and take an in-depth
look at its integration points. Then, we’ll put theory into practice by building a non-
trivial (and hopefully, fun) GAE project that hacks on Twitter data and implements
Express Checkout for payment processing.

PayPal’s official documentation for Express Checkout is available on-
line.

Checkout Process Workflows
Let’s start by looking at the process flow of a typical checkout and juxtapose it with an
Express Checkout to better understand the underlying value proposition.

Generic Checkout Workflow
Figure 2-1 shows the typical checkout flow a user experiences when buying goods or
services online. It includes the following steps:

1. Customer clicks the checkout button on your shopping cart page.

2. Customer enters all shipping information.

19

http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://www.x.com/developers/paypal/products/express-checkout
https://www.x.com/developers/paypal/products/express-checkout

3. Customer chooses her payment method and provides all the relevant billing and
payment information.

4. Customer reviews order and pays.

5. Customer receives her order confirmation.

As you can see, this typical checkout method requires the customer to provide a lot of
information at the time of purchase. Numerous studies have shown that a cumbersome
checkout process is a sure way to lose customers. As you’re about to see, Express
Checkout can be a real time saver for your customers and translate into higher
conversions.

Figure 2-1. Generic checkout workflow

Express Checkout Workflow
Figure 2-2 shows an Express Checkout. Take special note that the process is consid-
erably more streamlined. There’s no need to enter shipping information or specifics for
payment information. For the typical case, there’s literally just a few clicks and the
order is processed.

1. Customer chooses Express Checkout by clicking the “Check out with PayPal”
button on your site.

2. Customer logs into PayPal.

3. Customer reviews the transaction on PayPal.

4. Customer confirms the order and pays from your site.

5. Customer receives an order confirmation.

Figure 2-2. PayPal Express Checkout workflow

20 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

With Express Checkout, the customer does not need to enter his billing and shipping
information each time. Consequently, customers can make purchases and move on to
other tasks much more quickly. Table 2-1 outlines the steps required to complete a
payment during a generic checkout and Express Checkout. As you can see, Express
Checkout saves both time and processing steps.

Table 2-1. Generic checkout versus Express Checkout

Checkout step Generic checkout Express Checkout

Select the checkout button ✓ ✓
Enter shipping info ✓ -

Select payment method ✓ -

Enter payment information ✓ -

Review order ✓ ✓
Confirm order ✓ ✓

Express Checkout Flow
To fully implement Express Checkout, you must allow your customers two entry points
into the Express Checkout payment process. Figure 2-3 outlines the complete checkout
flow for Express Checkout. In short, customers can enter into the Express Checkout
flow at either the Shopping Cart Checkout entry point (dotted arrow) or the Payment
Methods entry point (solid arrow). Although it might seem a bit curious that there are
two entry points to initiate the Express Checkout flow, the basic premise is that the
Shopping Cart Checkout entry point gives customers familiar with PayPal an immediate
opportunity to perform the quickest checkout possible, while the Checkout entry point
essentially provides PayPal as an option alongside other possible payment options.
Depending on your perspective, the existence of two entry points could be seen as a
little extra nudge for customers to use PayPal for checkout, although from a functional
standpoint, having the two entry points does make sense: one provides the speediest
checkout possible, and the other presents PayPal in the same context as any other
payment method. At any rate, including both methods in your checkout routines is
recommended and easy to implement.

Figure 2-4 outlines the Checkout Entry Point, which requires the following steps:

1. Customer clicks the “Check out with PayPal” button.

2. Customer logs into PayPal.

3. Customer confirms shipping and billing information on PayPal’s site.

4. Customer is returned to your application for final review and clicks the Purchase
button.

5. Customer is returned to a confirmation screen related to the purchase.

Express Checkout Flow | 21

Figure 2-4. Checkout Entry Point

Figure 2-5 outlines the Payment Method Entry Point, which requires the following
steps:

1. Customer clicks the Checkout button on your application.

2. Customer inputs shipping information into your application.

3. Customer chooses PayPal from the list of payment methods.

4. Customer logs into PayPal.

5. Customer reviews payment information on PayPal’s site.

Figure 2-3. Complete Express Checkout flow

22 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

6. Customer is returned to your application for final review and clicks the Purchase
button.

7. Customer is returned to a confirmation screen related to the purchase.

Figure 2-5. Payment Method Entry Point

With a conceptual understanding of Express Checkout and its two entry points now
in place, let’s take a look at the implementation details involved in an integration.

PayPal Express Checkout API Operations
The PayPal NVP API provides three primary methods related to Express Checkout.
These operations initialize the transaction, obtain information about the buyer, and
complete the transaction. Table 2-2 outlines these methods and some of the most fun-
damental parameters for each of them.

Table 2-2. Express Checkout API operations

API operation Description

SetExpressCheckout Sets up the Express Checkout transaction. You can specify information to customize the look and
feel of the PayPal site and the information it displays. At a minimum, you must specify the
following information:

• URL to the page on your website to which PayPal redirects after the buyer logs into
PayPal and approves the payment successfully.

• URL to the page on your website to which PayPal redirects if the buyer cancels the
transaction.

• Total amount of the order or your best estimate of the total. (Although exact shipping or
handling amounts may not yet be known, this value should be estimated as accurately
as possible.)

PayPal Express Checkout API Operations | 23

API operation Description

GetExpressCheckout
Details

Obtains information about the buyer from PayPal, including shipping information.

DoExpressCheckout
Payment

Completes the Express Checkout transaction, including the actual total amount of the order.

Figure 2-6 provides an overview of the Express Checkout user experience from a soft-
ware developer’s perspective. Before digging in deeper, it may be helpful to think
through the following cursory explanation of these Express Checkout integration
points. For the purposes of this checkout flow, let’s assume that a buyer has just initi-
ated a checkout action on your site by clicking a “Pay with PayPal” button (the Check-
out Entry Point) and will choose to complete the checkout process.

Set Express Checkout

• Behind the scenes, you invoke the SetExpressCheckout API and pass along de-
tails about the order, such as how much it costs and where to redirect the user
when the transaction is completed or cancelled.

• You redirect the buyer to paypal.com by constructing a URL that includes a
token parameter returned in the response from SetExpressCheckout so that
PayPal can identify the buyer and details of the purchase, such as its amount.

• The buyer confirms shipping and payment information for the purchase di-
rectly on paypal.com, and PayPal redirects the buyer back to your website
along with token and PayerID parameters.

Get Express Checkout Details

• Behind the scenes, you invoke the GetExpressCheckoutDetails API operation
using the token parameter to request details about the purchase, such as where
to ship it, an email address to send an order confirmation, etc.

• The buyer performs a final review of the order, including pertinent details you
may have just fetched from PayPal, and finalizes the purchase by clicking a
Complete Purchase button.

Do Express Checkout Payment

• Behind the scenes, you invoke the DoExpressCheckoutPayment API using the
token and PayerID parameters to identify the user and securely complete the
purchase.

• You display an order confirmation and optionally take additional actions, such
as sending the buyer an email confirmation or shipping a physical item.

The remainder of this section takes a closer look at each of these API operations.

24 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

Figure 2-6. Express Checkout Integration Points

A few special caveats such as additional required parameters for requests
do apply for Express Checkout integrations involving digital goods pur-
chases and some Adaptive Payments scenarios. This chapter overlooks
these caveats and focuses on a typical integration. See Chapters 3 and
4 for specifics on Digital Goods purchases and using Adaptive Pay-
ments, respectively.

SetExpressCheckout
SetExpressCheckout initializes the Express Checkout session and is the same operation
you executed in “Making a PayPal Request with GAE” on page 15 to make your first

PayPal Express Checkout API Operations | 25

API request to PayPal. It allows you to pass variables that format how the PayPal pages
look and specify where to redirect the buyer’s browser based upon success of the pay-
ment transaction. Table 2-3 outlines the fields required for SetExpressCheckout re-
quests, and Table 2-4 outlines the fields you can expect back in a response for SetEx
pressCheckout.

See SetExpressCheckout API Operation for full details on a litany of other optional
fields that can be passed in for SetExpressCheckout.

Table 2-3. SetExpressCheckout request fields

Field Description

METHOD Must be SetExpressCheckout

RETURNURL URL to which the customer’s browser is returned after choosing to pay with PayPal. PayPal
recommends that the value be the final review page on which the customer confirms the
order and payment or billing agreement.

Limitation: Up to 2,048 characters.

CANCELURL URL to which the customer is returned if he does not approve the use of PayPal to pay
you. PayPal recommends that the value be the original page on which the customer chose
to pay with PayPal or establish a billing agreement.

Limitation: Up to 2,048 characters.

PAYMENTREQUEST_ n _AMT The total cost of the transaction to the customer. If shipping and tax charges are known,
include them in this value; if not, this value should be the current subtotal of the order.
If the transaction includes one or more one-time purchases, this field must equal the sum
of the purchases.

Set this field to 0 if the transaction does not include a one-time purchase—for example,
when you set up a billing agreement for a recurring payment that is not charged imme-
diately. Purchase-specific fields will be ignored.

Limitations: Must not exceed $10,000 USD in any currency. No currency symbol. Must
have two decimal places, the decimal separator must be a period (.), and the optional
thousands separator must be a comma (,).

If you have done any previous work with Express Checkout, you may
want to take note that AMT has been deprecated in favor of PAYMENTRE
QUEST_ n _AMT to accommodate tallying up multiple items in a checkout.
Simply use PAYMENTREQUEST_0_AMT if dealing with only one item. Addi-
tionally, PAYMENTACTION is deprecated in favor of PAYMENTREQUEST_n_PAY
MENTACTION and is no longer a required field, and it now defaults to Sale.

Table 2-4. SetExpressCheckout response fields

Field Description

TOKEN A time-stamped token that acts as a session identifier that is used in subsequent API requests to tell PayPal that you
are processing this payment with Express Checkout.

26 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_r_SetExpressCheckout

Field Description
The token expires after three hours. If you set the token in the SetExpressCheckout request, the value of the
token in the response is identical to the value in the request.

GetExpressCheckoutDetails
GetExpressCheckoutDetails obtains information about an Express Checkout transac-
tion. The response essentially echoes back the information and values enabled in SetEx
pressCheckout, although it does return a few other important fields such as PAYERID,
and it is possible that the response may contain additional fields such as NOTE. For
example, the response may contain a NOTE field that the buyer may have entered in if
the ALLOWNOTE field was set in SetExpressCheckout. Table 2-5 describes the required
GetExpressCheckoutDetails fields. As a best practice, it is recommended that you invoke
GetExpressCheckoutDetails as part of an Express Checkout integration, but it is not
technically required that you do so.

See GetExpressCheckoutDetails API Operation for full details on this API.

Table 2-5. GetExpressCheckoutDetails request fields

Field Description

METHOD Must be GetExpressCheckoutDetails

TOKEN The same time-stamped token as returned by the SetExpressCheckout response

DoExpressCheckoutPayment
DoExpressCheckoutPayment completes the Express Checkout transaction and returns the
payment response. In the case of a billing agreement that you specified in the SetEx
pressCheckout API call, it is officially created when you call the DoExpressCheckoutPay
ment API operation. For a minimal Express Checkout integration, you’d only need to
properly invoke DoExpressCheckoutPayment after first setting up the transaction with
SetExpressCheckout and handling the PayPal redirects. Table 2-6 lists some common
DoExpressCheckoutPayment request fields. The number of fields returned from DoExpres
sCheckoutPayment is rather extensive. Although you may not necessarily need to use all
of these values, Table 2-7 describes some of them to give you an idea of the breadth of
information that’s available to you after a checkout has been completed.

Table 2-6. DoExpressCheckoutPayment request fields

Field Description

METHOD Must be DoExpressCheckoutPayment.

TOKEN A time-stamped token, the value of which was returned by the
SetExpressCheckout response and passed on to the
GetExpressCheckoutDetails request.

PayPal Express Checkout API Operations | 27

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_r_GetExpressCheckoutDetails

Field Description

PAYERID Unique PayPal customer account identification number. This value is
obtained by parsing the query string immediately after PayPal redirects
the customer back to your site or by parsing the results returned from
GetExpressCheckoutDetails.

PAYMENTREQUEST_ n _AMT The total cost of the transaction to the customer. If shipping and tax
charges are known, include them in this value; if not, this value should
be the current subtotal of the order.
If the transaction includes one or more one-time purchases, this field
must equal the sum of the purchases.

Set this field to 0 if the transaction does not include a one-time purchase,
for example, when you set up a billing agreement for a recurring payment
that is not charged immediately. Purchase-specific fields will be ignored.

Limitations: Must not exceed $10,000 USD in any currency. No currency
symbol. Must have two decimal places, the decimal separator must be a
period (.), and the optional thousands separator must be a comma (,).

PAYMENTREQUEST_ n _PAYMENTACTION How you want to obtain your payment.

• Sale indicates that this is a final sale for which you are requesting
payment (this is the default).

• Authorization indicates that this payment is a basic authori-
zation subject to settlement with PayPal Authorization and Cap-
ture.

• Order indicates that this payment is an order authorization sub-
ject to settlement with PayPal Authorization and Capture.

If the transaction does not include a one-time purchase, this field is
ignored.

You cannot set this value to Sale in SetExpressCheckout request
and then change this value to Authorization or Order on the final
API DoExpressCheckoutPayment request. If the value is set to
Authorization or Order in SetExpressCheckout, the value
may be set to Sale or the same value (either Authorization or
Order) in DoExpressCheckoutPayment.

Table 2-7. DoExpressCheckoutPayment response fields

Field Description

TOKEN A time-stamped token, the value of which was returned by the SetEx
pressCheckout response.

PAYMENTTYPE Information about the payment.

SUCCESSPAGEREDIRECTREQUESTED Flag that indicates whether you need to redirect the customer to back to
PayPal after completing the transaction.

28 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

Field Description

PAYMENTINFO_ n _TRANSACTIONID Unique transaction ID of the payment. If the PaymentAction of the
request was Authorization or Order, this value is your Authori
zationID for use with the Authorization and Capture APIs.

PAYMENTINFO_ n _TRANSACTIONTYPE The type of transaction. Valid values are cart and express-
checkout.

PAYMENTINFO_ n _PAYMENTTYPE Indicates whether the payment is instant or delayed. Valid values are
none, echeck, and instant.

PAYMENTINFO _ n _ORDERTIME The time/date stamp of the payment.

PAYMENTINFO_ n _AMT The final amount charged, including any shipping and taxes from your
Merchant Profile.

PAYMENTINFO_ n _FEEAMT PayPal fee amount charged for the transaction.

PAYMENTINFO_ n _TAXAMT Tax charged on the transaction.

PAYMENTINFO_ n _EXCHANGERATE Exchange rate if a currency conversion occurred. Relevant only if you are
billing in the customer’s nonprimary currency. If the customer chooses to
pay with a currency other than the primary currency, the conversion occurs
in the customer’s account.

PAYMENTINFO_ n _PAYMENTSTATUS The status of the payment, which will be one of the following:

• None: No status.

• Canceled-Reversal: A reversal has been canceled, for exam-
ple, when you win a dispute and the funds for the reversal are
returned to you.

• Completed: The payment has been completed and the funds
have transferred successfully to your account.

• Denied: You denied the payment. This will occur only if the pay-
ment was previously pending for reasons described in the
PendingReason field.

• Expired: The authorization period for the payment has expired.

• Failed: The payment failed. This occurs only when the payment
was made from your customer’s bank draft account.

• In-Progress: Transaction has not terminated, most likely due
to an authorization awaiting completion.

• Partially-Refunded: Payment has been partially refunded.

• Pending: Payment is still pending for reasons described in the
PendingReason field.

• Refunded: You refunded the payment.

• Reversed: Payment was reversed due to a charge back or other
reversal. The funds have been removed from your account balance
and returned to the buyer. The reason will be described in the
ReasonCode field.

• Processed: Payment has been accepted.

• Voided: Authorization for the transaction has been voided.

PayPal Express Checkout API Operations | 29

Field Description

PAYMENTINFO_ n _ PROTECTION
ELIGIBILITY

The type of seller protection in force for the transaction, which is one of
the following values:

• Eligible: Seller is protected by PayPal’s Seller protection policy
for Unauthorized Payments and Item Not Received.

• PartiallyEligible: Seller is protected by PayPal’s Seller
Protection Policy for Item Not Received.

• Ineligible: Seller is not protected under the Seller Protection
Policy.

PAYMENTREQUEST_ n _ PAYMENT REQUEST ID The unique identifier of the specific payment request. The value should
match the one passed in the DoExpressCheckout request.

L_PAYMENTINFO_ n _FMFfilterIDn Filter ID, including the filter type (PENDING, REPORT, or DENY), the
filter ID, and the entry number, n, starting from 0. Filter ID is one of the
following values [AVS stands for Address Verification System]:

• 1 = AVS No Match

• 2 = AVS Partial Match

• 3 = AVS Unavailable/Unsupported

• 4 = Card Security Code (CSC) Mismatch

• 5 = Maximum Transaction Amount

• 6 = Unconfirmed Address

• 7 = Country Monitor

• 8 = Large Order Number

• 9 = Billing/Shipping Address Mismatch

• 10 = Risky Zip Code

• 11 = Suspected Freight Forwarder Check

• 12 = Total Purchase Price Minimum

• 13 = IP Address Velocity

• 14 = Risky Email Address Domain Check

• 15 = Risky Bank Identification Number (BIN) Check

• 16 = Risky IP Address Range

• 17 = PayPal Fraud Model

L_PAYMENTINFO_ n _FMFfilterNAME n Filter name, including the filter type (PENDING, REPORT, or DENY), the
filter NAME, and the entry number, n, starting from 0.

PAYMENTREQUEST_ n _SHORTMESSAGE Payment error short message.

PAYMEMNTREQUEST_ n _LONGMESSAGE Payment error long message.

PAYMENTREQUEST_ n _ERRORCODE Payment error code.

PAYMENTREQUEST_ n _SEVERITYCODE Payment error severity code.

PAYMENTREQUEST_ n _ACK Application-specific error values indicating more about the error
condition.

30 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

http://en.wikipedia.org/wiki/Address_Verification_System

Field Description

SHIPPINGCALCULATIONMODE Describes how the options that were presented to the user were deter-
mined, and is one of the following values:

• API - Callback

• API - Flatrate

INSURANCEOPTIONSELECTED The Yes/No option that you chose for insurance.

SHIPPINGOPTIONISDEFAULT Is true if the buyer chose the default shipping option. Value will be either
TRUE or FALSE.

SHIPPINGOPTIONAMOUNT The shipping amount that was chosen by the buyer. Limitations: Must
not exceed $10,000 USD in any currency. No currency symbol. Must have
two decimal places, the decimal separator must be a period (.), and the
optional thousands separator must be a comma (,).

SHIPPINGOPTIONNAME This is true if the buyer chose the default shipping option.

PAYMENTREQUEST_ n _ SELLER PAYPAL
ACCOUNTID

Unique identifier for the merchant. For parallel payments, this field con-
tains either the Payer ID or the email address of the merchant.

See DoExpressCheckoutPayment API Operation for more details on this API, but do
note that it’s well worth the time to peruse the full details of this lengthy table, even
though it might seem a bit pedantic to at first—a misinformed understanding of this
table can result in faulty logic in your implementation that can really hurt your bottom
line. The sidebar “Instant Payments versus eChecks” explains one possible scenario
involving a commonly overlooked payment type involving what’s known in PayPal
lingo as an eCheck.

Instant Payments versus eChecks
Did you notice that in Table 2-7, the PAYMENTINFO_ n _PAYMENTTYPE field can return sev-
eral different values, including none, echeck, and instant? Or that PAYMENTINFO_ n
_PAYMENTSTATUS can have over a dozen possible values? Knowing the difference between
an eCheck and an instant payment is a very important implementation detail, as is
inspecting the result of the PAYMENTINFO_ n _PAYMENTSTATUS value. In short, instant pay-
ments are transferred to your merchant accounts immediately when a buyer uses funds
from a PayPal account or ends up using a credit/debit card as a backup funding source
that’s eligible for an instant payment by means of having available credit. eChecks are
used for payment when a buyer doesn’t have available funds from a PayPal account
and doesn’t have a credit/debit card that’s eligible for instant payment, which usually
means that PayPal debits the funds from a linked bank account. Like an ordinary paper
check, it can unfortunately take a few days for the whole process to resolve and for the
check to finally clear.

eChecks introduce some additional complexity in the implementation of a payment
solution because as the seller, you are essentially in limbo if you receive an eCheck with
a status of “pending.” Whereas an instant payment is guaranteed money, an eCheck,
just like a paper check, may “bounce” and ultimately resolve to a status such as

PayPal Express Checkout API Operations | 31

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_r_DoExpressCheckoutPayment

Denied, which means that you won’t ever be receiving the funds. Thus, it’s imperative
that you be prepared to handle eChecks; however, the ability to properly handle
eChecks requires an understanding of Instant Payment Notifications (IPNs), a message
delivery service that PayPal uses to notify you when an eCheck’s status is finalized.
Since IPNs aren’t introduced until Chapter 6, the sample code for Chapters 2 through
5 is designed to process only instant payments for simplicity.

If you’d like to test an application in the sandbox using an eCheck, create a sample
account with a lower bank account balance than the purchase price and do not add a
credit card to the account. For non-digital goods purchases, you’ll observe that PayPal
gives you the eCheck option. For digital goods purchases, however, PayPal prompts
you to add a credit card since digital goods purchases require instant payments by virtue
of being delivered (almost) instantly in most cases.

Implementing a Checkout Experience for Tweet Relevance
Let’s take the newfound knowledge from this chapter and use it to implement an Ex-
press Checkout for Tweet Relevance, the sample project described in Appendix A that
we’ll be using throughout this book. Recall that Tweet Relevance is essentially a mech-
anism to rank the tweets in a Twitter user’s home timeline by relevance instead of the
de facto chronological view that’s typical of most Twitter user interfaces. Since so many
Twitter users are plagued by information (tweet) overload, it seems reasonable to think
that they would be willing to pay a nominal fee for access to a service that curates tweets
that appear in their home timelines. The remainder of this section involves the selection
of a payment model and the details involved in integrating an Express Checkout.

