
   

    

             
            
            

           
          

            
           

           
          

              
             

              
       

       
        
       
        
     
        
        

           
              

            Pro

Android Python
with SL4A

Paul Ferrill

Build Android Apps
with Python

 
 

 Pro

 
 

   



For your convenience Apress has placed some of the front 
matter material after the index. Please use the Bookmarks 

and Contents at a Glance links to access them. 



 

iv 

Contents at a Glance 

About the Author ....................................................................................................... xi 

About the Technical Reviewer .................................................................................. xii 

Acknowledgments ................................................................................................... xiii 

Preface .................................................................................................................... xiv 
 

■Chapter 1: Introduction ........................................................................................... 1 

■Chapter 2: Getting Started ..................................................................................... 27 

■Chapter 3: Navigating the Android SDK ................................................................. 57 

■Chapter 4: Developing with Eclipse ....................................................................... 83 

■Chapter 5: Exploring the Android API .................................................................. 113 

■Chapter 6: Background Scripting with Python .................................................... 139 

■Chapter 7: Python Scripting Utilities ................................................................... 165 

■Chapter 8: Python Dialog Box–based GUIs .......................................................... 195 

■Chapter 9: Python GUIs with HTML ...................................................................... 221 

■Chapter 10: Packaging and Distributing .............................................................. 249 

 

Index ....................................................................................................................... 273 



C H A P T E R  1 
 

 

    

 

   

 

  

 

 

  

 

1 

Introduction 

This book is about writing real-world applications for the Android platform primarily using the Python 
language and a little bit of JavaScript. While there is nothing wrong with Java, it really is overkill when all 
you need to do is turn on or off a handful of settings on your Android device. The Scripting Layer for 
Android (SL4A) project was started to meet that specific need. This book will introduce you to SL4A and 
give you the power to automate your Android device in ways you never thought possible.  

Why SL4A? 
One of the first questions you probably have about this book is, “Why would I want to use SL4A instead 
of Java?” There are several answers to that question. One is that not everyone is a fan of Java. The Java 
language is too heavyweight for some and is not entirely open source. It also requires the use of an edit / 
compile / run design loop that can be tedious for simple applications. An equally legitimate answer is 
simply “I want to use X”, where X could be any number of popular languages. 

Google provides a comprehensive software development kit (SDK) aimed specifically at Java 
developers, and most applications available from the Android market are probably written in Java. I’ll 
address the Android SDK in Chapter 3 and use a number of the tools that come with it throughout the 
book. 

■ Note SL4A currently supports Beanshell, JRuby, Lua, Perl, PHP, Python, and Rhino. 

SL4A is really targeted at anyone looking for a way to write simple scripts to automate tasks on an 
Android device using any of the supported languages, including Java through Beanshell. It provides an 
interactive console in which you can type in a line of code and immediately see the result. It even makes 
it possible, in many cases, to reuse code you’ve written for a desktop environment. The bottom line is 
that SL4A makes it possible both to write code for Android-based devices in languages other than Java 
and to do it in a more interactive way. 



CHAPTER 1 ■ INTRODUCTION 

 

2 

The World of Android 
Google jumped into the world of mobile operating systems in a big way when it bought Android, Inc. in 
2005. It’s really pretty amazing how far it has come in such a short time. The Android community is huge 
and has spawned a wide range of conferences, books, and support materials that are easily available 
over the Internet.  

This is a good point to define a few terms that you’ll see throughout the rest of this book. Android 
applications are typically packaged into .apk files. These are really just .zip files containing everything 
needed by the application. In fact, if you rename an .apk file to .zip, you can open it with any archive 
tool and examine the contents. 

Most Android devices come from the manufacturer with the systems files protected to prevent any 
inadvertent or malicious manipulation. The Android operating system (OS) is essentially Linux at the 
core and provides much of the same functionality you would find on any Linux desktop. There are ways 
to unlock the system areas and provide root, or unrestricted, access to the entire filesystem on an 
Android device. This process is appropriately called rooting your device, and once complete, the device 
is described as rooted. SL4A does not require a rooted device, but will work on one if you have chosen 
this path.  

Android Application Anatomy 
Android is based on the Linux operating system (at the time of writing, version 2.6 of the Linux kernel). 
Linux provides all the core plumbing such as device drivers, memory and process management, network 
stack, and security. The kernel also adds a layer of abstraction between the hardware and applications. 
To use an anatomical analogy, you might think of Linux as the skeleton, muscles, and organs of the 
Android body.  

The next layer up the Android stack is the Dalvik Virtual Machine (DVM). This piece provides the 
core Java language support and most of the functionality of the Java programming language. The DVM is 
the brains in which the majority of all processing takes place. Every Android application runs in its own 
process space in a private instance of the DVM. The application framework provides all the necessary 
components needed by an Android application. From the Google Android documentation: 

“Developers have full access to the same framework APIs used by the core applications. 
The a pplication ar chitecture is  des igned to  sim plify the r euse o f com ponents. Any  
application can publi sh it s ca pabilities, and any other a pplication may th en make 
use o f tho se capabilities (s ubject to security con straints enf orced by the fr amework). 
This same mechanism allows components to be replaced by the user. 

Underlying all applications is a set of services and systems, including:  

• A rich and e xtensible s et of Views th at can be used  to build an ap plication, 
including lis ts, grids, tex t boxes, butt ons, and ev en an emb eddable w eb 
browser 

• Content Pr oviders that enable a pplications to a ccess dat a f rom other  
applications (such as Contacts) or to share their own data 

• A Resource Manager, pr oviding access to non-code resources such as localiz ed 
strings, graphics, and layout files 



CHAPTER 1 ■ INTRODUCTION 

 

3 

• A Notification Manager that enables all applications to display custom alerts 
in the status bar 

• An Activity Manager that manages the lifecycle of applications and provides a 
common navigation backstack”1 

All Android applications are based on three core components: activities, services, and receivers. 
These core components are activated through messages called intents. SL4A gives you access to much of 
the core Android functionality through its API facade, so it’s a good idea to understand some of the 
basics. Chapters 3 and 5 look at the Android SDK and Android application programming interface (API) 
in detail, so I’ll save the specifics for later. For now, I’ll introduce you to activities and intents, as they will 
be used extensively. 

Activities 
The Android documentation defines an activity as “an application component that provides a screen 
with which users can interact in order to do something, such as dial the phone, take a photo, send an e-
mail, or view a map. Each activity is given a window in which to draw its user interface. The window 
typically fills the screen but may be smaller than the screen and float on top of other windows.” 

Android applications consist of one or more activities loosely coupled together. Each application 
will typically have a “main” activity that can, in turn, launch other activities to accomplish different 
functions.  

Intents 
From the Google documentation: “An intent is a simple message object that represents an intention to 
do something. For example, if your application wants to display a web page, it expresses its intent to 
view the URI by creating an intent instance and handing it off to the system. The system locates some 
other piece of code (in this case, the browser) that knows how to handle that intent and runs it. Intents 
can also be used to broadcast interesting events (such as a notification) system-wide.” 

An intent can be used with startActivity to launch an activity, broadcastIntent to send it to any 
interested BroadcastReceiver components, and startService(Intent) or bindService(Intent, 
ServiceConnection, int) to communicate with a background service. Intents use primary and 
secondary attributes that you must provide in the form of arguments.  

There are two primary attributes: 

• action: The general action to be performed, such as VIEW_ACTION, EDIT_ACTION, 
MAIN_ACTION, and so on 

• data: The data to operate on, such as a person record in the contacts database, 
expressed as a Uniform Resource Identifier (URI) 

                                                 

 
1 http://developer.android.com/guide/basics/what-is-android.html 



CHAPTER 1 ■ INTRODUCTION 

 

4 

There are four types of secondary attributes: 

• category: Gives additional information about the action to execute. For example, 
LAUNCHER_CATEGORY means it should appear in the Launcher as a top-level 
application, while ALTERNATIVE_CATEGORY means it should be included in a list of 
alternative actions the user can perform on a piece of data. 

• type: Specifies an explicit type (a MIME type) of the intent data. Normally, the 
type is inferred from the data itself. By setting this attribute, you disable that 
evaluation and force an explicit type. 

• component: Specifies an explicit name of a component class to use for the intent. 
Normally this is determined by looking at the other information in the intent (the 
action, data/type, and categories) and matching that with a component that can 
handle it. If this attribute is set, none of the evaluation is performed, and this 
component is used exactly as is. By specifying this attribute, all the other intent 
attributes become optional. 

• extras: A bundle of any additional information. This can be used to provide 
extended information to the component. For example, if we have an action to 
send an e-mail message, we could also include extra pieces of data here to supply 
a subject, body, and so on. 

SL4A History 
SL4A was first announced on the Google Open Source blog in June of 2009 and was originally named 
Android Scripting Environment (ASE). It was primarily through the efforts of Damon Kohler that this 
project came to see the light of day. Others have contributed along the way as the project has continued 
to mature. The most recent release as of this writing is r4, although you’ll also find experimental versions 
available on the SL4A web site (http://code.google.com/p/android-scripting). 

SL4A Architecture 
At its lowest level, SL4A is essentially a scripting host, which means that as an application it hosts 
different interpreters each of which processes a specific language. If you were to browse the SL4A source 
code repository, you would see a copy of the source tree of each language. This gets cross-compiled for 
the ARM architecture using the Android Native Development Kit (NDK) and loads as a library when SL4A 
launches a specific interpreter. At that point, the script will be interpreted line by line.  

The basic architecture of SL4A is similar to what you would see in a distributed computing 
environment. Figure 1-1 shows in pictorial form the flow of execution when you launch SL4A and then 
run a script (in this case, hello.py). Every SL4A script must import or source an external file, such as 
android.py for Python, which will define a number of proxy functions needed to communicate with the 
Android API.  

The actual communication between SL4A and the underlying Android operating system uses a 
remote procedure call (RPC) mechanism and JavaScript Object Notation (JSON). You normally find RPC 
used in a distributed architecture in which information is passed between a client and a server. In the 
case of SL4A, the server is the Android OS, and the client is an SL4A script. This adds a layer of separation 
between SL4A and the Android OS to prevent any malicious script from doing anything harmful. 



CHAPTER 1 ■ INTRODUCTION 

 

5 

Security is a concern and is one of the reasons that SL4A uses the RPC mechanism. Here’s how the 
SL4A wiki describes it: 

“RPC Authentication: SL4A enforces per-script security san dboxing by requiring all 
scripts t o be authenti cated by the corresponding RPC server.  In ord er for the  
authentication to succ eed, a script has  to send the corr ect hand shake se cret to th e 
corresponding server. This is accomplished by:  

1. reading the AP_HANDSHAKE environment variable. 

2. calling th e RPC me thod _authenticate with the value of AP_HANDSHAKE as  an  
argument.  