Selecting a Payment Model
The primary detail that we’ll need to settle upon before implementing a payment flow
for Tweet Relevance is the payment model. In other words, we must determine what
the specific product is that a buyer is purchasing in order to access Tweet Relevance.
Although there are perhaps other options that could make sense, a few primary options
come to mind:

Fixed-rate access
In fixed-rate access (pay per access) model, a user might pay a small fee in order
to access the service for a specified duration. For example, a special “trial access”
product to the service might cost $0.99 and provide unlimited access for 24 hours,
unlimited access for 30 days might cost $9.99, and unlimited access for 365 days
access might cost $99.99.

Recurring subscription
A subscription service might provide unlimited access to the application for a
longer-term duration such as a month or year. For example, a subscription might
cost $8.99 for 30 days of unlimited access or $89.99 for 365 days of unlimited

32 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

access. It is fairly common that subscriptions automatically renew once they expire
and sometimes offer a discount in comparison to a fixed-rate access model as an
incentive.

Virtual currency
A virtual currency such as “login tokens” might allow users to log in and access
the application for a limited duration. For example, a bundle of 50 tokens might
cost $4.99, and users would expend a single token each time that they login to
access the application.

To get up and running with Express Checkout in this chapter, let’s opt to implement
the fixed-rate access payment model for Tweet Relevance.

Injecting an Express Checkout Entry Point into Tweet Relevance
A minimal integration with Express Checkout is pretty straightforward. Recalling from
Appendix A that users must access /app to access the application, this particular API
seems to be a reasonable place to inject a Checkout Entry Point to kick off the payment
flow. Conceptually, all that needs to happen is a redirect to a special page that displays
a “Checkout with PayPal” button and alerts the user that they must pay to access the
service. From there, clicking the button kicks off an Express Checkout, which ulti-
mately returns the user to the application once a payment is successfully processed.
Having a basic understanding of how Tweet Relevance is designed from reviewing
Appendix A and its source code, let’s try to come up with a detailed design for injecting
a Checkout Entry Point:

Add User and Product classes
In order to implement a payment model, it’s necessary to create abstractions for
user accounts and products. The Product class should feature only a single product
that is 30 days of access to the application for $9.99. The User class should be a
minimalist account abstraction that keeps enough state for determining whether
or not an account is in good standing based on when access was purchased and
how much access was purchased.

Add a PaymentHandler module to the handlers package
Tweet Relevance has an AppHandler module that encapsulates core application
logic and public APIs, so let’s add a separate PaymentHandler that provides the same
kind of encapsulation for payment-related logic and APIs.

Add a paypal package
We could further refine the logic in PaymentHandler by separating the core logic
associated with making API requests for Express Checkout from the more general
GAE web app logic associated with the PaymentHandler.

Modify AppHandler to limit access based on Users
After users authenticate with their Twitter account, check to see whether or not
they have an account in good standing. If they don’t have an account in good

Implementing a Checkout Experience for Tweet Relevance | 33

standing, redirect them to a Checkout Entry Point so that they can create or rec-
oncile an account to gain access.

Add a template for the Checkout Entry Point into AppHandler
We’ll add a separate template that can serve as a Checkout Entry Point and have
AppHandler serve it up as needed to kick off an Express Checkout.

The sample code for Tweet Relevance is essentially stateless. Aside from memcache
being used to implement a minimalist session so that the application can serve data to
a rich Ajax client, the application does not store any persistent state. The addition of
an account abstraction such as User, however, requires persisting state in a reliable and
fault-tolerant datastore since customers rightly expect to receive access to the applica-
tion once they have paid for it. Fortunately, GAE provides just the kind of datastore
we need, and the basics of integrating with it are fairly intuitive. We won’t be doing
anything very advanced, but it is nonetheless recommended that you bookmark and
review The Python Datastore API if you’re not familiar with it.

Examples 2-1 and 2-2 introduce the User and Product modules, which are added to the
top level of the project in User.py and Product.py files. Product is just a stub method
that returns static product information that could otherwise be managed in a more
sophisticated way, but is sufficient for our purposes. User stores the minimal informa-
tion necessary to limit account access based on the payment model selected: an account
identifier, when access began, and how long access should last. Whether or not an
account is in good standing can be computed by subtracting the User’s access_start
field from the current value returned by datetime.datetime.now() and inspecting the
number of days in the resulting datetime.timedelta value.

The substantive updates to AppHandler are shown in Example 2-3. AppHandler directly
calls accountIsCurrent as a helper method since different payment models would have
different criteria for determining whether or not an account is current. The creditUser
Account method is exposed as a static method so that it may trivially be invoked by
PaymentHandler to credit accounts. Arguably, this logic could have remained in Pay
mentHandler. However, PaymentHandler has no direct dependency or interaction with
User, and it seemed prudent to maintain this separation and delegate the responsibility
back to the AppHandler, which already has extensive interaction with User.

Example 2-1. Tweet Relevance—Product.py

class Product(object):

 @staticmethod
 def getProduct():

 return {'price' : 9.99, 'quantity' : 30, 'units' : 'days'}

Example 2-2. Tweet Relevance—User.py

from google.appengine.ext import db

34 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

http://code.google.com/appengine/docs/python/memcache/usingmemcache.html
http://code.google.com/appengine/docs/python/datastore/

class User(db.Model):
 twitter_username = db.StringProperty(required=True)

 # Set to "now" the first time the instance is added to the datastore
 access_start = db.DateTimeProperty(required=True, auto_now_add=True)

 # Days
 access_duration = db.IntegerProperty(required=True, default=30)

Example 2-3. Tweet Relevance—methods added to AppHandler.py

 @staticmethod
 def creditUserAccount(twitter_username, num_days):
 query = User.all().filter("twitter_username =", twitter_username)
 user = query.get()
 user.access_start = datetime.datetime.now()
 user.access_duration = num_days
 db.put(user)

 @staticmethod
 def accountIsCurrent(user):
 days_used = (datetime.datetime.now() - user.access_start).days + 1
 return days_used < user.access_duration

With an understanding of Product and User in place, let’s now turn to the subject of
integrating payment-specific logic via PaymentHandler. Example 2-4 illustrates an up-
dated main.py file that includes a new reference to PaymentHandler that services APIs
and encapsulates payment logic. Recall that PaymentHandler itself takes care of the web
application logic associated with callbacks for an Express Checkout; internally, it will
reference a paypal module that will handle the specific APIs, such as SetExpressCheck
out, GetExpressCheckoutDetails, and DoExpressCheckoutPayment.

Example 2-4. Tweet Relevance—main.py

Minimal GAE imports to run the app

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util

Logic for implementing Express Checkout

from handlers.PaymentHandler import PaymentHandler

Logic for the app itself

from handlers.AppHandler import AppHandler

Logic for interacting with Twitter's API and serving up data, etc.

def main():

 application = webapp.WSGIApplication([

Implementing a Checkout Experience for Tweet Relevance | 35

 # PaymentHandler URLs

 ('/(set_ec)', PaymentHandler),
 ('/(get_ec_details)', PaymentHandler),
 ('/(do_ec_payment)', PaymentHandler),
 ('/(cancel_ec)', PaymentHandler),

 # AppHandler URLs

 ('/(app)', AppHandler),
 ('/(data)', AppHandler),
 ('/(login)', AppHandler),
 ('/', AppHandler)
],

 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

To keep the project structure nice and tidy, the AppHandler and PaymentHandler classes
are maintained in separate files (AppHandler.py and PaymentHandler.py) and reside in
a directory called handlers. In Python parlance, we’d say that we have a handlers pack-
age that contains AppHandler and PaymentHandler modules. Note that there was no re-
striction to necessarily separate out the classes into different files, to name the files the
same as the classes, or to even maintain them outside of main.py at all. These decisions
are simply one possible way to organize and maintain the source code.

As shown in Example 2-4, the logic for encapsulating the Express Checkout-related
integration points is encapsulated by the PaymentHandler class, which serves the fol-
lowing URL requests:

/set_ec
A POST request to this URL sets up the transaction by calling SetExpressCheck
out with the minimal required parameters to get a session token: the seller’s 3-
token credentials, the payment amount, and the return URLs that PayPal should
use when redirecting users back to your website depending on whether they cancel
or complete the transaction. Assuming that an OK (HTTP 200) response is re-
turned from SetExpressCheckout, a session token is returned in the response, and
the application immediately redirects the buyer to PayPal for completion of
the purchase. The specific URL that is used for redirection within a sandbox con-
text is https://www.sandbox.paypal.com/webscr?cmd=_express-checkout&to-
ken=xxx. If the purchase is completed successfully, PayPal redirects the buyer back
to this application’s /get_ec_details or /cancel_ec URLs (as defined by the RETUR
NURL and CANCELURL values, respectively.) Figure 2-7 displays the jumping entry
point that invokes /set_ec and Figures 2-8 and 2-9 display the user interface pro-
vided by PayPal as part of an Express Checkout.

36 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

The minimal implementation of Express Checkout that’s presen-
ted in Example 2-5 doesn’t pass in additional NVP parameters such
as L_PAYMENTREQUEST_m_NAMEn to display details associated with an
order summary and opts to use GetExpressCheckoutDetails to dis-
play a confirmation on your site. In Chapter 3, however, you’ll
implement an Express Checkout (for Digital Goods) that displays
the order details on PayPal’s site and bypasses the GetExpressCheck
outDetails on your site to accomplish a more streamlined in con-
text payment flow.

/get_ec_details
This URL is accessed as a GET request and provides a confirmation page summa-
rizing the purchase and is accessed by means of PayPal redirecting the buyer back
to the application once the purchase has been approved. Although not technically
required, it’s a best practice to call GetExpressCheckoutDetails, and Tweet Rele-
vance accesses it and uses the values it returns to illustrate how to provide a con-
firmation page before completing the payment flow. Figure 2-10 displays a con-
firmation page generated from information provided by way of /get_ec_details.

/do_ec_payment
This URL is accessed as a GET request when the buyer approves the purchase from
the confirmation page provided when /get_ec_details is accessed (which is after
PayPal successfully redirects back to it). It finalizes the purchase by executing
DoExpressCheckoutPayment to finalize the payment and then interfaces with AppHan
dler to credit a user’s account with login tokens. Figures 2-11 displays a successful
payment confirmation page generated via /do_ec_payment.

/cancel_ec
If a user cancels out of the payment flow while visiting PayPal’s site to approve the
purchase, PayPal redirects to this URL by means of a GET request.

Figure 2-7. Tweet Relevance implements the Checkout Entry Point by presenting an opportunity for
the user to purchase login requests. Clicking the “Checkout with PayPal” button invokes
SetExpressCheckout and initiates the checkout process. (See Steps 1 and 2 of Figure 2-6.)

Implementing a Checkout Experience for Tweet Relevance | 37

Figure 2-8. After calling SetExpressCheckout, Tweet Relevance redirects the buyer to PayPal for
payment approval. PayPal redirects buyers back to Tweet Relevance once they’ve authorized Tweet
Relevance to charge them. (See Steps 3 and 4 of Figure 2-6.)

Figure 2-10. Use GetExpressDetails to present the user with a final confirmation before calling
DoExpressCheckoutPayment and finalizing the transaction. (See Step 5 of Figure 2-6.)

38 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

Figure 2-11. Invoking DoExpressCheckoutPayment finalizes the payment and presents the user with
an opportunity to log in and use the application. (See Step 6 of Figure 2-6.)

If the way that the Express Checkout was injected into the application is not fairly clear
by this point, it may be helpful to reference Figure 2-6 and explicitly map the general
payment flow to the APIs exposed by PaymentHandler. Of course, running the applica-
tion’s updated sample code for this chapter should be the simplest course of action to
take at this point if you haven’t done so already.

Finally, Examples 2-5 and 2-6 introduce the payment-related details associated with
the sample code for this chapter. As is the case with the templates referenced in AppHan
dler, the templates referenced in PaymentHandler are nothing more than very minimal
HTML pages that plug in named variables so that the view and controller of the ap-

Figure 2-9. Express Checkout features a streamlined interface that's optimized for mobile devices and
"just works" without any additional action required by developers.

Implementing a Checkout Experience for Tweet Relevance | 39

plication can be separated. Although there’s a lot of code in these listings, it’s not very
complex. Example 2-5 is routing the various URL requests associated with the Paymen
tHandler’s Express Checkout operations through to PayPal, checking response values,
and taking appropriate actions. Example 2-6 is a minimal class definition to create an
abstraction for interacting with the Express Checkout product’s API operations so that
the PaymentHandler code is tidy and isn’t littered with setting and transacting url
fetch.fetch operations.

Use a command-line tool such as diff or a text editor that’s capable of
producing a side-by-side diff of files to narrow in the exact changes that
were made to the baseline Tweet Relevance application in order to im-
plement Express Checkout.

Example 2-5. Tweet-Relevance/handlers/PaymentHandler.py

import os

from google.appengine.ext import webapp
from google.appengine.api import memcache
from google.appengine.ext.webapp import template
import logging
import cgi

from paypal.products import ExpressCheckout as EC
from Product import Product
from handlers.AppHandler import AppHandler

class PaymentHandler(webapp.RequestHandler):

 def post(self, mode=""):

 if mode == "set_ec":

 sid = self.request.get("sid")
 user_info = memcache.get(sid)

 product = Product.getProduct()

 nvp_params = {
 'PAYMENTREQUEST_0_AMT' : str(product['price']),
 'RETURNURL' : self.request.host_url+"/get_ec_details?sid="+sid,
 'CANCELURL': self.request.host_url+"/cancel_ec?sid="+sid
 }

 response = EC.set_express_checkout(nvp_params)

 if response.status_code != 200:
 logging.error("Failure for SetExpressCheckout")

 template_values = {
 'title' : 'Error',

40 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

 'operation' : 'SetExpressCheckout'
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unknown_error.html')
 return self.response.out.write(template.render(path, template_values))

 # Redirect to PayPal and allow user to confirm payment details.
 # Then PayPal redirects back to the /get_ec_details or /cancel_ec endpoints.
 # Assuming /get_ec_details, we complete the transaction with
PayPal.get_express_checkout_details
 # and PayPal.do_express_checkout_payment

 parsed_qs = cgi.parse_qs(response.content)

 redirect_url = EC.generate_express_checkout_redirect_url(parsed_qs['TOKEN'][0])
 return self.redirect(redirect_url)

 else:
 logging.error("Unknown mode for POST request!")

 def get(self, mode=""):

 if mode == "get_ec_details":
 response = EC.get_express_checkout_details(self.request.get("token"))

 if response.status_code != 200:
 logging.error("Failure for GetExpressCheckoutDetails")

 template_values = {
 'title' : 'Error',
 'operation' : 'GetExpressCheckoutDetails'
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unknown_error.html')
 return self.response.out.write(template.render(path, template_values))

 product = Product.getProduct()

 parsed_qs = cgi.parse_qs(response.content)

 template_values = {
 'title' : 'Confirm Purchase',
 'quantity' : product['quantity'],
 'units' : product['units'],
 'email' : parsed_qs['EMAIL'][0],
 'amount' : parsed_qs['PAYMENTREQUEST_0_AMT'][0],
 'query_string_params' : self.request.query_string
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'confirm_purchase.html')
 self.response.out.write(template.render(path, template_values))

Implementing a Checkout Experience for Tweet Relevance | 41

 elif mode == "do_ec_payment":

 if memcache.get(self.request.get("sid")) is not None: # Without an account reference,
we can't credit the purchase
 payerid = self.request.get("PayerID")

 product = Product.getProduct()

 nvp_params = {
 'PAYERID' : payerid,
 'PAYMENTREQUEST_0_AMT' : str(product['price'])
 }

 response = EC.do_express_checkout_payment(
 self.request.get("token"),
 nvp_params
)

 if response.status_code != 200:
 logging.error("Failure for DoExpressCheckoutPayment")

 template_values = {
 'title' : 'Error',
 'operation' : 'DoExpressCheckoutPayment'
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unknown_error.html')
 return self.response.out.write(template.render(path, template_values))

 # Ensure that the payment was successful

 parsed_qs = cgi.parse_qs(response.content)

 if parsed_qs['ACK'][0] != 'Success':
 logging.error("Unsuccessful DoExpressCheckoutPayment")

 template_values = {
 'title' : 'Error',
 'details' : parsed_qs['L_LONGMESSAGE0'][0]
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unsuccessful_payment.html')
 return self.response.out.write(template.render(path, template_values))

 if parsed_qs['PAYMENTINFO_0_PAYMENTSTATUS'][0] != 'Completed': # Probably an eCheck
 logging.error("Unsuccessful DoExpressCheckoutPayment")
 logging.error(parsed_qs)

 template_values = {
 'title' : 'Error',
 'details' : 'Sorry, eChecks are not accepted. Please send an instant payment.'
 }

42 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unsuccessful_payment.html')
 return self.response.out.write(template.render(path, template_values))

 # Credit the user's account

 user_info = memcache.get(self.request.get("sid"))
 twitter_username = user_info['username']
 product = Product.getProduct()

 AppHandler.creditUserAccount(twitter_username, product['quantity'])

 template_values = {
 'title' : 'Successful Payment',
 'quantity' : product['quantity'],
 'units' : product['units']
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'successful_payment.html')
 self.response.out.write(template.render(path, template_values))

 else:
 logging.error("Invalid/expired session in /do_ec_payment")

 template_values = {
 'title' : 'Session Expired',
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'session_expired.html')
 self.response.out.write(template.render(path, template_values))

 elif mode == "cancel_ec":
 template_values = {
 'title' : 'Cancel Purchase',
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'cancel_purchase.html')
 self.response.out.write(template.render(path, template_values))

Example 2-6. Tweet-Relevance/paypal/products.py

from google.appengine.api import urlfetch

import urllib
import cgi

import paypal_config

def _api_call(nvp_params):

 params = nvp_params.copy() # copy to avoid mutating nvp_params with update()

Implementing a Checkout Experience for Tweet Relevance | 43

 params.update(paypal_config.nvp_params) # update with 3 token credentials and api
version

 response = urlfetch.fetch(
 paypal_config.sandbox_api_url,
 payload=urllib.urlencode(params),
 method=urlfetch.POST,
 validate_certificate=True,
 deadline=10 # seconds
)

 if response.status_code != 200:
 decoded_url = cgi.parse_qs(result.content)

 for (k,v) in decoded_url.items():
 logging.error('%s=%s' % (k,v[0],))

 raise Exception(str(response.status_code))

 return response

class ExpressCheckout(object):

 @staticmethod
 def set_express_checkout(nvp_params):
 nvp_params.update(METHOD='SetExpressCheckout')
 return _api_call(nvp_params)

 @staticmethod
 def get_express_checkout_details(token):
 nvp_params = {'METHOD' : 'GetExpressCheckoutDetails', 'TOKEN' : token}
 return _api_call(nvp_params)

 @staticmethod
 def do_express_checkout_payment(token, nvp_params):
 nvp_params.update(METHOD='DoExpressCheckoutPayment', TOKEN=token)
 return _api_call(nvp_params)

 @staticmethod
 def generate_express_checkout_redirect_url(token):
 return "https://www.sandbox.paypal.com/webscr?cmd=_express-checkout&token=%s" %
(token,)

Mobile Express Checkout (MEC)
Perhaps one of the most unappreciated features of Express Checkout is that it “just
works” on most mobile web browsers running a recent version of Android and iOS.
When used in this context, you may hear it referred to as “Mobile Express Checkout”
(MEC) or “Express Checkout for Mobile.” Tweet Relevance sports a user interface
that’s actually optimized for mobile clients, and the decision to implement an Express
Checkout turns out to look like an especially smart decision when you realize that

44 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

literally no additional work is required to deliver an Express Checkout experience that’s
optimized for mobile devices. Figure 2-12 shows Tweet Relevance as served up on a
mobile device and Figures 2-13 and 2-14 demonstrate the MEC user interface.

Figure 2-12. Tweet Relevance features a user interface that’s optimized for the mobile web

See also Appendix B, which provides a brief orientation to other options for processing
mobile payments with PayPal technologies.

Recommended Exercises
While the sample code demonstrates a somewhat realistic application, it’s just that:
sample code. There is plenty of room for expansion and improvement. Here are a few
ideas you might work though if you want to expand upon it and hone your skills:

• Use a tool such as diff to compare the baseline Tweet Relevance project to the
modified project from this chapter. On a Linux system, for example, the following
options for diff produce a convenient side-by-side display on a terminal with 237
columns when executed from the root of the source tree:

$ diff --recursive --side-by-side --suppress-common-lines --width=237 --
exclude=*.pyc appa ch02

As always, read the man page or documentation for the utility you’re using to ensure
that you’re taking advantage of all of the features available to you.

Recommended Exercises | 45

• This chapter’s Express Checkout flow implements only the Shopping Cart entry
point. Add in the missing Payment Method.

• Modify the Express Checkout presented in this chapter so that it implements a
monthly subscription model instead of a fixed-price payment model.

• Expand the available product options so that the user has the option to purchase
a daily trial of the service for $0.99, a monthly subscription for $9.99, or a yearly
subscription for $99.99.

All sample code for this book is available online at GitHub and is con-
veniently organized by chapter. Although much of the code is included
in the text of this book so that it’s as instructional as possible, always
reference the latest bug-fixed code on GitHub as the definitive reference
for sample code. Bug tickets and patches are welcome!

Figure 2-13. Express Checkout presents a user interface that’s optimized for the mobile web when
initiating a payment flow from a mobile device, making it an ideal choice for processing payments on
mobile devices

46 | Chapter 2: Express Checkout (Including Mobile Express Checkout)

https://github.com/ptwobrussell/PayPal-APIs-Up-and-Running

Figure 2-14. Express Checkout’s mobile interface makes it easy to complete the transaction

Recommended Exercises | 47

CHAPTER 3

Express Checkout for Digital Goods

This chapter is essentially a continuation of the previous one, which introduced Express
Checkout. However, whereas the previous chapter established the fundamentals of
Express Checkout and implemented a routine checkout for the Tweet Relevance ref-
erence application that’s featured in Appendix A, this chapter works through the im-
plementation details of a much more highly specialized checkout that can be used for
situations involving “in-app” purchases of digital goods such as electronic documents,
audio files, videos, or—you guessed it—items such as login tokens for Tweet Relevance
using a derivative of Express Checkout called Express Checkout for Digital Goods. Of
all of the PayPal products featured in this book, Express Checkout for Digital Goods
is possibly the best fit for processing Tweet Relevance payments since Tweet Relevance
is inherently a digital good. (Processing digital goods transactions with Adaptive Pay-
ments is probably the other best option.)

PayPal’s official documentation for Express Checkout for Digital Goods
is available online: Express Checkout for Digital Goods Developer
Guide.

The sample code for this chapter builds upon the sample project from
the previous chapter involving a traditional Express Checkout. It is
highly recommended that you read that chapter first and be familiar
with the implementation details in PaymentHandler.py.

Everyone Wins with Digital Goods Transactions
It hasn’t always been the case that a Digital Goods option for Express Checkout has
existed. In fact, it’s a fairly new evolution of the Express Checkout product that was
unveiled at PayPal’s X.commerce Innovate 2010 Conference in San Francisco along
with a number of other new offerings. Perhaps the most convincing reason that a spe-
cialized digital goods offering as part of the Express Checkout product makes a lot of

49

https://www.x.com/developers/paypal/use-cases/digital-goods
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_ExpressCheckout_IntegrationGuide_DG.pdf
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_ExpressCheckout_IntegrationGuide_DG.pdf

sense is that nowadays users expect that they should be able to perform a payment
without leaving their book, game, video, or application. Additionally, besides the in-
curred latency and inconvenience of leaving the context that can hurt conversion rates,
the implementation burden that an “out and back” redirect sometimes creates for de-
velopers of context-sensitive applications such as games can be complex enough that
it’s nearly unbearable—at least unbearable enough that they’d rather deal with the
overhead of implementing an alternative in-house payment solution than overcome the
logistical barriers in interfacing with PayPal. Thus, a digital goods option serves devel-
opers and end users alike by providing the kind of in-context payment solution that
users expect while minimizing the implementation burden so that developers can focus
on the details of their application instead of getting derailed by the details involved in
online commerce.

It’s also worth calling out that digital goods are usually delivered instantly by a common
form of electronic communication, and as such, there’s much lower overhead incurred
by suppliers, and cost savings are passed on to buyers. If you stop to think about it for
a moment, you’ll observe that many digital products such as books, songs, and access
to “premium features” are usually priced such that they are relatively low dollar
amounts. In fact, it’s often the case that smart merchants will aggressively price digital
goods according to common sweet spots on the spectrum of impulsive purchasing,
such as $0.99, $1.99, or $2.99, in much the same way that fast-food chains price a la
carte menu items at these very same price points. As such, PayPal offers a special
micropayment transaction fee of $0.05 plus 5% for digital goods purchases up to $12.00,
at which point, standard rates become more economical and apply. For example, on a
$1.00 digital goods purchase, micropayment pricing incurs a fee of $0.10 as compared
to the standard fee of $0.33 ($0.30 plus $2.9%), which is a savings of 70% on a $1.00
transaction! Table 3-1 shows the relative savings for micropayment rates versus stan-
dard transaction rates.

Digital goods purchases are by their very nature “instant,” and as such
require instant payment methods. Purchasers must use funds available
from their PayPal account or use a credit card to make digital goods
purchases. eChecks are not an option since they can take days to clear.
See “Instant Payments versus eChecks” on page 31 for a brief overview
of eChecks.

50 | Chapter 3: Express Checkout for Digital Goods

Table 3-1. Standard versus micropayment rates and associated savings as of December 2011.

Transaction Amount Standard Rate Micropayment Rate Savings

$1.00 $0.33 $0.10 $0.23

$2.00 $0.36 $0.15 $0.21

$3.00 $0.39 $0.20 $0.19

$4.00 $0.42 $0.25 $0.17

$5.00 $0.45 $0.30 $0.15

$6.00 $0.47 $0.35 $0.12

$7.00 $0.50 $0.40 $0.10

$8.00 $0.53 $0.45 $0.08

$9.00 $0.56 $0.50 $0.06

$10.00 $0.59 $0.55 $0.04

$11.00 $0.62 $0.60 $0.02

$12.00 $0.65 $0.65 $0.00

To sum it all up, it would appear that everyone wins in an Express Checkout for Digital
Goods: the user’s experience is much improved, the seller stands to save money, and
the implementation burden for the developer is significantly reduced in certain cir-
cumstances such as in-game purchases.

Implementing a Digital Goods Checkout for Tweet Relevance
This section provides a general overview of an Express Checkout for Digital Goods user
experience as implemented in Tweet Relevance before transitioning into a more de-
tailed account of the changes to the previous chapter’s project code that are necessary
in order to implement it.

The User Experience
If you’re familiar with the implementation details for an Express Checkout, you’ll find
that implementing an Express Checkout for Digital Goods is almost identical. The
primary differences are just that you pass in some different parameters to the core API
operations (SetExpressCheckout, GetExpressCheckoutDetails, and DoExpressCheckout
Payment) and wire some JavaScript into your page. Aside from a marginal amount of
learning curve that may be incurred by way of debugging common mistakes that can
happen along the way, it’s really a pretty smooth transition. Figure 3-1 illustrates the
checkout flow; it’s worth comparing this workflow diagram to Figure 2-6 to have a
good, intuitive sense for how similar they are to one another.

Implementing a Digital Goods Checkout for Tweet Relevance | 51

https://merchant.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=merchant/digital_goods

Figure 3-1. Express Checkout for Digital Goods Integration Points

The PayPal API operations that you’ll use in an Express Checkout for Digital Goods
are the very same as a traditional Express Checkout. A few name-value pair parameters

52 | Chapter 3: Express Checkout for Digital Goods

differ in the Express Checkout API operations, and there are just a few tweaks to tem-
plates that are necessary in order to wire up a JavaScript-based, in-context user expe-
rience. Before discussing the specific changes that need to be made to the previous
chapter’s code, however, let’s first take a closer look at the Tweet Relevance user ex-
perience as integrated with an Express Checkout for Digital Goods payment flow, as
illustrated in Figures 3-2 through 3-6.

Figure 3-2. When the user clicks the PayPal button, an inline frame is spawned in the page. When the
user clicks the Log In button, it spawns a new browser window that is used to initiate the login process.
(See Steps 1–4 of Figure 3-1.)

Now that you have an understanding for the kind of in-context user experience that is
possible with Express Checkout for Digital Goods and Tweet Relevance, let’s system-
atically look through the changes to the project code from the previous chapter to better
understand the implementation details.

Implementation Details
Perhaps the best way to navigate through the implementation details is to check out
the code, explore it, and use a tool such as diff to identify itemized listings of the key
changes, and it is highly recommended that you do so. (See “Recommended Exerci-
ses” on page 59.) A summary of these changes with relevant code snippets follows.

Implementing a Digital Goods Checkout for Tweet Relevance | 53

Product.py
Minimal changes are necessary to getProduct in order to return a simple data
structure with appropriate details for a “bundle of virtual tokens” product:

class Product(object):

 @staticmethod
 def getProduct():
 return {'price' : 4.99, 'quantity' : 50, 'units' : 'login tokens'}

User.py
The User data model requires minimal changes so that it stores a simple counter
of login requests versus an access start time and duration:

Figure 3-3. Clicking the Login button from the inline frame spawns a new window so that the user
can log in to PayPal and complete the purchase. At the discretion of the developer, the purchase details
can be reviewed and approved at PayPal as opposed to back on your site, which is usually a more
intuitive way to handle approval, given the in-context experience of the popup window. (See Steps
5-10 of Figure 3-1, noting that the Tweet Relevance flow shown here elects to take the “shortcut”
approach and minimize the implementation burden.)

54 | Chapter 3: Express Checkout for Digital Goods

class User(db.Model):
 twitter_username = db.StringProperty(required=True)
 requests_remaining = db.IntegerProperty(required=True, default=25)

handlers/AppHandler.py
Minimal changes are necessary in order for creditUserAccount to inspect the User
data model to confirm that login requests are remaining, as opposed to the calendar
math that was previously involved:

def creditUserAccount(twitter_username, num_tokens):
 query = User.all().filter("twitter_username =", twitter_username)
 user = query.get()
 user.requests_remaining += num_tokens
 db.put(user)

handlers/PaymentHandler.py
Perhaps the most substantive change takes place in PaymentHandler. Recall that the
logic for /set_ec sets up and initiates the checkout by executing SetExpressCheck

Figure 3-4. The minibrowser provides a streamlined user experience that exposes the same
functionality that PayPal users have grown accustomed to.

Implementing a Digital Goods Checkout for Tweet Relevance | 55

out. Here, the name-value pair parameters passed in are updated to include several
important (and required) items that specify the name, amount, and quantity of the
item that is presented to the buyer. Additionally, an item category is specified that
indicates that the product being sold is a digital good, and the return URL is also
updated to a URL that initiates the DoExpressCheckoutPayment API and finalizes the
transaction since we are now relying on PayPal to present the item details (effec-
tively eliminating the need for GetExpressCheckoutDetails). Finally, a different re-
direct URL is returned (more on this in a moment). The updated code for setting
up the payment transaction follows with these lines emphasized:

 def post(self, mode=""):

Figure 3-5. After one more click, users are back right where they left off in your application.

56 | Chapter 3: Express Checkout for Digital Goods

 if mode == "set_ec":

 sid = self.request.get("sid")
 user_info = memcache.get(sid)

 product = Product.getProduct()

 nvp_params = {
 'L_PAYMENTREQUEST_0_NAME0' : str(product['quantity']) + ' ' +
product['units'],
 'L_PAYMENTREQUEST_0_AMT0' : str(product['price']),
 'L_PAYMENTREQUEST_0_QTY0' : 1,
 'L_PAYMENTREQUEST_0_ITEMCATEGORY0' : 'Digital',

 'PAYMENTREQUEST_0_AMT' : str(product['price']),
 'RETURNURL' : self.request.host_url+"/do_ec_payment?sid="+sid,
 'CANCELURL': self.request.host_url+"/cancel_ec?sid="+sid
 }

 response = EC.set_express_checkout(nvp_params)

 if response.status_code != 200:
 logging.error("Failure for SetExpressCheckout")

 template_values = {
 'title' : 'Error',
 'operation' : 'SetExpressCheckout'
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unknown_error.html')
 return self.response.out.write(template.render(path, template_values))

 # The remainder of the transaction is completed in context

 parsed_qs = cgi.parse_qs(response.content)

 redirect_url =
EC.generate_express_checkout_digital_goods_redirect_url(parsed_qs['TOKEN'][0])
 return self.redirect(redirect_url)

 else:
 logging.error("Unknown mode for POST request!")

Figure 3-6. After the user clicks the Close and Continue button on the popup window, the transaction
completes, login tokens are credited to the account, and the user is returned to the Tweet Relevance
login page.

Implementing a Digital Goods Checkout for Tweet Relevance | 57

The logic for /do_ec_payment likewise involves a minimal change so that the four
L_PAYMENTREQUEST parameters that were mentioned can appear in the name-value
pairs that are passed in with DoExpressCheckoutPayment. Perhaps the most impor-
tant detail to call out with the addition of these parameters is that the appearance
of Digital as the item category ensures that the improved digital goods rates in
Table 3-1 apply; according to PayPal, the omission of this parameter may result in
standard rates being applied.

paypal/products.py
An additional method is added to return a redirect URL specific to the in-context
digital goods checkout experience. An optional query string parameter of userac
tion=commit may be added if payment details should be verified on PayPal’s site (as
is implemented with the Tweet Relevance sample code in this chapter) as opposed
to back on your site using GetExpressCheckoutDetails:

@staticmethod
def generate_express_checkout_digital_goods_redirect_url(token, commit=True):
 if commit:
 return "https://www.sandbox.paypal.com/incontext?token=
%s&useraction=commit" % (token,)
 else:
 return "https://www.sandbox.paypal.com/incontext?token=%s" % (token,)

templates/checkout.html
The checkout template that features the familiar yellow “Checkout with PayPal”
button requires minimal changes. An HTML ID is added to the main form’s Submit
button so that clicks can be intercepted by some JavaScript code that PayPal pro-
vides to trigger an in-context checkout flow. A reference to the PayPal-provided
JavaScript code along with the code to wire things together is also added to the
bottom of the page:

<html>
 <head>
 <title>{{ title }}</title>
 </head>
 <body>
 <h1>{{ title }}</h1>
 <p>{{ msg }}</p>

 <form action='/set_ec' METHOD='POST'>
 <input type='image' name='submit'
 id='submitButton'
 src='https://www.paypal.com/en_US/i/btn/btn_xpressCheckout.gif'
 border='0' align='top' alt='Check out with PayPal'/>
 <input type='hidden' name='sid' value='{{ sid }}'/>
 </form>

 <script type="text/javascript" src="https://www.paypalobjects.com/js/
external/dg.js"></script>
 <script>
 var dg = new PAYPAL.apps.DGFlow({
 trigger: "submitButton"

58 | Chapter 3: Express Checkout for Digital Goods

 });
 </script>
 </body>
</html>

templates/successful_payment.html
Changes to the successful payment template are pretty straightforward. After a
successful payment has been completed, the updated checkout flow provides an
alert to the user that the transaction is successful and redirects to the main login
page:

<html>
 <head>
 <title>{{ title }}</title>
 </head>
 <body>
 <h1>{{ title }}</h1>

 <script>
 alert('You just purchased {{ quantity }} {{ units }}. You may now login.');
 top.window.location = "/"; // Redirect to the main login page
 </script>
 </body>
</html>

To summarize, we’ve performed a very minor surgery on the sample code from the
previous chapter on Express Checkout in order to implement an Express Checkout for
Digital Goods payment flow. On the frontend and backend of the payment flow, a little
bit of JavaScript was tactically injected to kick off and wrap up the in-context experi-
ence, and sandwiched in between were some updates to the application logic—most
of which were related to changing the business model to support virtual tokens and
setting up the call for SetExpressCheckout. In many regards, the implementation for the
digital goods checkout actually seems a little bit simpler for both the developer and the
buyer.

If you haven’t already done so, now would be the time to pull down the sample code
for this chapter and work through it in more detail. If you sell digital goods, understand
the fundamentals presented in this chapter, and have some basic web development
skills, you are in a great position to implement an in-context payment experience for
your consumers.

Recommended Exercises
• Use a tool such as diff to compare the Tweet Relevance project from Chapter 2 to

the modified project from this chapter. On a Linux system, for example, the fol-
lowing options for diff produce a convenient side-by-side display on a terminal
with 237 columns when executed from the root of the source tree:

Recommended Exercises | 59

$ diff --recursive --side-by-side --suppress-common-lines --width=237 --
exclude=*.pyc ch02 ch03

As always, read the man page or documentation for the utility you’re using to ensure
that you’re taking advantage of all of the features that you have available to you.

• Expand the product offering so that some additional bundles of virtual tokens are
available at attractive prices, and implement logic so that the user is able to choose
which option they’d like to purchase.

• Implement a subscription model similar to the one from the previous chapter but
use a an Express Checkout for Digital Goods checkout flow instead of a traditional
Express Checkout.

• Spruce up the look and feel of the application with some stylesheets and implement
a more seamless login experience by “remembering the user” for a short period of
time, such as 24 hours, instead of prompting for login each time that they visit the
application.

All sample code for this book is available online at GitHub and is con-
veniently organized by chapter. Although much of the code is included
in the text of this book so that it’s as instructional as possible, always
reference the latest bug-fixed code on GitHub as the definitive reference
for sample code. Bug tickets and patches are welcome!

60 | Chapter 3: Express Checkout for Digital Goods

https://github.com/ptwobrussell/PayPal-APIs-Up-and-Running

CHAPTER 4

Adaptive Payments (Simple, Parallel,
and Chained Payments)

Overview of Adaptive Payments
If you’ve been taking the chapter-by-chapter approach to this book, you’ve now learned
how to implement a traditional Express Checkout payment flow as well as an Express
Checkout for Digital Goods payment flow. Make no mistake that these two payment
flows are great ways to implement a checkout and provide a first-class payment expe-
rience that your customers will recognize and appreciate as they make online purchases
on your site. Historically, Express Checkout has been the online payment experience
that most consumers have expected, and the enhancements that have enabled seamless
mobile experiences and in-context payment flows for digital goods scenarios have been
crucial. However, the enhancements to Express Checkout have been evolutionary steps
forward and offer fairly narrow possibilities in comparison to what the Adaptive Pay-
ments product offers.

PayPal’s official documentation on Adaptive Payments is available on-
line: Adaptive Payments Developer Guide.

In comparison to Express Checkout, Website Payments Pro, and other disparate PayPal
products that you may have considered as part of a checkout flow in which there is a
single buyer and single seller, Adaptive Payments provides a single comprehensive
framework for third parties (who are often neither the buyer nor the seller) to build
payment processing systems of just about any variety you can imagine—including
transactions that involve multiple recipients. For example, in addition to implementing
a simple payment in which a single sender sends money to a single receiver, Adaptive
Payments trivially allows you to use the very same API to move money from one sender
to multiple receivers using what are called chained payments and parallel payments.

61

https://www.x.com/developers/paypal/products/adaptive-payments
https://www.x.com/developers/paypal/documentation-tools/quick-start-guides/adaptive-payments-api

Handling payment preapprovals, refunds, currency conversions, and other advanced
scenarios are also possible through the same flexible fabric exposed through the Adap-
tive Payments APIs.

Excited? The remainder of this chapter provides some of the fundamentals and then
transitions into an exercise in which we’ll augment Tweet Relevance to take advantage
of Adaptive Payments.

Common Adaptive Payment Workflows
The adaptive Payments product allows a developer to write software that facilitates
payments between a sender and one or more receivers of that payment. Unlike products
such as Express Checkout where the seller is necessarily the API caller, the application
(on behalf of the developer) is the caller of the Adaptive Payments API operations, so
the seller and the application owner need not be the same party. The application owner
must have a PayPal business-level account with the appropriate permissions levels ap-
proved by PayPal, but senders and receivers can have a PayPal account of any type or
even no PayPal account since they can elect to use a “guest checkout.”

Outlined in Figure 4-1, this is referred to as a simple payment, where a sender makes
a payment to a single recipient. This type of payment is equivalent to what is done with
Express Checkout except that the receiver of the payment is not necessarily the appli-
cation developer. If you’re used to the Express Checkout paradigm in which the receiver
and the application owner are the same, this approach may seem a but curious. How-
ever, after some reflection, it hopefully becomes apparent that there’s much to be gained
by allowing a third-party developer to write applications that process payments on
behalf of one or more sellers. It’s not uncommon at all that a seller may want to leverage
a third-party application that already exists or have a custom application built that can
process payments with as little involvement in the technical development process as
possible.

Figure 4-1. Simple Adaptive Payment

The Adaptive Payments API allows you and your application to act as an intermediary
that facilitates payments for others, without you as the application developer being a

62 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

recipient of the funds. As outlined in Figure 4-2, one possible scenario in which this
could be the case is referred to as a parallel payment, in which the sender intentionally
transmits a single payment to multiple recipients and has insight into how the payment
is disbursed among those multiple recipients. Parallel payments are commonly used in
aggregated shopping and allow a customer to order from multiple vendors with a single
shopping cart.

Figure 4-2. Parallel Adaptive Payment

Another way in which your application can function as an intermediary to multiple
recipients with Adaptive Payments is through a chained payment as outlined in Fig-
ure 4-3. In a chained transaction, your application receives the payment, and the funds
are then split between multiple recipients on the backend. In other words, the sender
transmits funds to a single receiver and the receiver who then passes on some portion
of the funds to multiple recipients. In a chained setup, your application or any other
receiver could take a percentage of the payment and then disperse the remaining funds
to the other recipients. For example, you might purchase an “all inclusive” vacation
package from a travel site that collects a nominal fee before passing through portions
of the payment to various parties involved in your vacation experience. It is even pos-
sible to set up a delayed chained payment that allows for a delay in the secondary re-
ceivers collecting payment. One scenario in which delayed chained payments can be
handy involves secondary receivers needing to ship goods before they receive their
payment for the transaction.

Common Adaptive Payment Workflows | 63

Figure 4-3. Chained Adaptive Payment

Who Pays the Fees?
Given the flexible nature of Adaptive Payments, you may very well be wondering whose
responsibility it is to pay the fees for a transaction involving multiple receivers. The
short answer is that there are four primary configurations that are available to distribute
the fees for an Adaptive Payment transaction:

• Sender pays the fee, regardless of payment type (simple, parallel, or chained)

• All receivers pay the fee in a parallel payment

• All receivers pay the fee in a chained payment

• Only the primary receiver pays the fee in a chained payment

If you consider the various payment situations described so far in this chapter, these
four possibilities really do cover the bases. In any payment scenario, it makes sense that
the sender could pick up the tab for the fees on behalf of all of the receivers in the
transaction just as easily as each receiver could pick up the tab for only their portion
of the fees, regardless of whether the payment is simple, parallel, or chained. In any of
these scenarios, there is no fundamental difference in how fees are calculated, so PayPal
takes the same cut either way. However, with a chained payment, it seems reasonable
that the primary receiver should be able to pick up the tab for all of the fees on behalf
of the secondary receivers, so that’s a possibility as well. From an implementation
standpoint, the application developer is able to very easily configure who pays the fees
according to a configuration parameter that’s passed in when setting up the payment
transaction.

Although this chapter doesn’t revisit the notion of digital goods, it’s also
certainly possible to utilize Adaptive Payments for processing digital
goods transactions, which opens up the possibility for the more cost-
effective micropayments scheme for eligible transaction types.