The _authenticate method must be the fi rst RPC call and should take place during the 
initialization of the Andr oid library. F or example, see Rhin o’s o r Python’s A ndroid 
module”.2 

 

 

Figure 1-1. SL4A execution flow diagram 

                                                 

 
2 http://code.google.com/p/android-scripting/wiki/InterpreterDeveloperGuide 



CHAPTER 1 ■ INTRODUCTION 

 

6 

SL4A Concepts 
There are a number of concepts used by SL4A that need to be introduced before we actually use them. At 
a very high level, SL4A provides a number of functional pieces working in concert together. Each 
supported language has an interpreter that has been compiled to run on the Android platform. Along 
with the interpreters is an abstraction layer for the Android API. This abstraction layer provides a calling 
interface in a form expected for each language. The actual communication between the interpreters and 
the native Android API uses inter-process communication (IPC) as an extra layer of protection. Finally, 
there is support for an on-device environment to test scripts interactively.  

Although Figure 1-1 shows Python as the interpreter, the concept works pretty much the same for all 
supported languages. Each interpreter executes the language in its own process until an API call is made. 
This is then passed along to the Android OS using the RPC mechanism. All communication between the 
interpreter and the Android API typically uses JSON to pass information. 

JavaScript Object Notation (JSON) 
SL4A makes heavy use of JSON to pass information around. You might want to visit the 
http://www.json.org web site if you’ve never seen JSON before. In its simplest form JSON is just a way of 
defining a data structure or an object in much the same way you would in the context of a program. For 
the most part, you will see JSON structures appear as a series of name/value pairs. The name part will 
always be a string while the value can be any JavaScript object. 

In SL4A, you will find that many of the API calls return information using JSON. Fortunately, there 
are multiple options when it comes to creating, parsing, and using JSON. Python treats JSON as a first-
class citizen with a full library of tools to convert from JSON to other native Python types and back again. 
The Python Standard Library pprint module is a convenient way to display the contents of a JSON 
response in a more readable format.  

The Python Standard Library includes a JSON module with a number of methods to make handling 
JSON much easier. Because JSON objects can contain virtually any type of data, you must use encoders 
and decoders to get native Python data types into a JSON object. This is done with the json.JSONEncoder 
and json.JSONDecoder methods. When you move a JSON object from one place to another, you must 
serialize and then deserialize that object. This requires the json.load() and json.loads() functions for 
decoding, and json.dump() plus json.dumps() for encoding. 

There are a large number of web services that have adopted JSON as a standard way to implement 
an API. Here’s one from Yahoo for images: 

{ 
  "Image": { 
    "Width":800, 
    "Height":600, 
    "Title":"View from 15th Floor", 
    "Thumbnail": 
    { 
      "Url":"http:\/\/scd.mm-b1.yimg.com\/image\/481989943", 
      "Height": 125, 
      "Width": "100" 
    }, 
  "IDs":[ 116, 943, 234, 38793 ] 
  } 
} 



CHAPTER 1 ■ INTRODUCTION 

 

7 

Events 
The Android OS uses an event queue as a means of handling specific hardware-generated actions such 
as when the user presses one of the hardware keys. Other possibilities include any of the device sensors 
such as the accelerometer, GPS receiver, light sensor, magnetometer, and touch screen. Each sensor 
must be explicitly turned on before information can be retrieved. 

The SL4A API facade provides a number of API calls that will initiate some type of action resulting in 
an event. These include the following: 

• startLocating() 

• startSensing() 

• startTrackingPhoneState() 

• startTrackingSignalStrengths() 

Each of these calls will begin gathering some type of data and generate an event such as a “location” 
event or a “phone” event. Any of the supported languages can register an event handler to process each 
event. The startLocating() call takes two parameters, allowing you to specify the minimum distance 
and the minimum time between updates. 

Languages 
One of the things that SL4A brings to the table is lots of language choices. As of the writing of this book, 
those choices include Beanshell, Lua, JRuby Perl, PHP, Python, and Rhino (versions given in the 
following sections). You can also write or reuse shell scripts if you like. Without question, the most 
popular of all these languages is Python. Support for the others has not been near the level of Python, up 
to this point, but it is possible to use them if you’re so inclined.  

Beanshell 2.0b4 
Beanshell is an interesting language in that it’s basically interpreted Java. It kind of begs the question of 
why you would want an interpreted Java when you could just write native Java using the Android SDK. 
The Beanshell interpreter does provide an interactive tool to write and test code. It’s definitely not going 
to be the fastest code, but you might find it useful for testing code snippets without the need to go 
through the whole compile/deploy/test cycle.  

Examining the android.bsh file shows the code used to set up the JSON data structures for passing 
information to and receiving information from the Android OS. Here’s what the basic call function  
looks like: 

  call(String method, JSONArray params) { 
    JSONObject request = new JSONObject(); 
    request.put("id", id); 
    request.put("method", method); 
    request.put("params", params); 
    out.write(request.toString() + "\n"); 
    out.flush(); 
    String data = in.readLine(); 



CHAPTER 1 ■ INTRODUCTION 

 

8 

    if (data == null) { 
      return null; 
    } 
    return new JSONObject(data); 
  } 

Here’s a simple hello_world.bsh script: 

source("/sdcard/com.googlecode.bshforandroid/extras/bsh/android.bsh"); 
droid = Android(); 
droid.call("makeToast", "Hello, Android!"); 

Lua 5.1.4 
Lua.org describes Lua as “an extension programming language designed to support general procedural 
programming with data description facilities”.3 The term extension programming language means that 
Lua is intended to be used to extend an existing program through scripting. This fits in well with the 
concept of SL4A. 

From a syntax perspective, Lua resembles Python somewhat in that it doesn’t use curly braces to 
wrap code blocks or require a semicolon for statement termination, although you can do this if you want 
to. In the case of a function definition, Lua uses the reserved word function to begin the code block and 
then the reserved word end to mark the end. 