64 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

https://www.paypalobjects.com/IntegrationCenter/ic_micropayments.html

As you are now surely realizing, the flexibility of Adaptive Payments facilitates a vast
number of payment possibilities. With a high-level overview now established, let’s dig
a little deeper into the APIs.

Payment Approval and Payment Flows
When a payment transaction via an Adaptive Payments application has been submitted,
one of four different payment approval types is involved. The remainder of this section
reviews these approval types: Explicit Payments, Preapproved Payments, Implicit Pay-
ments, and Guest Payments. Although we won’t use all of the approaches for payment
integration with Tweet Relevance in this chapter, it’s important to know that these
fundamental possibilities exist.

Explicit Payments
Explicit Payments require the sender to log into PayPal.com and approve each indi-
vidual payment just like in an Express Checkout payment experience. This is the tra-
ditional method for paying via PayPal and is the only option a sender has for executing
a payment, unless a preapproval agreement has been established (a Preapproved Pay-
ment), or unless the sender is also the application provider (an Implicit Payment). The
interaction between your application and PayPal can be controlled during the transac-
tion process by providing URLs for redirecting the sender, depending on the situation.
Figure 4-4 outlines an Explicit Payment flow, which consists of the following steps:

1. Your application sends a Pay request to PayPal.

2. PayPal responds with a payment key that you use to redirect the sender to PayPal.

3. You redirect the sender to PayPal.com.

4. The sender approves the transfer of the payment, and PayPal redirects the sender
to a return URL.

5. PayPal sends both the receiver and the sender an email summarizing the payment
that was made.

Although not explicitly listed as a step in Figure 4-4, applications should
be careful to verify the status of a payment immediately after the redirect
of Step 4 before taking any actions such as crediting a user account.
Usually, this is accomplished by using the same key that was returned
in Step 2. For example, if PayPal redirects back to http://example.com/
successful_payment?user=Bob&item=123 and your application blindly
ships Bob Item #123 without first confirming the payment status ref-
erenced by the Pay key from Step 2, you’d be wide open to easy hacking
exploits.

Payment Approval and Payment Flows | 65

http://www.paypal.com/
http://www.paypal.com/

Preapproved Payments
Preapproved Payments allow senders to log into PayPal.com and set up preapprovals
for future payments so that explicit payments are not required for every single trans-
action. Once the preapproval is established for certain constraints such as amount or
time duration, payments are automatically considered approved, and the sender will
not have to log in to approve payments to that vendor in the future until one of the
preapproved conditions expires. During the preapproval setup process, the sender can
specify the following constraints:

• Duration of the preapproval, including the start date and end date

• The maximum amount being approved at one time

• The maximum number of payments allowed for the vendor

Figure 4-5 outlines a Preapproved Payment flow, which consists of the following steps:

1. An application sends a preapproval request to PayPal.

Figure 4-4. Explicit Payment flow

66 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

http://www.paypal.com/

2. PayPal responds with a preapproval key that you use in redirecting the sender to
PayPal.

3. The application redirects the sender to PayPal.

4. After the sender approves the preapproval, PayPal redirects the sender to a return
URL.

5. PayPal sends both the receiver and the sender an email summarizing the payment
that was made.

Once the sender approves the preapproval setup, an application can make payments
on behalf of the sender directly, as outlined in Figure 4-6.

1. Your application sends a Pay request to PayPal that includes a preapproval key
identifying the payment agreement.

2. PayPal responds with a payment key that is used for other API functions.

Figure 4-5. Preapproved Payment flow

Payment Approval and Payment Flows | 67

Figure 4-6. Preapproved Payment direct sending

Implicit Payments
Implicit Payments are payments sent directly by an application whose owner is also
API caller. In the case of an Implicit Payment, no approval is necessary for the payment
transaction since the parties are one and the same. Figure 4-7 outlines an Implicit
Payment.

1. Your application sends a Pay request to PayPal.

2. PayPal responds with a key to use for other API operations.

Figure 4-7. Implicit Payment flow

Guest Payments
The Adaptive Payments product also supports Guest Payments, in which the sender
can pay without a PayPal account by using a credit card. Guest Payments are handled
in the same manner as Explicit Payments, except that the sender provides credit card
information directly on the PayPal payment screen. The recipient of a Guest Payment
must have either a business- or premier-level PayPal account in order for an application
to process a Guest Payment.

68 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

The Pay and PaymentDetails APIs
Before demonstrating an Adaptive Payments integration with the Tweet Relevance
sample code from Appendix A, let’s take a closer look at the Adaptive Payments Pay1

and PaymentDetails2 APIs, which are integral to our implementation details. A complete
and more comprehensive list of all of the Adaptive Payments API operations can
be found at Adaptive Payments API documentation on X.com. This section focuses on
two of the most essential APIs and relevant options for Tweet Relevance payment in-
tegration along with some sample code to quickly get you up and running.

If you come from an Express Checkout background or have been following along in
the book chapter by chapter, an important distinction to make up front between Adap-
tive Payments and Express Checkout is the nature of the request parameters. Whereas
Express Checkout involves sending in 3-Token credentials along with Name-Value
pairs through the request body, Adaptive Payments require 3-Token credentials along
with a mandatory application identifier and additional configuration information to be
passed in as headers; the POST request payload identifies the API operation and its
parameters. Let’s now turn to the Pay API and execute some sample API calls to see
how it all works.

Pay API Operation
All payments made via the Pay API have the same essential fields and are outlined in
Table 4-1. If thinking about Adaptive Payments from an Express Checkout mindset,
you might consider the Pay API to be similar to the SetExpressCheckout API in that it
sets up a transaction and returns a value called a “pay key” that can be used to redirect
a sender to PayPal for approval.

Table 4-1. Common fields for the Pay API encoded in NVP format

Field Description

actionType Will be one of three possible values:

• PAY: Use this value to set up a payment transaction except when
using the request in combination with ExecutePaymentRe
quest.

• CREATE: Used to set up payment instructions with a SetPaymen
tOptions request and then execute at a later time with an Execu
tePaymentRequest.

• PAY_PRIMARY: Used for chained payment situations only. This al-
lows you to delay payments to secondary receivers at the time of the

1. https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api
_APPayAPI

2. https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api
_APPaymentDetails

The Pay and PaymentDetails APIs | 69

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_APIntro
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_APPayAPI
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_APPayAPI
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_APPaymentDetails
https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_APPaymentDetails

Field Description
transaction and process only the primary receiver. To process the
secondary payments, initiate ExecutePaymentRequest and
pass the pay key obtained from the PayResponse.

receiverList .receiver(n).email One or more receivers’ email addresses, where n can take on values between
0 and 5. For parallel payments, up to 6 receivers may be identified, and for
chained payments, 1 primary receiver and 5 secondary receivers may be
identified.

receiverList .receiver(n) .amount The amount to be credited to each receiver’s account.

receiverList.receiver(n).primary (Optional) Set this value to true to indicate that this is a chained payment.
Only one receiver can be the primary receiver.

currencyCode The code for the currency in which the payment is made. You can specify
only one currency, regardless of the number of receivers. A complete list of
supported currency codes is available online.

cancelUrl The URL for sender redirection if the sender cancels the payment approval.
This value is required, but used only for explicit payments.

returnUrl The URL for sender redirection after completion of the payment. This value
is required, but used only for explicit payments.

requestEnvelope.errorLanguage The requestEnvelope is required information common to each API
operation and includes members such as errorLanguage, the language
in which error messages are displayed, and the level of detail that should
be returned for error messages. At the current time, the only supported error
language is US English (en_US).

feesPayer (Optional) The payer of PayPal fees. Allowable values are:

• SENDER: Sender pays all fees (for personal, implicit simple/parallel
payments; do not use for chained or unilateral payments)

• PRIMARYRECEIVER: Primary receiver pays all fees (chained pay-
ments only)

• EACHRECEIVER: Each receiver pays his own fee (default, personal,
and unilateral payments)

• SECONDARYONLY: Secondary receivers pay all fees (use only for
chained payments with one secondary receiver)

70 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_currency_codes

It’s a fine detail, but do note that part of the request includes a mandatory “request
envelope.” It’s a subtle but important point that the existence of a dot separator in field
names for the Adaptive Payments APIs indicates a notion of hierarchy. For example,
requestEnvelope.errorLanguage connotes that there’s a requestEnvelope field with a
sub-field errorLanguage. As you’ll see later in this chapter, a JSON object expressing
this same field would be {'requestEnvelope' : {'errorLanguage' : 'en_US'}}. Addi-
tional parameters are possible to include as part of the request envelope and are specific
to particular Adaptive Payments API operations and indicated in the more compre-
hensive online documentation.

For readers familiar with a Linux or Unix shell, a trivial Bash script that uses the curl
command to execute a request might look like Example 4-1. Readers unfamiliar with
Bash or command-line utilities should simply focus on the structure of the curl com-
mand that is being executed. A brief explanation follows, and subsequent examples for
this chapter are written in Python as GAE web applications, so there’s no need to fret
if learning Bash syntax wasn’t part of your expectations for this chapter.

Example 4-1. Bash script demonstrating execution of the Pay API

#!/bin/bash

USERID="XXX"
PASSWORD="XXX"
SIGNATURE="XXX"

APPID="APP-80W284485P519543T"

RECEIVER="XXX"

AMOUNT="1.00"
CANCELURL="http://example.com/cancel"
RETURNURL="http://example.com/return"

RESULT=$(curl -s --insecure \
-H "X-PAYPAL-SECURITY-USERID: $USERID" \
-H "X-PAYPAL-SECURITY-PASSWORD: $PASSWORD" \
-H "X-PAYPAL-SECURITY-SIGNATURE: $SIGNATURE" \
-H "X-PAYPAL-REQUEST-DATA-FORMAT: NV" \
-H "X-PAYPAL-RESPONSE-DATA-FORMAT: JSON" \
-H "X-PAYPAL-APPLICATION-ID: $APPID" \
https://svcs.sandbox.paypal.com/AdaptivePayments/Pay -d
"requestEnvelope.errorLanguage=en_US\
&actionType=PAY\
&receiverList.receiver(0).email=$RECEIVER\
&receiverList.receiver(0).amount=$AMOUNT\
¤cyCode=USD\
&feesPayer=EACHRECEIVER\
&memo=Simple payment example.\
&cancelUrl=$CANCELURL\
&returnUrl=$RETURNURL\
;)

The Pay and PaymentDetails APIs | 71

echo $RESULT

In short, the script sets up a few variables, executes a curl command using those vari-
ables along with some other parameters, and displays the results. Although it’s just a
trivial script, there’s a lot that can be gleaned. The following observations may be help-
ful in solidifying your understanding of how an Adaptive Payments Pay API operation
takes place:

• The USERID, PASSWORD, and SIGNATURE are the 3-Token credentials associated with
the PayPal developer account for the application making this request.

• The APPID shown in the script is the global and shared application identifier for
development purposes. (You’d request an application identifier for production use
separately from PayPal when your application is ready to go live.)

• The remaining variables should look familiar: there’s a receiver (who may or may
not be the same as the application owner), a purchase amount, and URLs that
PayPal uses to redirect the sender back to your site depending on whether or not
the purchase was completed or cancelled. The sender is not identified in this
request, but the sender’s identify will become known once the sender logs into
PayPal to approve the request.

• 3-Token credentials, request and response formats, and the application identifier
are passed in as headers via curl’s -H option.

— The request format is in NVP format, as indicated by NV

— The response format is returned in JSON format as indicated by JSON

• The Pay request is routed to https://svcs.sandbox.paypal.com/AdaptivePayments/
Pay, which is the Sandbox URL for the Pay operation, and the POST request payload
as encoded in name-value pairs follows the -d option.

• There’s a single recipient (as identified by the receiverList.receiver(0) values)
that indicates that this Adaptive Payments transaction is a simple payment and this
single recipient is footing the fees for the transaction as indicated by the EACHRE
CEIVER value.

A sample response from executing the previous Pay API operation follows:

{ "payKey" : "AP-54G358058T2731358",
 "paymentExecStatus" : "CREATED",
 "responseEnvelope" : { "ack" : "Success",
 "build" : "2428464",
 "correlationId" : "7ca7e3aa6a999",
 "timestamp" : "2012-01-14T15:36:31.515-08:00"
 }
}

In short, the response is formatted as JSON as requested by the X-PAYPAL-RESPONSE-
DATA-FORMAT header, a response envelope returns an acknowledgment that the request
is successful, and the response indicates that a payment request has been created and

72 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

includes a payKey value that can be used to redirect a sender to PayPal for approval. To
initiate the approval process for a Sandbox application, an application must redirect
the sender back to https://www.sandbox.paypal.com/cgi-bin/webscr?cmd=_ap-pay-
ment&paykey=value.

Although not germane to the Tweet Relevance integration, it’s worth-
while to note that if the API caller and the sender are one and the same
(an Implicit Payment), a senderEmail field can be specified, and PayPal
will implicitly approve the payment without redirecting to PayPal for
explicit approval. You can also use a preapproval to execute the payment
and avoid explicit approval. The required preapproval fields include a
preapproval key and personal identification number (PIN).

The PaymentDetails API Operation
The PaymentDetails API is used to obtain information about a payment. You can iden-
tify the payment by your tracking ID, the PayPal transaction ID in an IPN message, or
the pay key associated with the payment. Table 4-2 summarizes the common request
parameters.

Table 4-2. Common PaymentDetails request fields

Field Descriptions

payKey This field identifies the payment for which you wish to set up payment options. This is
the key that is returned in the PayResponse message.

requestEnvelope.error
Language

The requestEnvelope is required information common to each API operation and
includes members such as errorLanguage, the language in which error messages are
displayed, and the level of detail that should be returned for error messages.

transactionId (Optional) The PayPal transaction ID associated with the payment. The IPN message
associated with the payment contains the transaction ID.

trackingId (Optional) The tracking ID that was specified for this payment in the PayRequest message.
Maximum length: 127 characters.

In short, you pass in one of several possible values that identifies a payment to Payment
Details, and it returns relevant status information about the payment. Example 4-2
illustrates a trivial Bash script that makes a PaymentDetails API request using a pay
Key value returned from Example 4-1. Example usage for the script is to simply pass in
the pay key as a command-line parameter to the script.

Example 4-2. Bash script illustrating usage of the PaymentDetails API

#!/bin/bash

PAYKEY="${1}"

USERID="XXX"

The Pay and PaymentDetails APIs | 73

PASSWORD="XXX"
SIGNATURE="XXX"

APPID="APP-80W284485P519543T"

RESULT=$(curl -s --insecure \
-H "X-PAYPAL-SECURITY-USERID: $USERID" \
-H "X-PAYPAL-SECURITY-PASSWORD: $PASSWORD" \
-H "X-PAYPAL-SECURITY-SIGNATURE: $SIGNATURE" \
-H "X-PAYPAL-REQUEST-DATA-FORMAT: NV" \
-H "X-PAYPAL-RESPONSE-DATA-FORMAT: JSON" \
-H "X-PAYPAL-APPLICATION-ID: $APPID" \
https://svcs.sandbox.paypal.com/AdaptivePayments/PaymentDetails -d
"requestEnvelope.errorLanguage=en_US\
&payKey=$PAYKEY"\
;)

echo $RESULT

Sample results from the script follow and illustrate the basic format of a PaymentDe
tails response:

{ "actionType" : "PAY",
 "cancelUrl" : "http://example.com/cancel",
 "currencyCode" : "USD",
 "feesPayer" : "EACHRECEIVER",
 "ipnNotificationUrl" : "http://example.com/ipn",
 "memo" : "Simple payment example.",
 "payKey" : "AP-4U527241GF1114245",
 "paymentInfoList" : { "paymentInfo" : [{ "pendingRefund" : "false",
 "receiver" : { "amount" : "1.00",
 "email" : "XXX",
 "paymentType" : "SERVICE",
 "primary" : "false"
 }
 }] },
 "responseEnvelope" : { "ack" : "Success",
 "build" : "2428464",
 "correlationId" : "4808cadb5297e",
 "timestamp" : "2012-01-14T17:58:11.358-08:00"
 },
 "returnUrl" : "http://example.com/return",
 "reverseAllParallelPaymentsOnError" : "false",
 "sender" : { "useCredentials" : "false" },
 "status" : "CREATED"
}

Of particular interest in the response for PaymentDetails is the status field that
indicates that the payment request has been created but not yet completed; however,
should you visit https://www.sandbox.paypal.com/cgi-bin/webscr?cmd=_ap-pay-
ment&paykey=AP-4U527241GF1114245 and successfully approve the payment, in-
voking PaymentDetails again should return a status of COMPLETED. However, a status
of COMPLETED does not necessarily mean that the payment was successfully processed
and that payment was rendered—it only means that the request, regardless of its ulti-

74 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

mate outcome—was completed successfully. If the status were COMPLETED, additional
information would be included regarding the specific details as they relate to the pay-
ment(s). For example, the following sample results show a PaymentDetails response
where status is COMPLETED and the paymentInfoList field provides definitive information
about the ultimate outcome of the payment. (In the case of an eCheck payment, the
transactionStatus would have been PENDING.)

{
 "status": "COMPLETED",
 "responseEnvelope": {
 "ack": "Success",
 "timestamp": "2012-01-31T22:47:32.121-08:00",
 "build": "2486531",
 "correlationId": "e28c831c96f87"
 },
 "returnUrl": "http://example.com",
 "payKey": "AP-72S344750E3616459",
 "senderEmail": "XXX",
 "actionType": "PAY",
 "sender": {
 "email": "matthe_1325995267_per@zaffra.com",
 "useCredentials": "false"
 },
 "paymentInfoList": {
 "paymentInfo": [
 {
 "refundedAmount": "0.00",
 "receiver": {
 "paymentType": "SERVICE",
 "amount": "9.99",
 "email": "XXX",
 "primary": "false"
 },
 "transactionId": "2NB983427X665902U",
 "senderTransactionStatus": "COMPLETED",
 "senderTransactionId": "11411689C90721011",
 "pendingRefund": "false",
 "transactionStatus": "COMPLETED"
 }
]
 },
 "currencyCode": "USD",
 "cancelUrl": "http://example.com/cancel",
 "feesPayer": "EACHRECEIVER",
 "reverseAllParallelPaymentsOnError": "false"
}

If you’re comfortable working in a Linux or Unix environment or can comfortably
execute curl commands in a Windows environment, it’s worthwhile to try manually
executing these scripts to ensure that you understand the fundamentals. Regardless, in
the next section, we’ll implement the same logic as a GAE project.

The Pay and PaymentDetails APIs | 75

GAE Simple Adaptive Payments Example
Let’s now take the concepts concerning Pay and PaymentDetails API requests from the
previous sections and consolidate them into an austere GAE application. If you’ve been
following along closely, Example 4-3 should seem fairly straightforward. It’s a web app
that processes requests for two URLs: 1) a request on the root context of the application
that triggers a Pay request and displays the response, and 2) a /status request that
executes a PaymentDetails request for the original Pay request and displays the response.
Since native Python list and dictionary objects are so close to a JSON representation,
it makes sense to use JSON as both the request and response format, so you’ll notice
a new import statement that makes available a JSON module for easily converting be-
tween the JSON string representation and the native Python objects. You’ll also see an
import statement that brings in the memcache module that’s used to minimally mimic a
session implementation, which the app uses to store and later look up the payKey re-
turned from the Pay request and pass it through to the PaymentDetails request that is
executed when /status is requested. Go ahead and take a look at the code; afterward,
a play-by-play synopsis is provided that breaks down the action as a series of coarsely
grained steps.

Example 4-3. A sample GAE application that executes a Simple Adaptive Payment—main.py

#!/usr/bin/env python

"""
A minimal GAE application that makes an Adaptive API request to PayPal
and parses the result. Fill in your own 3 Token Credentials and sample
account information from your own sandbox account
"""

import random

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util
from google.appengine.api import urlfetch
from google.appengine.api import memcache
from django.utils import simplejson as json

Replace these values with your own 3-Token credentials and a sample "seller"
who is the receiver of funds to run this sample code in the developer sandbox

user_id = "XXX"
password = "XXX"
signature = "XXX"
receiver = "XXX"

class MainHandler(webapp.RequestHandler):

 # Helper function to execute requests with appropriate headers
 def _request(self, url, params):

76 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

 # standard Adaptive Payments headers
 headers = {
 'X-PAYPAL-SECURITY-USERID' : user_id,
 'X-PAYPAL-SECURITY-PASSWORD' : password,
 'X-PAYPAL-SECURITY-SIGNATURE' : signature,
 'X-PAYPAL-REQUEST-DATA-FORMAT' : 'JSON',
 'X-PAYPAL-RESPONSE-DATA-FORMAT' : 'JSON',
 'X-PAYPAL-APPLICATION-ID' : 'APP-80W284485P519543T'
 }

 return urlfetch.fetch(
 url,
 payload = json.dumps(params),
 method=urlfetch.POST,
 validate_certificate=False,
 headers=headers
)

 def get(self, mode=""):

 # /status - executes PaymentDetails when PayPal redirects back to this app after
payment approval

 if mode == "status":

 payKey = memcache.get(self.request.get('sid'))

 params = {
 'requestEnvelope' : {'errorLanguage' : 'en_US', 'detailLevel' : 'ReturnAll'},
 'payKey' : payKey
 }

 result = self._request('https://svcs.sandbox.paypal.com/AdaptivePayments/
PaymentDetails', params)

 response = json.loads(result.content)

 if result.status_code == 200: # OK

 # Convert back to indented JSON and display it

 pretty_json = json.dumps(response,indent=2)
 self.response.out.write('<pre>%s</pre>' % (pretty_json,))
 else:
 self.response.out.write('<pre>%s</pre>' % (json.dumps(response,indent=2),))

 else: # / (application root) - executed when app loads and initiates a Pay request

 amount = 10.00

 # A cheap session implementation that's leveraged in order to lookup the payKey
 # from the Pay API and execute PaymentDetails when PayPal redirects back to /status

 sid = str(random.random())[5:] + str(random.random())[5:] + str(random.random())
[5:]

The Pay and PaymentDetails APIs | 77

 return_url = self.request.host_url + "/status" + "?sid=" + sid
 cancel_url = return_url

 redirect_url = "https://www.sandbox.paypal.com/cgi-bin/webscr?cmd=_ap-
payment&paykey="

 params = {
 'requestEnvelope' : {'errorLanguage' : 'en_US', 'detailLevel' :
'ReturnAll'},
 'actionType' : 'PAY',
 'receiverList' : {
 'receiver' : [
 {'email' : receiver, 'amount' : amount}
],
 },
 'currencyCode' : 'USD',
 'memo' : 'Simple payment example.',
 'cancelUrl' : cancel_url,
 'returnUrl' : return_url,
 }

 result = self._request('https://svcs.sandbox.paypal.com/AdaptivePayments/Pay',
params)

 response = json.loads(result.content)

 if result.status_code == 200: # OK

 # Convert back to indented JSON and inject a hyperlink to kick off payment
approval

 pretty_json = json.dumps(response,indent=2)
 pretty_json = pretty_json.replace(response['payKey'], '<a href="%s%s"
target="_blank">%s' % (redirect_url, response['payKey'], response['payKey'],))
 memcache.set(sid, response['payKey'], time=60*10) # seconds

 self.response.out.write('<pre>%s</pre>' % (pretty_json,))
 else:
 self.response.out.write('<pre>%s</pre>' % (json.dumps(response,indent=2),))

def main():
 application = webapp.WSGIApplication([('/', MainHandler),
 ('/(status)', MainHandler)],
 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

In terms of the overall application flow, here’s how it all breaks down:

• The user requests the root context of the application.

• A session identifier is created by concatenating some random numbers together.

78 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

• A Pay request is executed that requires return and cancel URLs to be provided so
that PayPal knows where to redirect the user after payment approval.

— Details: We’d like for the return URL passed in with the Pay request to check
the status of the payment associated with the Pay request through a subsequent
PaymentDetails request after the user has had an opportunity to approve the
payment; however, we won’t have the payKey value that’s needed for Payment
Details until the Pay request completes, and it hasn’t even been executed yet!
Thus, we’ll use the session identifier and specify a return URL of the form /
status?sid=123 on the Pay request and use memcache to associate the sid value
with the payKey value that’s returned from the Pay request after the Pay request
completes.

• Results for the Pay request are displayed as JSON with the payKey hyperlinked such
that the user can click on it and approve the payment, ultimately changing its status
from CREATED to COMPLETED.

— Details: The hyperlink simply involves passing in the payKey as a query string
parameter to a standard URL of the form https://www.sandbox.paypal.com/
cgi-bin/webscr?cmd=_ap-payment&paykey=AP-808742956V333525E.

• After the user approves payment, PayPal redirects back to the application at its
return URL, which for this sample application is of the form /status?sid=123.

• In /status, the application uses the session identifier included in the URL to look
up the payKey associated with the transaction and uses it to execute a PaymentDe
tails request. The response, whose status field should now be COMPLETED, is dis-
played. Recall that additional details in the response object provide definitive in-
formation regarding the ultimate outcome of the payment itself.

• Because no value for feesPayer is specified to override the default value of EACHRE
CEIVER, the receiver pays the fees for this transaction.

Another key point to take away from the application is that the owner of the application
need not necessarily be the receiver of the payment. It could certainly be the case that
the same owner of the application whose 3-Token credentials are supplied to run the
application could also be on the receiving end, but it could just as easily be the case
that the owner of the application is a third party who built the application as a fixed-
price contract job and maintains the application on behalf of the receiver as part of a
business arrangement. However, it’s just as easily the case that perhaps the third party
developer could have developed the application for free or at a deep discount in ex-
change for a cut of the payment. The next section illustrates how a chained payment
could be used to accommodate exactly this kind of situation.

GAE Chained Adaptive Payments Example
If you understand the flow of Example 4-3, the good news is that executing a chained
(or parallel payment) literally just requires a couple of additional lines of code. Recall

The Pay and PaymentDetails APIs | 79

that in a chained payment scenario, the sender perceives that a payment is being sent
to a primary receiver; however, the primary receiver essentially acts as a “middle man”
who takes a cut and passes on potentially variable portions of the payment to up to five
additional receivers. A realistic scenario involving a chained payment could be that the
developer of an application takes a cut of a payment and passes on the remaining por-
tion to additional parties such as investors who may be stakeholders in the business
venture. While a parallel payment could conceivably be used to get the money into the
very same hands, a chained payment allows the additional receivers to remain anony-
mous so far as the sender is concerned. From the sender’s point of view, there is only
a single receiver.

As just mentioned, the changes to Example 4-3 that result in a chained payment are
absolutely minimal. Instead of a single receiver and amount being specified and passed
into the Pay request, multiple receivers can be passed. For example, consider the fol-
lowing receiver configuration:

params = {
 'requestEnvelope' : {'errorLanguage' : 'en_US', 'detailLevel' : 'ReturnAll'},
 'actionType' : 'PAY',
 'receiverList' : {
 'receiver' : [
 {'email' : receiver1, 'amount' : amount1, 'primary' : True },
 {'email' : receiver2, 'amount' : amount2, 'primary' : False},
 {'email' : receiver3, 'amount' : amount2, 'primary' : False}
],
 },
 'currencyCode' : 'USD',
 'memo' : 'Chained payment example.',
 'cancelUrl' : cancel_url,
 'returnUrl' : return_url,
}

This configuration specifies that there is one primary receiver and two secondary re-
ceivers. If amount1 were $10.00, amount2 were $5.00, and amount3 were $2.00, the pri-
mary receiver would be accepting a $10.00 payment but passing on $7.00 of it to
secondary receivers—effectively taking a $3.00 cut. An important detail to also note is
that because no value for feesPayer is specified to override the default value of EACH
RECEIVER, all receivers, including the primary receiver, pay the fees for this transaction.

GAE Parallel Payments Example
Modifications to Example 4-3 that result in parallel payment are quite similar to those
for a chained payment except that there is no designated primary receiver and the party
who was the primary receiver takes an explicit cut of the payment in the parameters.
Using the same configuration parameters as with the chained payment, the only code
change required is that receiver1 no longer be designated as the primary receiver.
However, in order for the same payment amounts to go to the receivers in the same
manner as the chained payment scenario, amount1 would be an explicit $3.00 instead

80 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

of $10.00. From the sender’s point of view, there are three receivers involved with the
parallel payment, and the sender has visibility into how much of the payment is given
to each of the receivers.

params = {
 'requestEnvelope' : {'errorLanguage' : 'en_US', 'detailLevel' : 'ReturnAll'},
 'actionType' : 'PAY',
 'receiverList' : {
 'receiver' : [
 {'email' : receiver1, 'amount' : amount1, 'primary' : False},
 {'email' : receiver2, 'amount' : amount2, 'primary' : False},
 {'email' : receiver3, 'amount' : amount2, 'primary' : False}
],
 },
 'currencyCode' : 'USD',
 'memo' : 'Parallel payment example.',
 'cancelUrl' : cancel_url,
 'returnUrl' : return_url,
}

As with the prior examples, all receivers pay their own portion of the fees since no value
for feesPayer has been provided to override the default value of EACHRECEIVER.

Integrating a “Simple” Adaptive Payment into
Tweet Relevance
If you’ve followed along thus far, integrating Adaptive Payments into Tweet Relevance
should seem like a fairly melodramatic exercise. The goal of the integration is the same
as that of previous chapters: to implement a payment mechanism so that users of the
service can be charged for using it. In the interest of getting up and running, let’s inte-
grate a Simple Adaptive Payment in order to implement a basic subscription model in
which a customer purchases 30 days of access for a nominal fee. The previous GAE
examples have worked through most of the nuts and bolts as related to the Adaptive
Payments portion of the exercise, so there’s actually just a very little bit of software
engineering involved to perform the integration and smooth out a few rough edges.
The remainder of this section assumes that you have familiarity with the baseline Tweet
Relevance project code from Appendix A and an appreciation for some of the payment
models as described in “Implementing a Checkout Experience for Tweet Rele-
vance” on page 32. Changes to the baseline project structure in order to implement a
subscription payment model are addressed on a file-by-file basis.

It may be helpful to review “Implementing a Checkout Experience for
Tweet Relevance” on page 32 and refresh your memory on the various
payment mechanisms that could be viable for a service like Tweet Rele-
vance. The remainder of this chapter assumes familiarity with the op-
tions as presented in that section and implements the “subscription
model.”

Integrating a “Simple” Adaptive Payment into Tweet Relevance | 81

main.py
The overall architecture for the finished web application involving Adaptive Pay-
ments mimics the same operations for ExpressCheckout, but we’ll name them a
little differently so as not to confuse the two products. Thus, the PaymentHander
exposes /pay, /completed_payment, and /cancelled_payment operations that will be
mapped by the main application. Thus, main() looks like this:

def main():

 application = webapp.WSGIApplication([

 # PaymentHandler URLs

 ('/(pay)', PaymentHandler),
 ('/(completed_payment)', PaymentHandler),
 ('/(cancelled_payment)', PaymentHandler),

 # AppHandler URLs

 ('/(app)', AppHandler),
 ('/(data)', AppHandler),
 ('/(login)', AppHandler),
 ('/', AppHandler)
],

 debug=True)
 util.run_wsgi_app(application)

handlers/PaymentHandler.py
Most of the action for the integration happens in PaymentHandler, which interacts
with PayPal and interfaces with the AppHandler to update to credit the account with
30 days of access after a successful payment. The PaymentHandler class in Exam-
ple 4-5 illustrates how to make it happen. The import and reference for the trivial
Product class is shown in Example 4-4. The basic control flow is essentially the
same as that involving an Express Checkout: a transaction is set up with /pay,
Tweet Relevance redirects to PayPal to approve the transaction, and PayPal redi-
rects back to /completed_payment once the user has approved the payment. The
application then confirms with PayPal that the transaction has indeed been com-
pleted before handing back control to the ApplicationHandler so as to avoid a
fundamental security flaw in which a malicious attacker may be able to gain ac-
count credits without actually approving a payment. The same memcache mecha-
nism for associating a payKey value with a user’s session identifier after PayPal
redirects back to the application, as described in Example 4-3, is also employed in
PaymentHandler.

Finally, although it’s not displayed as example code below, note that the /pay URL
is triggered by templates/checkout.html in the project code—the same kind of page
shown in Figure 2-7 that displays a yellow “Checkout with PayPal” button.

82 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

Example 4-4. Product.py

The Product class provides product details.
A more flexible product line could be managed in a database

class Product(object):

 @staticmethod
 def getProduct():

 return {'price' : 9.99, 'quantity' : 30, 'units' : 'days'}

Example 4-5. handlers/PaymentHandler.py

import os

from google.appengine.ext import webapp
from google.appengine.api import memcache
from google.appengine.ext.webapp import template
from django.utils import simplejson as json
import logging

from paypal.products import AdaptivePayment as AP
from paypal.paypal_config import seller_email as SELLER_EMAIL
from Product import Product
from handlers.AppHandler import AppHandler

class PaymentHandler(webapp.RequestHandler):

 def post(self, mode=""):

 if mode == "pay":

 sid = self.request.get("sid")

 returnUrl = self.request.host_url+"/completed_payment?sid="+sid,
 cancelUrl = self.request.host_url+"/cancelled_payment?sid="+sid

 product = Product.getProduct()

 seller = {'email' : SELLER_EMAIL, 'amount' : product['price']}

 response = AP.pay(receiver=[seller], cancelUrl=cancelUrl, returnUrl=returnUrl)
 result = json.loads(response.content)
 logging.info(result)

 if result['responseEnvelope']['ack'] == 'Failure':
 logging.error("Failure for Pay")

 template_values = {
 'title' : 'Error',
 'operation' : 'Pay'
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unknown_error.html')

Integrating a “Simple” Adaptive Payment into Tweet Relevance | 83

 return self.response.out.write(template.render(path, template_values))

 # Stash away the payKey for later use

 user_info = memcache.get(sid)
 user_info['payKey'] = result['payKey']
 memcache.set(sid, user_info, time=60*10) # seconds

 # Redirect to PayPal and allow user to confirm payment details.

 redirect_url = AP.generate_adaptive_payment_redirect_url(result['payKey'])
 return self.redirect(redirect_url)

 else:
 logging.error("Unknown mode for POST request!")

 def get(self, mode=""):

 if mode == "completed_payment":

 if memcache.get(self.request.get("sid")) is not None: # Without an account
reference, we can't credit the purchase
 user_info = memcache.get(self.request.get("sid"))

 payKey = user_info["payKey"]

 response = AP.get_payment_details(payKey)
 result = json.loads(response.content)
 logging.info(result)

 if result['responseEnvelope']['ack'] == 'Failure' or \
 result['status'] != 'COMPLETED': # Something went wrong!

 logging.error("Failure for PaymentDetails")

 template_values = {
 'title' : 'Error',
 'operation' : 'ExecutePayment'
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unknown_error.html')
 return self.response.out.write(template.render(path, template_values))

 if result['paymentInfoList']['paymentInfo'][0]['transactionStatus'] !=
'COMPLETED': # An eCheck?

 logging.error("Payment transaction status is not complete!")

 template_values = {
 'title' : 'Error',
 'details' : 'Sorry, eChecks are not accepted. Please send an instant payment.'
 }

84 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unsuccessful_payment.html')
 return self.response.out.write(template.render(path, template_values))

 # Credit the user's account

 twitter_username = user_info['username']
 product = Product.getProduct()

 AppHandler.creditUserAccount(twitter_username, product['quantity'])

 template_values = {
 'title' : 'Successful Payment',
 'quantity' : product['quantity'],
 'units' : product['units']
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'successful_payment.html')
 self.response.out.write(template.render(path, template_values))

 else:
 logging.error("Invalid/expired session in /completed_payment")

 template_values = {
 'title' : 'Session Expired',
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'session_expired.html')
 self.response.out.write(template.render(path, template_values))

 elif mode == "cancelled_payment":
 template_values = {
 'title' : 'Cancel Purchase',
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'cancel_purchase.html')
 self.response.out.write(template.render(path, template_values))

paypal/products.py
The addition of an AdaptivePayment class (imported as AP to save some typing in
PaymentHandler) to the paypal.products module, along with a few minor additions
to the paypal.paypal_config to encapsulate configuration information such as the
required Adaptive Payments headers and 3-Token credentials, are about all that it
takes to round out the remainder of the substantive changes to Tweet Relevance.
The AdaptivePayment class follows and is little more than a wrapper around a Pay
and PaymentDetails request:

from google.appengine.api import urlfetch
from django.utils import simplejson as json

Integrating a “Simple” Adaptive Payment into Tweet Relevance | 85

import urllib
import cgi

import paypal_config

class AdaptivePayment(object):

 @staticmethod
 def _api_call(url, params):

 response = urlfetch.fetch(
 url,
 payload=json.dumps(params),
 method=urlfetch.POST,
 validate_certificate=True,
 deadline=10, # seconds
 headers=paypal_config.adaptive_headers
)

 if response.status_code != 200:
 result = json.loads(response.content)
 logging.error(json.dumps(response.content, indent=2))

 raise Exception(str(response.status_code))

 return response

 # Lists out some of the most common parameters as keyword args. Other keyword
args can be added through kw as needed
 # Template for an item in the receiver list: {'email' : me@example.com,
'amount' : 1.00, 'primary' : False}

 @staticmethod
 def pay(sender=None, receiver=[], feesPayer='EACHRECEIVER', memo='',
cancelUrl='', returnUrl='', **kw):

 params = {
 'requestEnvelope' : {'errorLanguage' : 'en_US', 'detailLevel' :
'ReturnAll'},
 'actionType' : 'PAY',
 'currencyCode' : 'USD',
 'senderEmail' : sender,
 'receiverList' : {
 'receiver' : receiver
 },
 'feesPayer' : feesPayer,
 'memo' : memo,
 'cancelUrl' : cancelUrl,
 'returnUrl' : returnUrl
 }

 if sender is None: params.pop('senderEmail')

 if memo == "": params.pop('memo')

86 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

 params.update(kw)

 return
AdaptivePayment._api_call(paypal_config.adaptive_sandbox_api_pay_url, params)

 @staticmethod
 def get_payment_details(payKey):

 params = {
 'requestEnvelope' : {'errorLanguage' : 'en_US', 'detailLevel' :
'ReturnAll'},
 'payKey' : payKey
 }

 return
AdaptivePayment._api_call(paypal_config.adaptive_sandbox_api_payment_details_url,
 params)

 @staticmethod
 def generate_adaptive_payment_redirect_url(payKey, embedded=False):
 if embedded:
 return "https://www.sandbox.paypal.com/webapps/adaptivepayment/flow/
pay?payKey=%s" % (payKey,)
 else:
 return "https://www.sandbox.paypal.com/cgi-bin/webscr?cmd=_ap-
payment&paykey=%s" % (payKey,)

If the Adaptive Payments integration details into Tweet Relevance really do seem mel-
odramatic, it’s an indicator that your learning is well on track and that you should have
little trouble using Adaptive Payments for your own application. If you haven’t already,
however, please take a moment to peruse the final project code as a final exercise.

There’s a Lot More
Like every other chapter in this book, this chapter was designed to get you up and
running—not to provide you with a comprehensive overview of Adaptive Payments.
Frankly, Adaptive Payments is a such a broad, comprehensive, and exciting product
that covering it in its entirety would take several hundred pages of dedicated coverage
and entail writing a “definitive guide” to cover the possibilities. Using Adaptive Pay-
ments, you can quite literally handle just about any reasonable payment flow that you
can imagine. At the moment, the more definitive coverage available is PayPal’s Adaptive
Payments Developer Guide that you can freely access online. It includes some of the
same fundamentals that were introduced in this chapter but also contains examples on
using embedded payment flows, preapprovals, currency conversion, issuing refunds,
and more. Definitely take a little bit of time to at least peruse its table of contents.

Although we didn’t cover it in this chapter, be advised that the same kinds of sophis-
ticated payment mechanisms involved with digital goods purchases using Express
Checkout are also available with Adaptive Payments. A recommended exercise for this

There’s a Lot More | 87

https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_AdaptivePayments.pdf
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_AdaptivePayments.pdf

chapter is to modify the same code for this chapter to implement an embedded payment
flow.

Recommended Exercises
Some recommended exercises for furthering your knowledge of Adaptive Payments
include:

• Use a tool such as diff to compare the baseline Tweet Relevance project to the
modified project from this chapter. On a Linux system, for example, the following
options for diff produce a convenient side-by-side display on a terminal with 237
columns when executed from the root of the source tree:

$ diff --recursive --side-by-side --suppress-common-lines --width=237 --
exclude=*.pyc appa ch04

As always, read the man page or documentation for the utility you’re using to ensure
that you’re taking advantage of all of the features that you have available to you.

• Modify the example code to implement a parallel payment such that a portion of
every payment is donated to a list of prepopulated charities. Why is a parallel
payment arguably a more appropriate choice for this situation than a simple or
chained payment? (Implementation hint: recall that donating money to a charity
with PayPal is as simple as sending money to an email address, so this is essentially
as easy as specifying a receiver from a simple HTML control such as a SELECT box.)

• Modify the example code to implement an embedded adaptive payment, mimick-
ing the payment flow as implemented with Express Checkout for Digital Goods.

All sample code for this book is available online at GitHub and is con-
veniently organized by chapter. Although much of the code is included
in the text of this book so that it’s as instructional as possible, always
reference the latest bug-fixed code on GitHub as the definitive reference
for sample code. Bug tickets and patches are welcome!

88 | Chapter 4: Adaptive Payments (Simple, Parallel, and Chained Payments)

https://github.com/ptwobrussell/PayPal-APIs-Up-and-Running

CHAPTER 5

Website Payments Pro
(Direct Payment)

PayPal’s Website Payments Pro product combines the convenience of Express Check-
out, an overtly PayPal-oriented checkout, with an additional option called Direct Pay-
ment, which allows you to completely embed the user experience for the entire payment
process into your site with no mention of PayPal whatsoever required. Even on your
customer’s credit and debit card statements, there is no mention of PayPal; your com-
pany name appears instead. If for whatever reason you’d like to control the entire
checkout and provide the most seamless experience possible without any mention of
a third party, the Direct Payment portion of Website Payments Pro may be exactly what
you’ve been looking for. Since Express Checkout, the other component of Website
Payments Pro, has been covered earlier in the book, getting you up and running with
Direct Payment is the primary subject of this chapter.

PayPal official documentation on Website Payments Pro is available
online: Website Payments Pro Developer Guide.

Website Payments Pro versus Website Payments Standard
It would be remiss to introduce Website Payments Pro without mentioning that there’s
also a Website Payments Standard Product, and unfortunately, the difference between
the two products is a common source of confusion. In a nutshell, the primary differences
between Website Payments Standard and Pro is that Website Payments Standard is
completely free, whereas Website Payments Pro involves a small monthly fee, and
Website Payments Standard entails a redirect from your site to PayPal (where they enter
in credit card information directly at PayPal in a customizable page template) and back,
whereas Website Payments Pro provides a completely seamless experience where no
redirect is involved.

89

https://www.x.com/developers/paypal/products/website-payments-pro

In short, Website Payments Standard allows your customers to use a credit card to pay
without having a PayPal account, it does not cost you anything, and it does not require
you to handle sensitive account information directly and incur the potential liability
that comes along with it. From the standpoint of the shopper’s user experience, the
primary distinguishing factor between Standard and Pro is whether or not you want
the completely seamless user experience.

PayPal’s Standard versus Pro product comparison contains a short video that may be
helpful in further clarifying the difference between these two products.