Lua has most of the standard data types you would expect in a modern language and also includes 
the concept of a table. In Lua, a table is a dynamically created object that can be manipulated much like 
pointers in conventional languages. Tables must be explicitly created before use. Tables can also refer to 
other tables, making them well suited to recursive data types. The list of generic functions for 
manipulating tables includes table.concat, .insert, .maxn, .remove, and .sort. 

From the Lua web site, here’s a short Lua code snippet that creates a circular linked list: 

list = {}                    -- creates an empty table 
current = list 
i = 0 
while i < 10 do 
  current.value = i 
  current.next = {} 
  current = current.next 
  i = i+1 
end 
current.value = i 
acurrent.next = list 

                                                 

 
3 http://www.lua.org/manual/5.1/manual.html 



CHAPTER 1 ■ INTRODUCTION 

9 

Here’s the Lua code that implements the RPC call function: 

function rpc(client, method, ...) 
  assert(method, 'method param is nil') 
  local rpc = { 
    ['id'] = id, 
    ['method'] = method, 
    params = arg 
  } 
  local request = json.encode(rpc) 
  client:send(request .. '\n') 
  id = id + 1 
  local response = client:receive('*l') 
  local result = json.decode(response) 
  if result.error ~= nil then 
    print(result.error) 
  end 
  return result 
end 

The obligatory Lua hello world script: 

require "android" 
 
name = android.getInput("Hello!", "What is your name?") 
android.printDict(name)  -- A convenience method for inspecting dicts (tables). 
android.makeToast("Hello, " .. name.result) 

The Lua wiki has links to sample code with a large number of useful snippets.  

Perl 5.10.1 
Perl probably qualifies as the oldest of the languages available in SL4A if you don’t count the shell. It 
dates back to 1987 and has been used in just about every type of computing application you can think of. 
The biggest advantage of using Perl is the large number of code examples to draw from. Coding the 
hello_world.pl script looks a lot like that of other languages: 

use Android; 
my $a = Android->new(); 
$a->makeToast("Hello, Android!"); 

Here’s the Perl code needed to launch an SL4A script: 

# Given a method and parameters, call the server with JSON, 
# and return the parsed the response JSON.  If the server side 
# looks to be dead, close the connection and return undef. 
sub do_rpc { 
    my $self = shift; 
    if ($self->trace) { 
        show_trace(qq[do_rpc: $self: @_]); 
    } 



CHAPTER 1 ■ INTRODUCTION 

 

10 

    my $method = pop; 
    my $request = to_json({ id => $self->{id}, 
                            method => $method, 
                            params => [ @_ ] }); 
    if (defined $self->{conn}) { 
        print { $self->{conn} } $request, "\n"; 
        if ($self->trace) { 
            show_trace(qq[client: sent: "$request"]); 
        } 
        $self->{id}++; 
        my $response = readline($self->{conn}); 
        chomp $response; 
        if ($self->trace) { 
            show_trace(qq[client: rcvd: "$response"]); 
        } 
        if (defined $response && length $response) { 
            my $result = from_json($response); 
            my $success = 0; 
            my $error; 
            if (defined $result) { 
                if (ref $result eq 'HASH') { 
                    if (defined $result->{error}) { 
                        $error = to_json( { error => $result->{error} } ); 
                    } else { 
                        $success = 1; 
                    } 
                } else { 
                    $error = "illegal JSON reply: $result"; 
                } 
            } 
            unless ($success || defined $error) { 
                $error = "unknown JSON error"; 
            } 
            if (defined $error) { 
                printf STDERR "$0: client: error: %s\n", $error; 
            } 
            if ($Opt{trace}) { 
                print STDERR Data::Dumper->Dump([$result], [qw(result)]); 
            } 
            return $result; 
        } 
    } 
    $self->close; 
    return; 
} 

 
 



CHAPTER 1 ■ INTRODUCTION 

 

11 

PHP 5.3.3 
PHP is, without a doubt, one of the most successful general-purpose scripting languages for creating 
dynamic web pages. From humble beginnings as the Personal Home Page, the acronym PHP now stands 
for PHP: Hypertext Preprocessor. PHP is a free and open source language with implementations for 
virtually every major operating system available free of charge.  

Here’s the PHP code needed to launch an SL4A script via an RPC: 

  public function rpc($method, $args) 
   { 
      $data = array( 
         'id'=>$this->_id, 
         'method'=>$method, 
         'params'=>$args 
      ); 
      $request = json_encode($data); 
      $request .= "\n"; 
      $sent = socket_write($this->_socket, $request, strlen($request)); 
      $response = socket_read($this->_socket, 1024, PHP_NORMAL_READ) or die("Could not 
 read input\n"); 
      $this->_id++; 
      $result = json_decode($response); 
 
      $ret =  array ('id' => $result->id, 
         'result' => $result->result, 
         'error' => $result->error 
      ); 
      return $ret; 
   } 

The PHP version of hello_world.php looks like this: 

<?php 
require_once("Android.php"); 
$droid = new Android(); 
$name = $droid->getInput("Hi!", "What is your name?"); 
$droid->makeToast('Hello, ' . $name['result']); 

You get a number of other example scripts when you install PHP along with the basic 
hello_world.php.  

Rhino 1.7R2 
The Rhino interpreter gives you a way to write stand-alone JavaScript code. JavaScript is actually 
standardized as ECMAScript under ECMA-262. You can download the standard from http://www.ecma-
international.org/publications/standards/Ecma-262.htm. The advantages of having a JavaScript 
interpreter are many. If you plan on building any type of custom user interface using HTML and 
JavaScript, you could prototype the JavaScript part and test it with the Rhino interpreter. 