Overview of Direct Payment
In exchange for a nominal monthly fee, the Direct Payment portion of Website Pay-
ments Pro allows your customers to pay via credit or debit cards directly on your site.
As the seller, this gives you complete control over the buyer’s transaction experience
without the need for any redirect popup windows, or light boxes or any other friction.
Such an arrangement may be appealing in that it provides you with complete control
and removes an additional party (PayPal) from the checkout, but do not take lightly
the fact that it makes the seller/merchant responsible for maintaining the security of
the transaction and that some customers may actually prefer a checkout experience in
which PayPal acts as a trusted intermediary instead of providing you with direct access
to sensitive account information. Besides, you are actually required by the Website
Payments Pro terms of service to use Direct Payment in conjunction with Express
Checkout; Direct Payment may not be used as a standalone product.

It is absolutely critical that you provide the Direct Payment checkout
experience under an SSL connection, and that you avoid logging or in-
advertently storing any sensitive account information associated with a
Direct Payment unless it is your explicit intention to do so, implying
that you are prepared to safeguard it in accordance with PCI compli-
ance, security best practices, and any applicable laws.

Figure 5-1 shows a typical checkout workflow a user experiences with Direct Payment:

1. The buyer clicks the Checkout button on your website, provides shipping and
billing information, and clicks Continue.

2. The buyer reviews the order for accuracy and clicks Pay.

3. Information is handed off to PayPal via the DoDirectPayment API operation, the
buyer’s card is charged, and you are provided with an appropriate response by
PayPal.

4. The customer receives an acknowledgment that the order was successfully
processed.

90 | Chapter 5: Website Payments Pro (Direct Payment)

https://merchant.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=merchant/compare_wp_products
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_WPP_IntegrationGuide.pdf
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_WPP_IntegrationGuide.pdf
http://www.pcicomplianceguide.org/pcifaqs.php
http://www.pcicomplianceguide.org/pcifaqs.php

Figure 5-1. PayPal Direct Payment workflow

PayPal Direct Payment API Operations
The PayPal NVP API uses only one method related to Direct Payment: DoDirectPay
ment. This one method initializes the payment and returns the results all in one opera-
tion. Table 5-1 outlines the DoDirectPayment request fields, and Table 5-2 outlines the
method’s response fields.

Table 5-1. DoDirectPayment request fields

Field Description

METHOD Must be DoDirectPayment (required).

PAYMENTACTION Indicates how you want to obtain payment:

• Authorization: This payment is a basic authorization subject to settlement with PayPal
Authorization and Capture.

• Sale: This is the default value, indicating that it is a final sale.

Limitation: Up to 13 single-byte characters.

IPADDRESS The IP address of the buyer’s browser (required). PayPal records this IP address to detect possible
fraud. Limitation: Up to 15 single-byte characters, including periods. Must be an IPv4 address.

RETURNFMFDETAILS Flag that indicates whether you want the results returned by the Fraud Management Filters:

• 0: Do not receive FMF details (default)

• 1: Receive FMF details

CREDITCARDTYPE The type of credit card being used. Allowed values are:

• Visa

• MasterCard

• Discover

• Amex

PayPal Direct Payment API Operations | 91

Field Description
• Maestro *

• Solo *

* If using Maestro or Solo, the CURRENCYCODE must be GBP. Additionally, either START
DATE or ISSUENUMBER must be specified.

Limitation: Up to 10 single-byte alphabetic characters. For the UK, only Maestro, Solo,
MasterCard, Discover, and Visa are allowed. For Canada, only MasterCard and Visa are
allowed.

ACCT The customer’s credit card number. Limitations: Numeric characters only, with no spaces or punc-
tuation. Must conform with the modulo and length required by each card type.

EXPDATE The credit card expiration date, in the format MMYYYY. Limitations: Six single-byte alphanumeric
characters, including the leading 0.

CVV2 The card verification value, version 2. This field may or may not be required, depending on your
merchant account settings.

The character length for Visa, MasterCard, and Discover is three digits. The character length for
American Express is four digits. To adhere to credit card processing regulations, you cannot store
this value after a transaction is complete.

STARTDATE The month and year that a Maestro or Solo card was issued, in MMYYYY format. This value must be
six digits, including the leading zero.

ISSUENUMBER The issue number of a Maestro or Solo card. Two numeric digit maximum.

EMAIL The email address of the buyer. Limited to 127 single-byte characters.

FIRSTNAME The buyer’s first name (required). Limited to 25 single-byte characters.

LASTNAME The buyer’s last name (required). Limited to 25 single-byte characters.

STREET The first street address (required). Limited to 100 single-byte characters.

STREET2 The second street address (required). Limited to 100 single-byte characters.

CITY The name of the city (required). Limited to 40 single-byte characters.

STATE The state or province (required). Limited to 40 single-byte characters.

COUNTRYCODE The country code (required). Limited to two single-byte characters.

ZIP The US zip code or another country-specific postal code (required). Limited to 20 single-byte char-
acters.

SHIPTOPHONENUM The phone number. Limited to 20 single-byte characters.

AMT The total cost of the transaction to the customer (required).

If the shipping cost and tax charges are known, include them in this value; if not, this value should
be the current subtotal of the order. If the transaction includes one or more one-time purchases,
this field must be equal to the sum of the purchases. Set this field to 0 if the transaction does not
include a one-time purchase, for example, when you set up a billing agreement for a recurring
payment that is not charged immediately. Purchase-specific fields will be ignored.

Limitations: Must not exceed $10,000 USD in any currency. No currency symbol. Must have two
decimal places, the decimal separator must be a period (.), and the optional thousands separator
must be a comma (,).

92 | Chapter 5: Website Payments Pro (Direct Payment)

Field Description

CURRENCYCODE A three-character currency code. The default is USD.

ITEMAMT Sum of the cost of all items in this order. ITEMAMT is required if you specify L_AMTn. Limitations:
Must not exceed $10,000 USD in any currency. No currency symbol. Must have two decimal places,
the decimal separator must be a period (.), and the optional thousands separator must be a
comma (,).

SHIPPINGAMT Total shipping cost for this order. If you specify a value for SHIPPINGAMT, you are required to
specify a value for ITEMAMT as well. Limitations: Must not exceed $10,000 USD in any currency. No
currency symbol. Must have two decimal places, the decimal separator must be a period (.), and the
optional thousands separator must be a comma (,).

HANDLINGAMT Total handling costs for this order. If you specify a value for HANDLINGAMT, you are required to
specify a value for ITEMAMT as well. Limitations: Must not exceed $10,000 USD in any currency. No
currency symbol. Must have two decimal places, the decimal separator must be a period (.), and the
optional thousands separator must be a comma (,).

TAXAMT Sum of the tax for all items in this order. TAXAMT is required if you specify L_TAXAMTn. Limitations:
Must not exceed $10,000 USD in any currency. No currency symbol. Must have two decimal places,
the decimal separator must be a period (.), and the optional thousands separator must be a comma
(,).

DESC A description of the items the customer is purchasing. Limited to 127 single-byte alphanumeric
characters.

CUSTOM A free-form field for your own use. Limited to 256 single-byte alphanumeric characters.

INVNUM Your own internal invoice or tracking number. Limited to 127 single-byte alphanumeric characters.

BUTTONSOURCE An identification code for use by third-party applications to identify transactions. Limited to 32
single-byte alphanumeric characters.

L_NAME n The item name. Limited to 127 single-byte characters.

L_DESC n The item description. Limited to 127 single-byte characters.

L_AMT n The cost of the item. If you specify a value for L_AMTn, you must specify a value for ITEMAMT.
Limitations: Must not exceed $10,000 USD in any currency. No currency symbol. Must have two
decimal places, the decimal separator must be a period (.), and the optional thousands separator
must be a comma (,).

L_NUMBER n The item number. Limited to 127 single-byte characters.

L_QTY n The item quantity. Can be any positive integer.

L_TAXAMT n The item’s sales tax. Limitations: Must not exceed $10,000 USD in any currency. No currency symbol.
Must have two decimal places, the decimal separator must be a period (.), and the optional thousands
separator must be a comma (,).

SHIPTONAME The person’s name associated with the shipping address. Required if using a shipping address.
Limited to 32 single-byte characters.

SHIPTOSTREET The first street address. Required if using a shipping address. Limited to 100 single-byte characters.

SHIPTOSTREET2 The second street address. Limited to 100 single-byte characters.

SHIPTOCITY The name of the city. Required if using a shipping address. Limited to 40 single-byte characters.

SHIPTOSTATE The state or province. Required if using a shipping address. Limited to 40 single-byte characters.

PayPal Direct Payment API Operations | 93

Field Description

SHIPTOZIP The US zip code or other country-specific postal code. Required if using a US shipping address and
might be required for other countries. Limited to 20 single-byte characters.

SHIPTOCOUNTRY The country code. Required if using a shipping address. Limited to two single-byte characters.

SHIPTOPHONENUM The phone number. Limited to 20 single-byte characters.

Table 5-2. DoDirectPayment response fields

Field Description

TRANSACTIONID The unique transaction ID of the payment. If the PaymentAction of the request was
Authorization, the value of TransactionID is your AuthorizationID for use with
the Authorization and Capture API.

AMT This value is the amount of the payment you specified in the DoDirectPayment request.

AVSCODE The Address Verification System response code. Limited to one single-byte alphanumeric
character.

CVV2MATCH The results of the CVV2 check by PayPal.

L_FMF filterID n The filter ID, including the filter type (PENDING, REPORT, or DENY), the filterID, and the
entry number, n, starting from 0. filterID is one of the following values [AVS stands for
Address Verification System]:

• 1 = AVS No Match

• 2 = AVS Partial Match

• 3 = AVS Unavailable/Unsupported

• 4 = Card Security Code (CSC) Mismatch

• 5 = Maximum Transaction Amount

• 6 = Unconfirmed Address

• 7 = Country Monitor

• 8 = Large Order Number

• 9 = Billing/Shipping Address Mismatch

• 10 = Risky ZIP Code

• 11 = Suspected Freight Forwarder Check

• 12 = Total Purchase Price Minimum

• 13 = IP Address Velocity

• 14 = Risky Email Address Domain Check

• 15 = Risky Bank Identification Number (BIN) Check

• 16 = Risky IP address Range

• 17 = PayPal Fraud Model

L_FMF filterNAME n The filter name, including the filter type, (PENDING, REPORT, or DENY), the filterNAME,
and the entry number, n, starting from 0.

94 | Chapter 5: Website Payments Pro (Direct Payment)

http://en.wikipedia.org/wiki/Address_Verification_System
http://en.wikipedia.org/wiki/Address_Verification_System

Implementing DoDirectPayment
In this section, we’ll learn how to implement an abstract DoDirectPayment API request
and validate it by using curl before transitioning into a GAE implementation. In the
next section, we’ll integrate DoDirectPayment into Tweet Relevance.

DoDirectPayment API Operation
To implement a Direct Payment transaction, you need to invoke the DoDirectPayment
API and provide information to identify the buyer’s credit or debit card and the amount
of the payment. Setting up a minimal transaction is accomplished through the following
steps in which you construct a URL request to the PayPal API endpoint for DoDirect
Payment:

1. Specify the amount of the transaction, including the currency if it is not in US
dollars. You should specify the total amount of the transaction if it is known;
otherwise, specify the subtotal:

AMT= amount

CURRENCYCODE= currencyID

2. Specify the payment action. It is best practice to explicitly specify the payment
action as one of the following values, even though the default value is Sale:

PAYMENTACTION=Sale

PAYMENTACTION=Authorization

3. Specify the IP address of the buyer’s computer:

IPADDRESS= xxx.xxx.xxx.xxx

4. Specify information about the card being used. You must specify the type of card
as well as the account number:

CREDITCARDTYPE=Visa

ACCT= 1234567891011123

The type of credit/debit card being used, the card issuer, and the Payment Receiving
Preferences setting on your PayPal Profile might require that you set the following
fields as well:

EXPDATE= 012013

CVV2= 123

5. Specify information about the card holder. You must provide the first and last name
of the card holder, as well as the billing address associated with the card:

FIRSTNAME= John

LASTNAME= Doe

STREET= 1313 Mockingbird Lane

Implementing DoDirectPayment | 95

CITY= Franklin

STATE= TN

ZIP= 37064

COUNTRYCODE= US

A minimal Python implementation of a DoDirectPayment transaction using GAE is
coming up shortly. First, however, it may be helpful to execute a transaction using a
shell script using curl to ensure that your buyer and seller configuration is setup cor-
rectly. In order to use DoDirectPayment as part of Website Payments Pro, you may need
to create a business account in the developer sandbox environment and explicitly in-
dicate that the account is a merchant account for Website Payments Pro, as shown in
Figure 5-2. The 3-Token credentials associated with this account should allow you to
process DoDirectPayment transactions, whereas credentials associated with a Seller ac-
count should not.

Chances are pretty good that you already have one or more personal accounts config-
ured in the developer sandbox that you’ve already been using as a buyer or receiver of
a payment. Ensure that you are using the credit card information associated with one
of these accounts, because the DoDirectPayment API will validate the DoDirectPayment
transaction using this faux credit card number and expiration date. [A live DoDirect
Payment transaction may validate all other fields and provide back any of many possible
error codes for other validation issues that you should be prepared to handle.] An
example shell script that demonstrates the DoDirectPayment using the guidance pro-
vided in this section is shown in Example 5-1. If you are comfortable working with shell
scripts in a Linux environment or are able to reconfigure the script to execute on Win-
dows, it is highly recommended that you replace the variables at the top of the script
with your own merchant account 3-Token credentials and buyer account credit card
information and receive a successful response before proceeding. If you are unable to
run the script, don’t worry—a Python example with GAE is coming up shortly. The
point of including a shell script here is to show that the actual execution of a DoDirect
Payment is truly just a single HTTP request.

Example 5-1. DoDirectPayment.sh—a minimal Bash script illustrating the use of the DoDirect
Payment API

#!/bin/bash

Ensure that the 3-Token credentials are with a business account that has explicitly
been configured for Website Payments Pro at http://developer.paypal.com

USER="XXX"
PWD="XXX"
SIGNATURE="XXX"

Ensure that the credit card used is a real credit card number from an account
that has been configured at http://developer.paypal.com
The sandbox environment does require that the credit card number and expiry

96 | Chapter 5: Website Payments Pro (Direct Payment)

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_errorcodes

be valid

ACCT="XXX"
EXPDATE="XXX"

RESULT=$(curl -s \
https://api-3t.sandbox.paypal.com/nvp -d "VERSION=82.0\
&USER=$USER\
&PWD=$PWD\
&SIGNATURE=$SIGNATURE\

Figure 5-2. Creating a merchant account in the developer sandbox for Website Payments Pro

Implementing DoDirectPayment | 97

&METHOD=DoDirectPayment\
&PAYMENTACTION=Sale\
&IPADDRESS=192.168.0.1\
&AMT=8.88\
&CREDITCARDTYPE=Visa\
&ACCT=$ACCT\
&EXPDATE=$EXPDATE\
&CVV2=123\
&FIRSTNAME=John\
&LASTNAME=Smith\
&STREET=1000 Elm St.\
&CITY=Franklin\
&STATE=TN\
&ZIP=37064\
&COUNTRYCODE=US"\
;)

echo $RESULT;

A successful response from the script should look something like the following:

TIMESTAMP=2012%2d01%2d22T02%3a14%3a59Z
&CORRELATIONID=46d8df6362e04
&ACK=Success
&VERSION=82%2e0
&BUILD=2278658
&AMT=8%2e88
&CURRENCYCODE=USD
&AVSCODE=X
&CVV2MATCH=M
&TRANSACTIONID=0BD118857L408034Y

Your business logic should be prepared to fully parse the results and be prepared to
take all necessary actions for contingent situations such as aberrations with AVSCODE or
CVV2MATCH, even if the ACK field is Success. For example, you should be prepared to
handle the case when AVSCODE isn’t X, which indicates an “exact match” according to
the AVS and CVV2 Response Codes documentation. The official documentation on
DoDirectPayment also contains information on how to use PayPal’s fraud management
filters to help you identify potentially fraudulent transactions—another important
consideration you should be prepared to tackle with a DoDirectPayment implementa-
tion.

Even though the PayPal Sandbox environment doesn’t appear to vali-
date fields pertaining to AVSCODE and CVV2MATCH, such as street address,
zip code, or the three-digit code on the backs of credit cards, it’s critical
that you think through and simulate testing scenarios before moving
into production with DoDirectPayment.

Like all other transactions in the Sandbox environment, you are able to log into the
merchant account and view the details of the transaction in the account history. Fig-

98 | Chapter 5: Website Payments Pro (Direct Payment)

https://cms.paypal.com/us/cgi-bin/?cmd=_render-content&content_ID=developer/e_howto_api_nvp_AVSResponseCodes
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_WPP_IntegrationGuide.pdf
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_WPP_IntegrationGuide.pdf

ure 5-3 shows what the merchant account history might look like after a successful
transaction.

Figure 5-3. Creating a merchant account in the developer sandbox for Website Payments Pro

Implementing DoDirectPayment with GAE
Unlike the other PayPal products that have been demonstrated thus far, DoDirectPay
ment requires only a single request and response. In terms of the buyer’s user experience,
PayPal isn’t playing an intermediary role and you are handling the account information
yourself, so there’s no need for a more roundabout approval process involving redirects.
Thus, the implementation details for completing a DoDirectPayment transaction are
considerably simpler, as shown in Example 5-2.

Example 5-2. main.py—a minimal DoDirectPayment example using GAE

"""
A minimal GAE application that makes an API request to PayPal
and parses the result. Fill in your own 3 Token Credentials
from your sandbox account
"""

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util
from google.appengine.api import urlfetch

import urllib
import cgi

Replace these values with your own 3-Token credentials from a sandbox
merchant account that was configured for Website Payments Pro and a faux
credit card number and expiry from a "personal" buyer account

user_id = "XXX"
password = "XXX"
signature = "XXX"

Implementing DoDirectPayment | 99

credit_card_number = "XXX"
credit_card_expiry ="XXX"

class MainHandler(webapp.RequestHandler):
 def get(self):

 # Sandbox NVP API endpoint

 sandbox_api_url = 'https://api-3t.sandbox.paypal.com/nvp'

 nvp_params = {
 # 3 Token Credentials

 'USER' : user_id,
 'PWD' : password,
 'SIGNATURE' : signature,

 # API Version and Operation

 'METHOD' : 'DoDirectPayment',
 'VERSION' : '82.0',

 # API specifics for DoDirectPayment
 'PAYMENTACTION' : 'Sale',
 'IPADDRESS' : '192.168.0.1',
 'AMT' : '8.88',
 'CREDITCARDTYPE' : 'Visa',
 'ACCT' : credit_card_number,
 'EXPDATE' : credit_card_expiry,
 'CVV2' : '123',
 'FIRSTNAME' : 'Billy',
 'LASTNAME' : 'Jenkins',
 'STREET' : '1000 Elm St.',
 'CITY' : 'Franklin',
 'STATE' : 'TN',
 'ZIP' : '37064',
 'COUNTRYCODE' : 'US'
 }

 # Make a secure request and pass in nvp_params as a POST payload

 result = urlfetch.fetch(
 sandbox_api_url,
 payload = urllib.urlencode(nvp_params),
 method=urlfetch.POST,
 deadline=10, # seconds
 validate_certificate=True
)

 if result.status_code == 200: # OK

 decoded_url = cgi.parse_qs(result.content)

 for (k,v) in decoded_url.items():

100 | Chapter 5: Website Payments Pro (Direct Payment)

 self.response.out.write('<pre>%s=%s</pre>' % (k,v[0],))
 else:

 self.response.out.write('Could note fetch %s (%i)' %
 (url, result.status_code,))

def main():
 application = webapp.WSGIApplication([('/', MainHandler)],
 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

There should be little explanation that’s required for understanding this example if
you’ve read previous chapters. A single API request is passed in with all of the appro-
priate parameters, and a response is returned with the standard fields from Table 5-2,
indicating success or failure along with a few other pertinent details. If you haven’t
already, take the time to run the example to ensure that you have successfully config-
ured your sandbox merchant account to be enabled for Website Payments Pro and are
using valid credit card information from a sandbox personal account. The next section
integrates DoDirectPayment into Tweet Relevance.

Integrating DoDirectPayment and Tweet Relevance
Like every other chapter in this book, let’s take the Tweet Relevance sample code from
Appendix A and use the PayPal product at hand, DoDirectPayment in this case, to im-
plement a payment experience. Although an integration with DoDirectPayment as part
of a Website Payments Pro integration normally requires additional integration with
Express Checkout according to PayPal’s terms of service, we’ll focus solely on inte-
grating DoDirectPayment in this chapter to maintain maximal focus. (Recall that Express
Checkout is discussed at length in Chapters 2 and 3.) A recommended exercise for the
seriously interested reader, as presented in the final section of this chapter, is to integrate
Express Checkout into this chapter’s sample project.

It may be helpful to review “Implementing a Checkout Experience for
Tweet Relevance” on page 32 to better understand some of the various
payment mechanisms that could be viable for a service like Tweet Rele-
vance if you have not done so already. The remainder of this chapter
assumes familiarity with the options as presented in that section and
implements the “subscription model,” which was covered in detail in
Chapter 2 and used again in Chapter 4.

The first step to integrating DoDirectPayment or any other payment mechanism is to
map a URL into the main application as a means of handling a payment experience.
Since integrating DoDirectPayment requires only a single call to PayPal, the addition of

Integrating DoDirectPayment and Tweet Relevance | 101

a /do_direct_payment URL that’s serviced by a PaymentHandler class is the only API-
level addition to the application that is necessary. A basic template that we’ll add to
collect payment information from the user once their free trial of the service expires
will pass the information to /do_direct_payment, which is the entry point for the pay-
ment process. The following list itemizes the key changes to the project for integrating
DoDirectPayment in a file-by-file fashion.

main.py
Example 5-3 illustrates the entry point into the web application. Note that there’s
only one PaymentHandler URL.