CHAPTER 1 ■ INTRODUCTION 

 

12 

The android.js file for Rhino resembles that of the other languages in many aspects.  Here’s what 
the RPC call definition looks like: 

  this.rpc = function(method, args) { 
    this.id += 1; 
    var request = JSON.stringify({'id': this.id, 'method': method, 
                                  'params': args}); 
    this.output.write(request + '\n'); 
    this.output.flush(); 
    var response = this.input.readLine(); 
    return eval("(" + response + ")"); 
  }, 

Here’s a simple Rhino hello_world.js script: 

load("/sdcard/sl4a/extras/rhino/android.js"); 
var droid = new Android(); 
droid.makeToast("Hello, Android!"); 

JRuby 1.4 
One of the potential hazards of any open source project is neglect. At the time of this writing, based on 
SL4A r4, the JRuby interpreter has suffered from neglect and doesn’t even run the hello_world.rb script. 
In any case, here’s what that script looks like: 

require "android" 
droid = Android.new 
droid.makeToast "Hello, Android!" 

The JRuby interpreter does launch, and you can try out some basic JRuby code with it. Here’s what 
the Android class looks like in Ruby: 

class Android 
 
  def initialize() 
    @client = TCPSocket.new('localhost', AP_PORT) 
    @id = 0 
  end 
 
  def rpc(method, *args) 
    @id += 1 
    request = {'id' => @id, 'method' => method, 'params' => args}.to_json() 
    @client.puts request 
    response = @client.gets() 
    return JSON.parse(response) 
  end 
 
  def method_missing(method, *args) 
    rpc(method, *args) 
  end 
 
end 



CHAPTER 1 ■ INTRODUCTION 

 

13 

Shell 
If you’re a shell script wizard, then you’ll feel right at home with SL4A’s shell interpreter. It’s essentially 
the same bash script environment you would see at a typical Linux terminal prompt. You’ll find all the 
familiar commands for manipulating files like cp, ls, mkdir, and mv.  

Python 
Python has a wide usage and heavy following, especially within Google. In fact, its following is so 
significant they hired the inventor of the language, Guido van Rossum. Python has been around for quite 
a while and has many open source projects written in the language. It also has seen the most interest as 
far as SL4A is concerned, so you’ll find more examples and discussions in the forums than for any of the 
other languages. For that reason, I will spend a little more time introducing the language, trying to hit 
the highlights of things that will be important from an SL4A perspective. 

Language Basics 
Knowing the Python language is not an absolute requirement for this book, but it will help. The first 
thing you need to know about Python is that everything is an object. The second thing is that whitespace 
is meaningful in Python. By that, I mean Python uses either tabs or actual spaces (ASCII 32) instead of 
curly braces to control code execution (see Figure 1-2). Third, it’s important to remember that Python is 
a case-sensitive language. 

 

 

Figure 1-2. Example of whitespace usage in Python 

Python is a great language to use when teaching an “introduction to computer programming” 
course. Every installation of standard Python comes with a command-line interpreter where you can 
type in a line of code and immediately see the result. To launch the interpreter, simply enter python at a 
command prompt (Windows) or terminal window (Linux and Mac OS X). At this point, you should see a 
few lines with version information followed by the triple arrow prompt (>>>), letting you know that 
you’re inside the Python interpreter as shown here: 



CHAPTER 1 ■ INTRODUCTION 

 

14 

C:\Users\paul>python 
Python 2.6.6 (r266:84297, Aug 24 2010, 18:13:38) [MSC v.1500 64 bit (AMD64)] on 
win32 
Type "help", "copyright", "credits" or "license" for more information. 
>>> 

Python uses a number of naming conventions that you will see if you examine much Python code. 
The first is the double underscore, which is used in Python to “mangle” or change names as a way to 
define private variables and methods used inside a class. You will see this notation used for “special” 
methods such as __init__(self). If a class has the special __init__ method, it will be invoked whenever 
a new instantiation of that class occurs.  

For example: 

>>> class Point: 
        def __init__(self, x, y): 
                self.x = x 
                self.y = y 
 
 
>>> xy = Point(1,2) 
>>> xy.x, xy.y 
(1, 2) 

As you can see from the example, self is used as a reserved word in Python and refers to the first 
argument of a method. It’s actually a Python convention and, in reality, has no special meaning to 
Python. However, because it’s a widely accepted convention, you’ll want to stick with it to avoid any 
potential issues. Technically, self is a reference to the class or function itself. Methods within a class 
may call other methods in the same class by using the method attributes of the self argument. 

Python has a short list of built-in constants. The main ones you’ll run into are False, True, and None. 
False and True are of type bool and show up primarily in logical tests or to create an infinite loop. 

One of the things that frequently confuses new users of the language is the variety of data types. The 
following sections give quick overview of the key data types you’ll need to use Python and SL4A. 

Dictionary: An Unordered Set of Key/Value Pairs Requiring Unique Keys  

A Python dictionary maps directly to a JSON data structure. The syntax for defining a dictionary uses 
curly braces to enclose entries and a colon between the key and value. Here’s what a simple dictionary 
definition looks like: 

students = {'barney' : 1001, 'betty' : 1002, 'fred' : 1003, 'wilma' : 1004} 

To reference entries, use the key, as shown here: 

students['barney'] = 999 
students['betty'] = 1000 

You can also use the dict() constructor to build dictionaries. When the key is a simple string, you 
can create a new dictionary using arguments passed to dict() such as the following: 

students = dict(barney=1001, betty=1002, fred=1003, wilma=1004) 



CHAPTER 1 ■ INTRODUCTION 

 

15 

Because everything in Python is an object, you can expect to see methods associated with a 
dictionary object. As you might expect, there are methods to return the keys and the values from a 
dictionary. Here’s what that would look like for the students dictionary: 

>>> students 
{'barney': 1001, 'betty': 1002, 'fred': 1003, 'wilma': 1004} 
>>> students.keys() 
['barney', 'betty', 'fred', 'wilma'] 
>>> students.values() 
[1001, 1002, 1003, 1004] 

The square bracket convention denotes a list. Evaluating the students.keys() statement returns a 
list of keys from the students dictionary. 

List: A Built-In Python Sequence Similar to an Array in Other Languages  

In Python, a sequence is defined as “an iterable which supports efficient element access using integer 
indices via the __getitem__() special method and defines a len() method that returns the length of the 
sequence.” An iterable is defined as “a container object capable of returning its members one at a time.” 
Python provides direct language support for iteration because it’s one of the more common operations 
in programming. List objects provide a number of methods to make working with them easier. From the 
Python documentation: 

• list.append(x): Add an item to the end of the list; equivalent to a[len(a):] = [x]. 

• list.extend(L): Extend the list by appending all the items in the given list; 
equivalent to a[len(a):] = L. 

• list.insert(I,x): Insert an item at a given position. The first argument is the 
index of the element before which to insert, so a.insert(0, x) inserts at the front 
of the list, and a.insert(len(a), x) is equivalent to a.append(x). 

• list.remove(x): Remove the first item from the list whose value is x. It is an error if 
there is no such item. 

• list.pop([i]): Remove the item at the given position in the list and return it. If no 
index is specified, a.pop() removes and returns the last item in the list. (The 
square brackets around the i in the method signature denote that the parameter is 
optional, not that you should type square brackets at that position.) You will see 
this notation frequently in the Python Library Reference. 

• list.index(x): Return the index in the list of the first item whose value is x. It is an 
error if there is no such item. 

• list.count(x): Return the number of times x appears in the list. 

• list.sort: Sort the items of the list, in place. 

• list.reverse(x): Reverse the elements of the list, in place. 



CHAPTER 1 ■ INTRODUCTION 

 

16 

String: An Immutable Sequence Made Up of Either ASCII or Unicode Characters 

The key word in the string definition is immutable, meaning not changeable after creation. This makes 
for speedy implementation of many operations and is why Python can process strings in a very efficient 
manner. The backslash (\) character is used to escape characters that would otherwise have a special 
meaning, including the backslash character itself. If you prefix a string literal with either lower or 
uppercase “r,” you don’t need the backslash character because every character will be treated as a “raw” 
string. You can define a string literal using either single or double quotes, as shown here: 

name = "Paul Ferrill" 
initials = 'PF' 
directory = r'C:\users\paul\documents' 

There are a large number of methods available for the string class. Here’s the list from the Python 
documentation:4 

capitalize() 
center(width[, fillchar]) 
count(sub[, start[, end]]) 
decode( [encoding[, errors]]) 
encode( [encoding[,errors]]) 
endswith( suffix[, start[, end]]) 
expandtabs( [tabsize]) 
find( sub[, start[, end]]) 
index( sub[, start[, end]]) 
isalnum( ) 
isalpha( ) 
isdigit( ) 
islower( ) 
isspace( ) 
istitle( ) 
isupper( ) 
join( seq) 
ljust( width[, fillchar]) 
lower( ) 
lstrip( [chars]) 
partition( sep) 
replace( old, new[, count]) 
rfind( sub [,start [,end]]) 
rindex( sub[, start[, end]]) 
rjust( width[, fillchar]) 
rpartition( sep) 
rsplit( [sep [,maxsplit]]) 
rstrip( [chars]) 
split( [sep [,maxsplit]]) 
splitlines( [keepends]) 
startswith( prefix[, start[, end]]) 

                                                 

 
4 http://docs.python.org/release/2.6/library/stdtypes.html#string-methods 



CHAPTER 1 ■ INTRODUCTION 

 

17 

strip( [chars]) 
swapcase( ) 
title( ) 
translate( table[, deletechars]) 
upper( ) 
zfill( width) 

With Python 2.6, the built-in str and unicode classes provide a very full-featured formatting and 
substitution capability through the str.format() method. There’s also a Formatter class with an even 
more extensive set of methods suitable for implementing a templating capability. Python uses the 
percent sign with strings for formatting as well. Here’s an example of using the percent sign in a print 
statement: 

>>> Pi = 3.141593 
>>> print "Pi = %10.2f" % Pi 
Pi =       3.14 
>>> print "Long Pi = %10.6f" % Pi 
Long Pi =   3.141593 

This is a good place to talk about the use of slices in Python. Any object with multiple items, such as 
a string, can be addressed using a notation called a slice. To reference the items from j to k of string s, 
use s[j:k]. Adding a third item to the slice notation includes a step so that s[j:k:l] references the 
items from j to k, incremented by l. To reference items from the beginning of the list to the nth item, use 
s[:n], and from the nth item to the end would use s[n:]. For example: 

>>> mylist = [1,2,3,4,5,6,7,8,9] 
>>> mylist[:3] 
[1, 2, 3] 
>>> mylist[3:] 
[4, 5, 6, 7, 8, 9] 

Note that Python uses zero-based referencing. So, the first or zeroth element of mylist would be 
equal to 1. The syntax mylist[:3] says “return all elements of mylist from the beginning up to, but not 
including, the fourth element.” Negative indices count from the end of the list. 