Example 5-3. main.py

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util

Logic for implementing DoDirectPayment

from handlers.PaymentHandler import PaymentHandler

Logic for the app itself

from handlers.AppHandler import AppHandler

Logic for interacting with Twitter's API and serving up data, etc.

def main():

 application = webapp.WSGIApplication([

 # PaymentHandler URLs

 ('/(do_direct_payment)', PaymentHandler),

 # AppHandler URLs

 ('/(app)', AppHandler),
 ('/(data)', AppHandler),
 ('/(login)', AppHandler),
 ('/', AppHandler)
],

 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

handlers/PaymentHandler.py
A standard form that collects payment information, as shown in Figure 5-4, passes
this information through to /do_direct_payment as a POST request, which is serv-
iced by PaymentHandler, as shown in Example 5-5. In a nutshell, PaymentHandler

102 | Chapter 5: Website Payments Pro (Direct Payment)

validates the payment information, passes it through to DoDirectPayment, and
credits the user’s account if the payment action was successful. Otherwise, it dis-
plays an error message. The trivial Product class that’s referenced by PaymentHan
dler is shown in Example 5-4.

Example 5-4. Product.py

The Product class provides product details.
A more flexible product line could be managed in a database

class Product(object):

 @staticmethod
 def getProduct():

 return {'price' : 9.99, 'quantity' : 30, 'units' : 'days'}

Example 5-5. handlers/PaymentHandler.py

PaymentHandler provides logic for interacting wtih PayPal's Website Payments Pro
product

import os
import cgi

from google.appengine.ext import webapp
from google.appengine.api import memcache
from google.appengine.ext.webapp import template
import logging

from paypal.products import DirectPayment as DP
from Product import Product
from handlers.AppHandler import AppHandler

class PaymentHandler(webapp.RequestHandler):

 def post(self, mode=""):

 if mode == "do_direct_payment":

 # To be on the safe side, filter through a pre-defined list of fields
 # to pass through to DoDirectPayment. i.e. prevent the client from
 # potentially overriding IPADDRESS, AMT, etc.

 valid_fields = [
 'FIRSTNAME',
 'LASTNAME',
 'STREET',
 'CITY',
 'STATE',
 'ZIP',
 'COUNTRYCODE',
 'CREDITCARDTYPE',
 'ACCT',

Integrating DoDirectPayment and Tweet Relevance | 103

 'EXPDATE',
 'CVV2',
]

 product = Product.getProduct()

 nvp_params = {'AMT' : str(product['price']), 'IPADDRESS' :
self.request.remote_addr}

 for field in valid_fields:
 nvp_params[field] = self.request.get(field)

 response = DP.do_direct_payment(nvp_params)

 if response.status_code != 200:
 logging.error("Failure for DoDirectPayment")

 template_values = {
 'title' : 'Error',
 'operation' : 'DoDirectPayment'
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unknown_error.html')
 return self.response.out.write(template.render(path, template_values))

 # Ensure that the payment was successful

 parsed_qs = cgi.parse_qs(response.content)

 if parsed_qs['ACK'][0] != 'Success':
 logging.error("Unsuccessful DoDirectPayment")

 template_values = {
 'title' : 'Error',
 'details' : parsed_qs['L_LONGMESSAGE0'][0]
 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'unsuccessful_payment.html')
 return self.response.out.write(template.render(path, template_values))

 # Credit the user's account

 user_info = memcache.get(self.request.get("sid"))
 twitter_username = user_info['username']
 product = Product.getProduct()

 AppHandler.creditUserAccount(twitter_username, product['quantity'])

 template_values = {
 'title' : 'Successful Payment',
 'quantity' : product['quantity'],
 'units' : product['units']

104 | Chapter 5: Website Payments Pro (Direct Payment)

 }

 path = os.path.join(os.path.dirname(__file__), '..', 'templates',
'successful_payment.html')
 self.response.out.write(template.render(path, template_values))

 else:
 logging.error("Unknown mode for POST request!")

products/paypal.py
The final piece of substance to completing the discussion on a DoDirectPayment
integration involves the DirectPayment class that’s referenced in PaymentHandler.
Basically, this class is just a thin abstraction around the DoDirectPayment API call
and follows along with the same pattern used for the paypal package in earlier
chapters. In short, it combines the 3-Token credentials with any other keyword
parameters passed into the do_direct_payment method and executes a DoDirectPay
ment API call.

Example 5-6. paypal/products.py

from google.appengine.api import urlfetch

import urllib
import cgi

import paypal_config

class DirectPayment(object):

 @staticmethod
 def _api_call(nvp_params):

 params = nvp_params.copy() # copy to avoid mutating nvp_params with update()
 params.update(paypal_config.nvp_params) # update with 3 token credentials and
api version

 response = urlfetch.fetch(
 paypal_config.sandbox_api_url,
 payload=urllib.urlencode(params),
 method=urlfetch.POST,
 validate_certificate=True,
 deadline=10 # seconds
)

 if response.status_code != 200:
 decoded_url = cgi.parse_qs(result.content)

 for (k,v) in decoded_url.items():
 logging.error('%s=%s' % (k,v[0],))

 raise Exception(str(response.status_code))

 return response

Integrating DoDirectPayment and Tweet Relevance | 105

 @staticmethod
 def do_direct_payment(nvp_params):
 nvp_params.update(METHOD='DoDirectPayment')
 nvp_params.update(PAYMENTACTION='Sale')
 return DirectPayment._api_call(nvp_params)

Figure 5-4. An austere form for collecting payment information that’s passed through to /
do_direct_payment. (See templates/checkout.html in the Tweet Relevance project file for this chapter.)

Prior chapters, which covered products explicitly involving PayPal as an intermediating
party in the user experience of the application, required more than a single API call to
PayPal due to very the nature of setting up a payment, redirecting the customer to PayPal

106 | Chapter 5: Website Payments Pro (Direct Payment)

(to avoid having you directly handle sensitive account information), and ensuring the
payment was processed before crediting a user’s account. Because DoDirectPayment
gives you the ability handle payment account information directly, some of the imple-
mentation details are a bit simpler because of the streamlined user experience. Just
remember that with the power to handle sensitive account information directly comes
great responsibility and (potentially) great liability as it relates to maintaining PCI
compliance and safeguarding financial records.

Recommended Exercises
• Integrate the Express Checkout code from Chapter 2 with the project code from

this chapter to “fully implement” Website Payments Pro as required by PayPal’s
terms of service. Hint: consider maintaining separate payment handling classes for
each of these products and making just a few minor changes to templates/check-
out.html.

• Use a tool such as diff to compare the baseline Tweet Relevance project to the
modified project from this chapter. On a Linux system, for example, the following
options for diff produce a convenient side-by-side display on a terminal with 237
columns when executed from the root of the source tree:

$ diff --recursive --side-by-side --suppress-common-lines --width=237 --
exclude=*.pyc appa ch04

• Try implementing an “authorization and capture” as described in the Website
Payments Pro Integration Guide to implement an extension to Tweet Relevance in
which a paying customer can gift a 30-day subscription to a friend. Authorize the
card at the time the paying customer gifts the subscription, but don’t capture the
funds until the recipient of the gift subscription logs in for the first time.

• Read the Wikipedia article on PCI Compliance.

All sample code for this book is available online at GitHub and is con-
veniently organized by chapter. Although much of the code is included
in the text of this book so that it’s as instructional as possible, always
reference the latest bug-fixed code on GitHub as the definitive reference
for sample code. Bug tickets and patches are welcome!

Recommended Exercises | 107

https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_WPP_IntegrationGuide.pdf
https://cms.paypal.com/cms_content/US/en_US/files/developer/PP_WPP_IntegrationGuide.pdf
http://en.wikipedia.org/wiki/Payment_Card_Industry_Data_Security_Standard
https://github.com/ptwobrussell/PayPal-APIs-Up-and-Running

CHAPTER 6

Instant Payment Notifications (IPNs)

Instant Payment Notifications (IPNs) are messages that PayPal sends you regarding a
transaction status and can serve a variety of useful purposes. This brief chapter intro-
duces IPNs, covers some of the common use cases for when IPNs can be helpful, and
ultimately, teaches you how to use them to perform a follow-up action after a purchase
as part of a Tweet Relevance integration.

PayPal’s official documentation on IPNs is available online: Instant
Payment Notification Guide.

Overview of IPNs
IPNs notify you when an event occurs that affects a transaction. Typically, these events
represent various kinds of payments but could also represent authorizations, Fraud
Management Filter actions, refunds, disputes, chargebacks, the status of an eCheck
payment, etc. More specifically, IPNs are commonly employed regarding:

• Instant payments, including Express Checkout, Adaptive Payments, and direct
credit card payments, and authorizations, which indicate a sale whose payment
has not yet been collected

• eCheck payments and associated status, such as pending, completed, or denied,
and payments pending for other reasons, such as those being reviewed for potential
fraud

• Recurring payment and subscription actions

• Chargebacks, disputes, reversals, and refunds associated with a transaction

109

https://www.x.com/developers/paypal/products/instant-payment-notification
https://www.x.com/developers/paypal/products/instant-payment-notification

See “Instant Payments versus eChecks” on page 31 for a brief overview
of eChecks versus instant payments.

In many cases, the action that causes the event, such as a payment, occurs on your
website; however, your website is not the only source of events. In many cases, events
can be generated by Website Payment Standard buttons (not covered in this book) or
various PayPal APIs such as DoExpressCheckoutPayment. You can detect and process IPN
messages with a listener script that waits for messages and passes them to various
backend or administrative processes that respond to them. The actions to take when
your listener is notified of an event are specific to your needs. Examples of the kinds of
actions you might take when your listener receives an IPN message include:

• Trigger order fulfillment or enable media downloads when an eCheck clears or a
payment is made

• Update your list of customers

• Update accounting records

• Send follow-up emails regarding the transaction

You are typically notified of events by email as well, but the IPN message service enables
you to automate a response to events using a well-formed API. Additionally, IPNs are
asynchronous, which means that messages are not synchronized with actions on your
website. Thus, listening for an IPN message does not increase the time it takes to com-
plete a transaction on your website.

The IPN message service does not assume that all messages will be received by your
listener in a timely manner. Because the Internet is not 100% reliable, messages can
become lost or delayed. To handle the possibility of transmission and receipt delays or
failures, the IPN message service implements an algorithm that resends messages at
various intervals until you acknowledge that the message has successfully been re-
ceived. The delay between each successive resend attempt increases, and the IPN mes-
sage service will retry for up to four days after the original message attempt.

Because messages can be delivered at any time, your listener must always be available
to receive and process messages; however, the retry mechanism also handles the pos-
sibility that your listener could become swamped or stop responding. The IPN message
service should not be considered a real-time service, and your checkout flow should
not wait on an IPN message before it is allowed to complete. If your website waits for
an IPN message, checkout processing may be delayed due to system load and become
even more complicated because of the possibility of retries.

110 | Chapter 6: Instant Payment Notifications (IPNs)

IPN Protocol and Architecture
IPN is designed to be secure, reliable, and asynchronous. To meet these requirements,
the protocol requires you to acknowledge receipt of IPN messages. The IPN service
provides a retry mechanism to handle cases in which a message is not acknowledged,
for example, when a transmission or receipt failure occurs. When you enable IPN,
PayPal sends messages to the IPN listener at the URL you specify in your merchant
account’s profile, although you can override the URL to associate other IPN listeners
with specific transactions. In this case, you specify the listener’s URL when you set up
a PayPal API operation. The IPN protocol consists of three steps:

1. PayPal sends your IPN listener a message that notifies you of the event.

2. Your listener sends the complete, unaltered message back to PayPal, prepended
with the request parameters cmd=_notify-validate.

3. PayPal sends a single word back, VERIFIED or INVALID, indicating whether or not
the IPN originated with PayPal.

Your listener must respond to each message, whether or not you intend to do anything
with it, because PayPal assumes that the message was not received and resends the
message for up to four days if you do not respond. The resend algorithm increases the
interval between each successive retry, which can lead to an interesting edge case: Pay-
Pal may resend the IPN message while you are sending back the original message. In
this case, you should send your response again to cover the possibility that PayPal did
not actually receive your response the first time. You should also ensure that you do
not process the transaction associated with the message twice, which is usually handled
by persisting all transaction IDs that you have processed.

Once PayPal verifies the IPN, there are additional checks that your listener should take
before it performs any follow-up actions:

• Verify that you are the intended recipient of the IPN message by checking the email
address in the message; this handles a situation where another merchant could
accidentally or intentionally attempt to use your listener. It’s an unlikely but pos-
sible circumstance that you should be prepared to handle.

• Avoid duplicate IPN messages. Check that you have not already processed the
transaction identified by the transaction ID returned in the IPN message. You may
need to store transaction IDs returned by IPN messages in a file or database so that
you can check for duplicates. If the transaction ID sent by PayPal is a duplicate,
you should not process it again.

• Because IPN messages can be sent at various stages in a transaction’s progress,
make sure that the transaction’s payment status is “completed” before enabling
shipment of merchandise or allowing the download of digital media. For example,
eCheck statuses may initially be “pending” and potentially even end up resulting
in a “denied” status.

Overview of IPNs | 111

• Verify that the payment amount actually matches what you intend to charge. Al-
though not technically an IPN issue, if you do not encrypt communications, it is
possible for a malicious party to capture the original transmission and change the
price. Without this check, you could accept a lesser payment than expected
without even realizing it.

PayPal generates an IPN message when you invoke certain API operations such as
DoExpressCheckoutPayment or DoDirectPayment during checkout, or an Adaptive Pay-
ments operation such as Pay, Preapproval, or ExecutePayment. Figure 6-1 shows both
the web flow and the IPN message authentication protocol.

Figure 6-1. Typical IPN flow

The numbers in the diagram correspond to the following steps:

1. The API operation initiates a payment on PayPal.

2. PayPal sends your IPN listener a message that notifies you of the event.

3. Your listener sends the complete, unaltered message back to PayPal, prepending
the request parameters with cmd=_notify-validate. It is absolutely critical that the
message contain the same fields in the same order and be encoded in the same way
as the original message.

4. PayPal sends a single word back, which is either VERIFIED if the message originated
with PayPal or INVALID if there is any discrepancy with what was originally sent.

Your IPN listener must implement the IPN authentication protocol (steps 2, 3, and 4
in this diagram). After successfully completing the protocol, your back-office or ad-
ministrative process vets the contents of the message and responds appropriately. For

112 | Chapter 6: Instant Payment Notifications (IPNs)

example, if the payment status for the transaction is “Completed,” your system can
print a packing list or email a password to your customer for downloading digital media.

PayPal recommends that you follow a specific checklist in handling IPNs:

1. Wait for an HTTP POST from PayPal.

2. Create a request that contains exactly the same IPN variables and values in the
same order, preceded with the request parameters cmd=_notify-validate.

3. Post back the request to PayPal

4. Wait for a response from PayPal, which is either VERIFIED or INVALID.

5. Verify that the response status is 200.

6. If the response is VERIFIED, perform the following checks:

• Confirm that the payment status is “Completed.” PayPal sends IPN messages
for pending and denied payments as well; do not ship until the payment has
cleared.

• Use the transaction ID to verify that the transaction has not already been pro-
cessed, which prevents duplicate transactions from being processed. Typically,
you store transaction IDs in a database so that you know you are only pro-
cessing unique transactions.

• Validate that the receiver’s email address is registered to you. This check pro-
vides additional protection against fraud.

• Verify that the price, item description, and so on, match the transaction on
your website. This check provides additional protection against fraud.

7. If the verified response passes the checks, take action based on the value of the
txn_type variable if it exists; otherwise, take action based on the value of the rea
son_code variable.

8. If the response is INVALID or the response code is not 200, save the message for
further investigation.

Integrating IPNs Into Tweet Relevance
While the previous sections regurgitated much of the introductory content in the In-
stant Payment Notification Guide and created a necessary foundation, it’s all theory
until rooted in some sample project code. This section creates a GAE project that im-
plements an IPN listener and teaches you how to use it to perform post-processing
actions with the Tweet Relevance sample project from Chapter 2, which involved an
Express Checkout integration. The specific post-processing action that we’ll perform
is to send a follow-up email to the purchaser of a Tweet Relevance subscription after
verifying that the IPN originated with PayPal. Although conceptually simple, this ap-
proach provides a realistic yet isolated view of what an IPN listener implemented with

Integrating IPNs Into Tweet Relevance | 113

https://www.x.com/developers/paypal/products/instant-payment-notification
https://www.x.com/developers/paypal/products/instant-payment-notification

GAE might look like and hopefully will serve you well as a jumping off point—not to
mention that it demonstrates how to send mail through GAE.

Another obvious option for employing IPNs as part of a Tweet Rele-
vance payment scenario is to use them to take a specific action when an
eCheck status is successfully resolved. A recommended exercise for this
chapter suggests a scenario involving IPNs and eChecks.

An austere template for interacting with IPNs and performing a custom action based
on information provided by the IPN is given in Example 6-1, which shows how you
could use an IPN to send a follow-up email message to the payer about her purchase.
It does not persist information such as the transaction ID or perform other important
implementation details, such as customizing the message based upon whether the pay-
ment status is Completed. The only change that should be necessary in order to deploy
the code to your live GAE environment on AppSpot is specifying an email address for
the gae_email_sender that is registered with your GAE account, as specified in the Ad-
ministration/Permissions section as shown in Figure 6-2.

Example 6-1. main.py—a basic template for handling an IPN from PayPal and sending a mail message
in response to it as a custom action

Use the IPN Simulator from the "Test Tools" at developer.paypal.com to
send this app an IPN. This app must be deployed to the live GAE environment
for the PayPal IPN Simulator to address it. When debugging, it's a necessity
to use logging messages and view them from the GAE Dashboard's Logs pane.

You can also login to a Sandbox Merchant account and set the IPN URL for
this app under the Merchant Profile tab.

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util
from google.appengine.api import urlfetch
from google.appengine.api import mail

import cgi

import logging

In production, gae_email_sender must be an authorized account that's been
added to the GAE Dashboard under Administration/Permissions or else you
won't be able to send mail. You can use the default owner of the account
or add/verify additional addresses

gae_email_sender = "XXX"
ipn_sandbox_url = "https://www.sandbox.paypal.com/cgi-bin/webscr"

class IPNHandler(webapp.RequestHandler):

 @staticmethod
 def sendMail(first_name, last_name, email, debug_msg=None, bcc=None):

114 | Chapter 6: Instant Payment Notifications (IPNs)

 message = mail.EmailMessage(sender="Customer Support <%s>" % (gae_email_sender,),
 subject="Your recent purchase")

 message.to = "%s %s <%s>" % (first_name, last_name, email,)

 message.body = """Dear %s:

Thank you so much for your recent purchase.

Please let us know if you have any questions.

Regards,
Customer Support""" % (first_name,)

 if debug_msg:
 message.body = message.body + '\n' + '*'*20 + '\n' + debug_msg + '\n' + '*'*20

 if bcc:
 message.bcc = bcc

 message.send()

 def post(self, mode=""):

 # PayPal posts to /ipn to send this application an IPN

 if mode == "ipn":

 logging.info(self.request.body)

 # To ensure that it was really PayPal that sent the IPN, we post it back
 # with a preamble and then verify that we get back VERIFIED and a 200 response

 result = urlfetch.fetch(
 ipn_sandbox_url,
 payload = "cmd=_notify-validate&" + self.request.body,
 method=urlfetch.POST,
 validate_certificate=True
)

 logging.info(result.content)

 if result.status_code == 200 and result.content == 'VERIFIED': # OK

 # See pages 19-20 of the Instant Payment Notification Guide at
 # https://cms.paypal.com/cms_content/US/en_US/files/developer/IPNGuide.pdf
 # for various actions that should be taken based on the IPN values.

 ipn_values = cgi.parse_qs(self.request.body)
 debug_msg = '\n'.join(["%s=%s" % (k,'&'.join(v)) for (k,v) in
ipn_values.items()])

 # The Sandbox users don't have real mailboxes, so bcc the GAE email sender
as a way to

Integrating IPNs Into Tweet Relevance | 115

 # debug during development
 self.sendMail(ipn_values['first_name'][0], ipn_values['last_name'][0],
ipn_values['payer_email'],
 debug_msg=debug_msg, bcc=gae_email_sender)
 else:
 logging.error('Could not fetch %s (%i)' % (url, result.status_code,))

 else:
 logging.error("Unknown mode for POST request!")

def main():
 application = webapp.WSGIApplication([('/', IPNHandler),
 ('/(ipn)', IPNHandler)],
 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

Figure 6-2. Log in to your merchant account and select “Instant Payment Notification preferences”
under the Profile tab in order to add a Notification URL

116 | Chapter 6: Instant Payment Notifications (IPNs)

In short, the sample code accepts a POST request, prepends the mandatory
cmd=_notify-validate preamble to its body, and sends it back to PayPal. Assuming that
PayPal sends back VERIFIED and the response code is 200 (OK), it sends an email to
the payer_email that’s provided in the original IPN message and appends the full con-
tents of the IPN so that you can easily view it without having to log in to the GAE
console to view the server logs. Because Sandbox accounts don’t have real email ad-
dresses, however, it BCCs the gae_email_sender to ensure that the email actually arrives
at a real address so that you know it’s working properly. In production, you’d remove
the bcc and debug parameters.

Take a moment to study the sample code, and then deploy it to AppSpot after you’ve
updated it with a valid email address that is registered with your GAE account. Recall
that the IPN handler must be addressable on the Web by PayPal (which cannot be a
http://localhost address), so you must actually deploy your GAE project code to App-
Spot in order to test your IPN listener.