Tuple: An Immutable List 

As with the string type, a tuple is immutable, meaning it can’t be changed once created. Tuples are 
defined using the same syntax as a list, except they are enclosed by parentheses instead of square 
brackets. Here’s an example of a tuple: 

>>> Sentence = ("Today", "is", "the", "first", "day", "of", "the", "rest", "of", "your", 
 "life.") 
>>> Sentence 
('Today', 'is', 'the', 'first', 'day', 'of', 'the', 'rest', 'of', 'your', 'life.') 
>>> Sentence[0] 
'Today' 
>>> Sentence[1:3] 
('is', 'the') 
>>> Sentence[-1] 
'life.' 



CHAPTER 1 ■ INTRODUCTION 

 

18 

Python Standard Library 
One of the biggest strengths of the Python language has to be the Python Standard Library, which 
includes a wide variety of routines to make your coding life much simpler. Although there’s not enough 
space available in this introduction to walk through the entire library, I’ll try to point out some of the key 
functions that will show up in later chapters. 

All documentation for the Python language can be found at http://docs.python.org, including 
older releases. SL4A uses Python 2.6, so you’ll want to look under the older releases to get the right 
information. For the Python Standard Library, you’ll want to start with http://docs.python.org/ 
release/2.6.5/library/index.html. 

The Python interpreter has a large number of built-in functions that are always available. One of 
those functions is dir(), which displays all the names that a module defines. If you type dir() at a 
Python prompt you’ll receive a list of names in the current local scope, as seen here: 

>>> dir() 
['__builtins__', '__doc__', '__name__', '__package__'] 
>>> import sys 
>>> dir() 
['__builtins__', '__doc__', '__name__', '__package__', 'sys'] 
>>> import os 
>>> dir() 
['__builtins__', '__doc__', '__name__', '__package__', 'os', 'sys'] 

If you pass an argument to dir(), you’ll get a list of all attributes for that object. Many of the 
modules from the Python Standard Library implement a method named __dir__(), which is what 
actually produces the list of attributes when called. If there is no __dir__() method, the function will 
attempt to use the object’s __dir__() attribute to get the information it needs.  

You can use dir() on any object to inspect the module’s attributes. Here’s what you get when you 
use dir() on the android object: 

>>> import android 
>>> dir(android) 
['Android', 'HANDSHAKE', 'HOST', 'PORT', 'Result', '__author__', '__builtins__', '__doc__', 
 '__file__', '__name__', '__package__', 'collections', 'json', 'os', 'socket', 'sys'] 

Another example is to define a string to see what methods are available: 

>>> a = "Hello" 
>>> dir(a) 
['__add__', '__class__', '__contains__', '__delattr__', '__doc__', '__eq__', '__format__', 
 '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__getslice__', '__gt__', 
 '__hash__', '__init__', '__le__', '__len__', '__lt__', '__mod__', '__mul__', '__ne__', 
 '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', '__rmul__', 
 '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '_formatter_field_name_split', 
 '_formatter_parser', 'capitalize', 'center', 'count', 'decode', 'encode', 'endswith', 
 'expandtabs', 'find', 'format', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 
 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition', 
 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'split', 
 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill'] 



CHAPTER 1 ■ INTRODUCTION 

19 

There are times when you may be working with the Python Standard Library, or even some other 
library, and you don’t know the type of a returned variable. For this, you can use the type() built-in 
function like this: 

>>> type(a) 
<type 'str'> 

Number conversion is one of those frequently needed functions, and Python has that down in 
spades. Here are a few examples: 

>>> bin(12345678) 
'0b101111000110000101001110' 
>>> hex(12345678) 
'0xbc614e' 
>>> oct(12345678) 
'057060516' 

The result of these functions is a string. To convert from a string to an integer, use the int() function 
as follows: 

>>> print int('0xbc614e',16) 
12345678 

File input and output in Python use a very simplified approach. To open a file, use open, as shown in 
Figure 1-3. 

Figure 1-3. Example of the Python file open 

Supported file modes include append (‘a’), read (‘r’), and write (‘w’). open returns an object of type 
file with a full selection of methods and attributes. Here’s what that looks like: 

>>> infile = open(r'c:\users\paul\documents\dependents.txt') 
>>> type(infile) 
<type 'file'> 
>>> dir(infile) 
['__class__', '__delattr__', '__doc__', '__enter__', '__exit__', '__format__', 
 '__getattribute__', '__hash__', '__init__', '__iter__', '__new__', '__reduce__', 
 '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 
 'close', 'closed', 'encoding', 'errors', 'fileno', 'flush', 'isatty', 'mode', 'name', 
 'newlines', 'next', 'read', 'readinto', 'readline', 'readlines', 'seek', 'softspace',v 
 'tell', 'truncate', 'write', 'writelines', 'xreadlines'] 



CHAPTER 1 ■ INTRODUCTION 

 

20 

The os module provides platform-independent interfaces to the underlying operating system. If you 
plan to do anything with filenames, you’ll want to get to know the os module. Here’s what you get if you 
import os and then do a dir(os): 