Whether it’s on GAE or anywhere else, running a mail server during
development can often be tricky and frustrating. You can run a local
SMTP server that logs out messages it receives to the console using the
Python smtpd module by executing the following command in a termi-
nal:

$ python -m smtpd -n -c DebuggingServer localhost:1025

and configuring your local GAE development environment to send mail
to it by starting the GAE Python Development Server from the command
line with a few options, as follows:

$ /path/to/your/dev_appserver.py --smtp_host=localhost
--smtp_port=1025 /path/to/your/project

With some sample code in place, let’s use the simulator that’s available from within
the PayPal Sandbox under the Test Tools tab to try out our IPN listener, as shown in
Figure 6-3. After sending a notification with the simulator, you should see that it ac-
knowledges that an IPN was successfully sent if it is able to successfully reach your
handler and no internal server errors occur in your handler. Shortly thereafter, you
should also receive an email with the IPN details since that’s what the handler does. (If
for some reason you do not receive the email, be sure to check your spam folder before
digging into your application’s logs, which are available through the GAE Dashboard.)

Integrating IPNs Into Tweet Relevance | 117

http://en.wikipedia.org/wiki/Blind_carbon_copy
http://docs.python.org/library/smtpd.html
http://code.google.com/appengine/docs/python/tools/devserver.html

Figure 6-3. Log in to your merchant account and select “Instant Payment Notification preferences”
under the Profile tab in order to add a Notification URL

Now that you have some code in place that’s capable of handling notifications from
the IPN simulator, let’s configure your merchant account for receiving IPNs so that you
are able to automatically receive IPNs in response to payment transactions that affect
that merchant account. Although it’s possible to specify IPN notification URLs directly
in API calls, perhaps the most common way to register for IPNs is to log in to a merchant
account and specify a default URL under the merchant account’s “Instant Payments
Notification preferences” from within the Profile tab, as shown in Figures 6-4 and
6-5. Note that if you have multiple merchant accounts setup in your Sandbox envi-
ronment, you’ll need to ensure that you use the 3-token credentials associated with the

118 | Chapter 6: Instant Payment Notifications (IPNs)

same merchant account that you used to add the notification URL, and once you set
up this IPN notification URL, PayPal will begin sending IPNs to it by default for all
IPN-eligible transactions associated with those 3-token credentials.

Once you’ve deployed your IPN handler and registered a merchant account for receiv-
ing IPNs, you should start automatically receiving them whenever a successful trans-
action occurs that affects that merchant account. A recommended exercise for this
chapter involves taking sample project code from a previous chapter and using it to
trigger an IPN. Just be advised that once you register for IPNs, you will receive them
for all IPN-eligible transactions affecting that account, and PayPal will continue re-
sending them until you acknowledge or disable the IPNs from your merchant account
profile.

Figure 6-4. Log in to your merchant account and select “Instant Payment Notification preferences”
under the Profile tab in order to add a Notification URL

Integrating IPNs Into Tweet Relevance | 119

Recommended Exercises
• Deploy the IPN listener code to AppSpot and run the sample code from Chap-

ter 2 locally on your computer with the Google App Engine Launcher in order to
log in and purchase a Tweet Relevance subscription using Express Checkout. After
successfully performing the Express Checkout, your IPN listener should automat-
ically receive an IPN that sends you an email.

• Transplant the IPNHandler featured in the sample code from this chapter into the
sample code from another chapter, such as Chapter 2, in order to have a single,
unified project file that features IPNs. Deploy this project to AppSpot and complete
a payment transaction to trigger an IPN and ensure that it works as expected.

Figure 6-5. PayPal provides the ability to send all IPNs for a merchant account to a notification URL
that you specify in your merchant account settings

120 | Chapter 6: Instant Payment Notifications (IPNs)

• Update the Tweet Relevance’s PaymentHandler class from Chapter 2 to properly
handle eChecks for an Express Checkout situation in which someone pays for a
subscription with funds that must be drawn from a bank account because their
PayPal balance is too low and they don’t have a credit card on file.

• Modify the PaymentHandler class from Chapter 2 or Chapter 4 so that account
transactions that are funded by eChecks are no longer rejected. (Recall that
eChecks are not an option for digital goods purchases.) One promising scenario
might be to optimistically assume that pending eCheck payments will clear suc-
cessfully and initially credit accounts, but use IPNs to deactivate accounts and send
users an email notification if the eCheck payment does not ultimately complete
successfully.

All sample code for this book is available online at GitHub and is con-
veniently organized by chapter. Although much of the code is included
in the text of this book so that it’s as instructional as possible, always
reference the latest bug-fixed code on GitHub as the definitive reference
for sample code. Bug tickets and patches are welcome!

Recommended Exercises | 121

https://github.com/ptwobrussell/PayPal-APIs-Up-and-Running

APPENDIX A

Overview of Tweet Relevance

PayPal APIs are of no use to an application that doesn’t have revenue-generating po-
tential, just as a technical book that’s filled with abstract examples and void of useful
sample code is of little use to the reader. As such, it seems appropriate that a technical
book on integrating PayPal APIs should be packed with examples and sample code that
illustrate how to integrate PayPal products into a somewhat realistic application.
Teaching a reader how to get “up and running” is a somewhat delicate balance: it
requires getting into messy implementation details with a specific toolchain and a re-
alistic reference application while avoiding unnecessary complexity that hinders
learning.

Tweet Relevance, the sample application that’s referenced and built upon throughout
this book, attempts to strike this balance. It’s implemented in Python (one of the easiest-
to-read programming languages), runs on Google App Engine (a web application plat-
form that is mature and extremely well documented), and munges data from Twitter
(an accessible and extremely rich source of information). Given that the scope of the
book is about getting up and running with PayPal APIs, each chapter must maximally
focus on PayPal products; however, in the interest of providing you with some sample
code that’s as useful and realistic as possible, Tweet Relevance provides a foundation
that each chapter builds upon as a reference project.

The presumed problem that Tweet Relevance solves is information overload. The pre-
sumption is that even if a Twitter user very carefully curates and organizes a list of
friends on Twitter, it can still be quite overwhelming to filter out the noise and keep
up with the most relevant tweets. In other words, following people on Twitter does not
scale very well. This is partially because keeping up with even a few dozen friends on
Twitter can be a daunting task (especially when everyone gets chattier than usual), but
also because tweets that appear in a user’s home timeline are ranked chronologically,
with no ranking heuristics applied to sort tweets by relevance. For example, although
you might follow a person on Twitter because you really respect this individual’s point
of view on technology, you might not care at all what she intermittently has to say about
politics, religion, or the environment. The value of a machine curating your tweets only
becomes more apparent as you follow more and more people.

123

The choice of whether you treat the application logic for Tweet Relevance as a black
box that you never really have to open or a new hobby that you invest a nontrivial
amount of time improving and expanding is entirely up to you. The implementation is
essentially stateless; is as lean and free from common third-party dependencies such as
Django or other web frameworks as possible; and apart from minimally adapting a rich
Ajax interface called TweetView1 that supports touch gestures that Tweet Relevance
itself treats as a third-party dependency, Tweet Relevance provides a no-frills user in-
terface.

Before we start getting into the details, it may be helpful to take in the big picture by
briefly reviewing the overall user experience for Tweet Relevance:

• User accesses Tweet Relevance

• User clicks on a “login with Twitter” button

• Tweet Relevance redirects the user to Twitter for authentication and authorization
via OAuth

• User authorizes Tweet Relevance to access tweets and basic account information
(which also serves as an authentication mechanism)

• Twitter redirects back to Tweet Relevance

• Using information available from Twitter (via OAuth), Tweet Relevance estab-
lishes a minimal account for the user, accesses the user’s tweets, ranks them by
relevance, and stashes them in a session object

• Tweet Relevance serves up the ranked tweets in TweetView

If you haven’t already, the best thing for you to do right now is to get
minimally familiar with GAE, as introduced in Chapter 1. Check out
the sample code and try running it. The README file talks you through
the steps involved, which includes creating a Twitter application that
can allow Tweet Relevance to access your Twitter account through
OAuth.

Understanding Tweet Relevance’s AppHandler
In GAE parlance, a RequestHandler—often called a handler—is a class that services
URL requests as mapped by the WSGIApplication in main.py. To illustrate, let’s con-
sider the main.py for Tweet Relevance, as shown in Example A-1.

Example A-1. Tweet Relevance - main.py

Minimal GAE imports to run the app

1. Many thanks to SitePen for releasing high-quality, useful, instructive, and liberally licensed sample code
such as TweetView.

124 | Appendix A: Overview of Tweet Relevance

http://dojotoolkit.org/documentation/tutorials/1.6/mobile/tweetview/packaging/
https://dev.twitter.com/docs/auth/oauth
http://code.google.com/appengine/docs/python/tools/webapp/requesthandlers.html
http://code.google.com/appengine/docs/python/tools/webapp/wsgiapplicationclass.html
http://sitepen.com

from google.appengine.ext import webapp
from google.appengine.ext.webapp import util

Application specific logic

from handlers.AppHandler import AppHandler

Logic for interacting with Twitter's API and serving up data, etc.

def main():

 application = webapp.WSGIApplication([

 # AppHandler URLs

 ('/(app)', AppHandler),
 ('/(data)', AppHandler),
 ('/(login)', AppHandler),
 ('/', AppHandler)
],

 debug=True)
 util.run_wsgi_app(application)

if __name__ == '__main__':
 main()

Tweet Relevance delegates responsibility for all of its four possible URL requests to a
class called AppHandler. We won’t dig into all of the nitty-gritty implementation details
of AppHandler, but it is helpful to have a basic understanding of how each URL in this
GAE application is serviced. The skeleton for the AppHandler class looks something like
this:

Example A-2. Skeleton for AppHandler

class AppHandler(webapp.RequestHandler):

 def get(self, mode=""):

 if mode == "app":

 # ...

 elif mode == "data":

 # ...

 elif mode == "login":

 # ...

 else: # root context

 # ...

Understanding Tweet Relevance’s AppHandler | 125

Hence, the WSGIApplication parses the tuples in its list argument and passes on values
to AppHandler’s get method as a named argument called mode for GET requests. What-
ever else happens in the application logic is entirely up to your imagination and hard
work. Let’s now take a closer look at Tweet Relevance’s public APIs that enable this
user experience by examining each of these URLs in greater detail:

/
A GET request to the root context of the application displays a “login with Twitter”
button, and when the user clicks on the button, it triggers a /login request. Twitter
exposes an authentication API by way of OAuth, an industry standard for allowing
web applications to authenticate users and take actions on their behalf without
requiring them to give up precious username and password combinations. For
Tweet Relevance, authenticating with Twitter via OAuth makes a lot of sense be-
cause in addition to OAuth being the only way that we can fetch all the data we’ll
need to implement the application logic, leveraging Twitter’s OAuth prevents the
application from needing to handle the mundane details associated with account
management and essentially provides these services as a freebie. Figures A-1 and
A-2 and illustrate the login flow.

OAuth is an incredibly interesting yet tangential topic to the fun-
damental aims of this book. There is ample reading material about
it on the Web, so a discussion will not be regurgitated here. For a
very thorough treatment of the topic, see also Programming Social
Applications by Jonathan LeBlanc (O’Reilly, 2011).

/login
A GET request to the /login context immediately redirects to Twitter for authen-
tication via OAuth. After the user logs in and authorizes the application, Twitter
redirects back to /app and includes some important OAuth query string parameters
in the query string that the application is responsible for parsing out so that it can
request data from Twitter’s API about the authenticating user.

/app
Twitter redirects the user back to /app by means of a GET request once the user
authorizes Tweet Relevance. The vast majority of the application’s logic is handled
in /app to include creating a user’s account upon initial login, decrementing the
number of login requests that are remaining each time the application is accessed,
and accessing data in the user’s Twitter account in order to implement a heuristic
that ranks tweets contained in the home timeline by relevance. Once /app has
ranked a user’s tweets by relevance, it uses GAE’s memcache to store them away
temporarily in what’s essentially a minimal session implementation and immedi-
ately redirects the client to an Ajax-enabled user interface that fetches the ranked
tweets by invoking /data along with the session identifier.

126 | Appendix A: Overview of Tweet Relevance

https://dev.twitter.com/docs/auth/oauth
http://shop.oreilly.com/product/0636920014201.do
http://shop.oreilly.com/product/0636920014201.do
http://code.google.com/appengine/docs/python/memcache/usingmemcache.html

/data
The Ajax client code issues a GET request on /data and passes in the session iden-
tifier to fetch ranked tweets so that it can display them to the user. Figure A-3
displays the user interface for Tweet Relevance, which powers its display data
from /data.

Figure A-1. The root context of Tweet Relevance invites users to log in via Twitter.

One lingering question you may have at this point is how the heuristic is computed
that ranks a user’s tweets by relevance. The default implementation is actually nothing
more than a trivial starting point: it simply computes a frequency distribution of terms
appearing in tweets that have been marked as favorites and uses these terms to rank
tweets appearing in the home timeline. Clearly, the logic involved in ranking tweets by
relevance would be the “secret sauce” of your application should you choose to extend
this sample project code to truly be worthy of revenue generation. This logic really is
the core value proposition of the application, and there’s quite literally no limit to the
number of interesting things that you could try here. The default implementation is
simply a placeholder for your own creative ideas. It will not make you a million dollars
—but if you come up with a compelling way to rank tweets and create a backend that
scales well, you might just be able to earn yourself a million dollars!

Recommended Exercises
• Complete the (official) Python tutorial.

• Review and execute the examples in the Getting Started with Python documenta-
tion for GAE.

• Check out the TweetView tutorials if you’re interested in how to create rich Ajax
clients.

• Execute the sample code for the application (this involves establishing a Twitter
account with followers).

• Polish the application by defining some stylesheets for the templates.

• Expand upon and streamline the login flow by using session cookies.

Recommended Exercises | 127

https://dev.twitter.com/docs/api/1/get/favorites
http://docs.python.org/tutorial/
http://code.google.com/appengine/docs/python/gettingstarted/
http://dojotoolkit.org/documentation/tutorials/1.6/mobile/tweetview/packaging/

All sample code for this book is available online at GitHub and is con-
veniently organized by chapter. Although much of the code is included
in the text of this book so that it’s as instructional as possible, always
reference the latest bug-fixed code on GitHub as the definitive reference
for sample code. Bug tickets and patches are welcome!

Figure A-2. Clicking the Login button triggers /login, which redirects to Twitter for authentication
and authorization. Twitter redirects back to /app and passes along query string parameters that Tweet
Relevance can use to access the user’s information such as email address and tweet data

128 | Appendix A: Overview of Tweet Relevance

https://github.com/ptwobrussell/PayPal-APIs-Up-and-Running

Figure A-3. Tweet Relevance displays tweets from a user’s home timeline in typical fashion.

Recommended Exercises | 129

APPENDIX B

Mobile Payment Libraries (MPLs)

Overview
If you’ve read this book cover to cover, you now know that it was designed to get you
up and running with a broad array of popular PayPal products and a common tech-
nology set based upon GAE and Python. Although PayPal’s Mobile Payment Libraries
(MPLs)—which allow you to create in-app purchases for iOS, Android, and BlackBerry
—don’t fit the given scope and focus of the book because they require specialized
development environments such as Eclipse and XCode as well as additional program-
ming languages such as Java and Objective-C, you should definitely know that MPLs
exist and what they can do to help you be successful in your commerce strategy. This
brief appendix merely attempts to provide a shallow orientation and point you to some
valuable resources online that can help you get up and running with MPLs. Entire books
could be written on learning iOS and Objective-C, for example, with an underlying
theme of using the corresponding MPL to implement an application involving mobile
commerce.

In short, an application that employs MPLs allows you to embed a “Pay with PayPal”
button natively within the iOS, Android, or BlackBerry application you’re developing
and provides you with an easy-to-use software development kit (SDK) that provides
views for logging users into their PayPal accounts and processing payments. With re-
gard to implementation details, there truly is minimal hassle involved in integrating
MPLs into an existing app, and in many circumstances, there can be less work involved
in integrating an MPL into a native mobile application than in integrating a product
like Express Checkout into an existing web application.

Should I Use MPLs or Mobile Express Checkout (MEC)?
Recalling from “Mobile Express Checkout (MEC)” on page 44 that an Express Check-
out flow “just works” on most modern mobile devices capable of browsing the Web,
such as Android and iOS devices, you now have additional options that allow you
provide in-app purchases without compromising the integrity of the user experience,

131

which can really hurt your conversion rates. As a rule of thumb, you shouldn’t look at
MPLs versus a web-based Mobile Express Checkout (MEC) (a freebie that comes along
with a standard Express Checkout implementation) as an either-or type of decision.
The two solutions are orthogonal to one another and are usually very complementary
in the way that they allow you to broaden your potential reach. For example, if you
have an existing web application or plan to create a website or application that accepts
payments, then you should target users regardless of whether they’re using a laptop,
tablet, or mobile phone. Thus, Express Checkout may be a great option since it trivially
provides a seamless mobile experience that involves no additional work on your behalf.
However, if you’re building or already have a native app, then you should also plan to
process payments in the app using MPLs. If your application lends itself to both the
Web and to specific mobile platforms, then you’ll inevitably end up using both options.
Figure B-1 illustrates a sample application that uses MPLs to trigger a payment flow to
PayPal.

Figure B-1. MPLs provide a way to natively embed PayPal payments into your iOS, Android, and
BlackBerry applications

In addition to the standard, more general-purpose MPLs that have been discussed in
this Appendix, PayPal also offers an additional MPL called the Mobile Express Check-
out Library (MECL), which can streamline the implementation of an Express Checkout
flow from within a mobile application’s web view. MECL is essentially the way to kick
off an Express Checkout from within a mobile application and return control to your
application when it completes. MECL also provides a simple way to launch a Mobile
Express Checkout from a website. Although somewhat confusing, the MECL is distinct
from a Mobile Express Checkout (MEC) in that the MECL is a library that kicks off an

132 | Appendix B: Mobile Payment Libraries (MPLs)

MEC. Even though there’s a lot of overlap in the verbiage, it’s a bit of an apples and
oranges comparison in that one is a library (that kicks off a payment flow) and one is
a product that provides the payment flow itself.

Recommended Exercises
• Bookmark PayPal’s canonical starting point for Mobile Payments Libraries, which

contains links to detailed and up-to-date documentation on the SDKs for sup-
ported mobile platforms.

• If you’re interested in developing an iOS application using MPLs, take a look at
the sample code for Inquire, a very well-documented mobile, social, and local ap-
plication that uses MPLs to process payments. [With regard to MPL integration,
you may be particularly interested in the PayPalViewController class.]

• If you’re interested in developing an Android application using MPLs, take a look
at the sample code for YardSale, an application that scans QR Codes and uses MPLs
to process payments. [With regard to MPL integration, you may be particularly
interested in the ItemDetails class.]

• If you’re truly ambitious, port Tweet Relevance to iOS, Android, or BlackBerry and
use MPLs to handle making payments.

Recommended Exercises | 133

https://www.x.com/developers/paypal/products/mobile-payment-libraries
https://github.com/zaffra/Inquire
https://github.com/zaffra/Inquire/blob/master/iOS/Classes/PayPalViewController.m
https://github.com/zaffra/YardSale
https://github.com/zaffra/YardSale/blob/master/YardSale/src/com/zaffra/yardsale/ItemDetails.java

About the Author
Matthew A. Russell, Vice President of Engineering at Digital Reasoning Systems and
Principal at Zaffra, is a computer scientist who is passionate about data mining, open
source, and web application technologies. He’s also the author of Dojo: The Definitive
Guide (O’Reilly).

http://www.digitalreasoning.com/
http://zaffra.com
http://shop.oreilly.com/product/9780596516482.do
http://shop.oreilly.com/product/9780596516482.do

	Table of Contents
	Preface
	Notes About the Second Edition
	Intended Audience
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. PayPal API Overview
	Overview of PayPal API Requests
	Google App Engine Primer
	Building and Deploying Your First App
	Fetching URLs

	Making PayPal API Requests with App Engine
	Obtaining API Credentials for the Sandbox Environment
	Making API Requests with 3-Token Credentials
	URL encoding and decoding
	Request and response format
	Making a PayPal Request with GAE

	Recommended Exercises

	Chapter 2. Express Checkout (Including Mobile Express Checkout)
	Checkout Process Workflows
	Generic Checkout Workflow
	Express Checkout Workflow

	Express Checkout Flow
	PayPal Express Checkout API Operations
	SetExpressCheckout
	GetExpressCheckoutDetails
	DoExpressCheckoutPayment

	Implementing a Checkout Experience for Tweet Relevance
	Selecting a Payment Model
	Injecting an Express Checkout Entry Point into Tweet Relevance

	Mobile Express Checkout (MEC)
	Recommended Exercises

	Chapter 3. Express Checkout for Digital Goods
	Everyone Wins with Digital Goods Transactions
	Implementing a Digital Goods Checkout for Tweet Relevance
	The User Experience
	Implementation Details

	Recommended Exercises

	Chapter 4. Adaptive Payments (Simple, Parallel, and Chained Payments)
	Overview of Adaptive Payments
	Common Adaptive Payment Workflows
	Who Pays the Fees?

	Payment Approval and Payment Flows
	Explicit Payments
	Preapproved Payments
	Implicit Payments
	Guest Payments

	The Pay and PaymentDetails APIs
	Pay API Operation
	The PaymentDetails API Operation
	GAE Simple Adaptive Payments Example
	GAE Chained Adaptive Payments Example
	GAE Parallel Payments Example

	Integrating a “Simple” Adaptive Payment into Tweet Relevance
	There’s a Lot More
	Recommended Exercises

	Chapter 5. Website Payments Pro (Direct
 Payment)
	Overview of Direct Payment
	PayPal Direct Payment API Operations
	Implementing DoDirectPayment
	DoDirectPayment API Operation
	Implementing DoDirectPayment with GAE

	Integrating DoDirectPayment and Tweet Relevance
	Recommended Exercises

	Chapter 6. Instant Payment Notifications (IPNs)
	Overview of IPNs
	IPN Protocol and Architecture

	Integrating IPNs Into Tweet Relevance
	Recommended Exercises

	Appendix A. Overview of Tweet Relevance
	Understanding Tweet Relevance’s AppHandler
	Recommended Exercises

	Appendix B. Mobile Payment Libraries (MPLs)
	Overview
	Should I Use MPLs or Mobile Express Checkout (MEC)?
	Recommended Exercises