>>> dir(os) 
['F_OK', 'O_APPEND', 'O_BINARY', 'O_CREAT', 'O_EXCL', 'O_NOINHERIT', 'O_RANDOM', 'O_RDONLY', 
 'O_RDWR', 'O_SEQUENTIAL', 'O_SHORT_LIVED', 'O_TEMPORARY', 'O_TEXT', 'O_TRUNC', 'O_WRONLY', 
 'P_DETACH', 'P_NOWAIT', 'P_NOWAITO', 'P_OVERLAY', 'P_WAIT', 'R_OK', 'SEEK_CUR', 'SEEK_END', 
 'SEEK_SET', 'TMP_MAX', 'UserDict', 'W_OK', 'X_OK', '_Environ', '__all__', '__builtins__', 
 '__doc__', '__file__', '__name__', '__package__', '_copy_reg', '_execvpe', '_exists', 
 '_exit', '_get_exports_list', '_make_stat_result', '_make_statvfs_result', 
 '_pickle_stat_result', '_pickle_statvfs_result', 'abort', 'access', 'altsep', 'chdir', 
 'chmod', 'close', 'closerange', 'curdir', 'defpath', 'devnull', 'dup', 'dup2', 'environ', 
 'errno', 'error', 'execl', 'execle', 'execlp', 'execlpe', 'execv', 'execve', 'execvp', 
 'execvpe', 'extsep', 'fdopen', 'fstat', 'fsync', 'getcwd', 'getcwdu', 'getenv', 'getpid', 
 'isatty', 'linesep', 'listdir', 'lseek', 'lstat', 'makedirs', 'mkdir', 'name', 'open', 
 'pardir', 'path', 'pathsep', 'pipe', 'popen', 'popen2', 'popen3', 'popen4', 'putenv', 
 'read', 'remove', 'removedirs', 'rename', 'renames', 'rmdir', 'sep', 'spawnl', 'spawnle', 
 'spawnv', 'spawnve', 'startfile', 'stat', 'stat_float_times', 'stat_result', 
 'statvfs_result', 'strerror', 'sys', 'system', 'tempnam', 'times', 'tmpfile', 'tmpnam', 
 'umask', 'unlink', 'unsetenv', 'urandom', 'utime', 'waitpid', 'walk', 'write'] 

As you can see, there are quite a few methods available. Another handy module for dealing with files 
and directories is glob, which you can use to get a list of files in a specific directory based on wild cards 
like this: 

>>> import glob 
for file in glob.glob("*.jpg"): 
    print file 

This would print a list of all the .jpg files in the current working directory. The next module on the 
hit list is datetime. If you need to do anything with dates or times, you’ll need datetime. Here are a few 
examples of using this module: 

>>> print datetime.date.today() 
2011-04-26 
>>> print datetime.datetime.now() 
2011-04-26 14:35:25.045000 
>>> print datetime.date.weekday(datetime.datetime.now()) 
1 

Last on the list of file utilities is shutil. This module provides a number of file utilities such as 
shutil.copy, shutil.copytree, shutil.move, and shutil.rmtree. Here’s what you get if you import 
shutil and use dir() to see the methods: 

>>> import shutil 
>>> dir(shutil) 
['Error', '__all__', '__builtins__', '__doc__', '__file__', '__name__', '__package__', 
 '_basename', '_samefile', 'abspath', 'copy', 'copy2', 'copyfile', 'copyfileobj', 
 'copymode', 'copystat', 'copytree', 'destinsrc', 'fnmatch', 'ignore_patterns', 'move', 
 'os', 'rmtree', 'stat', 'sys'] 



CHAPTER 1 ■ INTRODUCTION 

 

21 

Processing data stored in comma-separated value (CSV) files is another common task. Python 2.6 
includes the csv module for just such a task. Here’s a simple script that uses the csv module to simply 
print out all rows in a file: 

import csv 
reader = csv.reader(open("some.csv", "rb")) 
for row in reader: 
    print row 

You can also write to a CSV file in a similar manner: 

import csv 
writer = csv.writer(open("some.csv", "wb")) 
writer.writerows(someiterable) 

This example shows how you could parse the data into separate items in a list: 

>>> import csv 
>>> for row in csv.reader(['one,two,three']): 
        print row 
 
['one', 'two', 'three'] 

You could use the string.count method if you didn’t know how many columns were in the file like 
this: 

>>> import string 
>>> string.count('one,two,three,four,five',',') 
4 

The last method from the csv module we’ll look at is DictReader. In most cases, you should know 
what fields are contained in your CSV file. If that is indeed the case, you can use the DictReader function 
to read the file into a dictionary. Here’s a sample text file with name, address, and phone number: 

John Doe|Anycity|ST|12345|(800) 555-1212 
Jane Doe|Anycity|ST|12345|(800) 555-1234 
Fred Flinstone|Bedrock|ZZ|98765|(800) 555-4321 
Wilma Flinstone|Bedrock|ZZ|98765|(800) 555-4321 
Bambam Flinston|City|ST|12345|(800) 555-4321 
Barney Rubble|Bedrock|ZZ|98765|(800) 555-1111 

We need one more module for our sample code: itertools. This module provides functions for 
creating efficient iterators used by Python with the for keyword. The code to read the file and print out 
the results looks like this: 

import itertools 
import csv 
 
HeaderFields = ["Name", "City", "State", "Zip", "PhoneNum"] 
 
infile = open("testdata.txt") 
 
contacts = csv.DictReader(infile, HeaderFields, delimiter="|") 
 
for header in itertools.izip(contacts): 
    print "Header (%d fields): %s" % (len(header), header) 



CHAPTER 1 ■ INTRODUCTION 

 

22 

Finally, here’s what the output looks like: 

Header (1 fields): ({'City': 'Anycity', 'State': 'ST', 'PhoneNum': '(800) 555-1212', 'Name': 
 'John Doe', 'Zip': '12345'},) 
Header (1 fields): ({'City': 'Anycity', 'State': 'ST', 'PhoneNum': '(800) 555-1234', 'Name': 
 'Jane Doe', 'Zip': '12345'},) 
Header (1 fields): ({'City': 'Bedrock', 'State': 'ZZ', 'PhoneNum': '(800) 555-4321', 'Name': 
 'Fred Flinstone', 'Zip': '98765'},) 
Header (1 fields): ({'City': 'Bedrock', 'State': 'ZZ', 'PhoneNum': '(800) 555-4321', 'Name': 
 'Wilma Flinstone', 'Zip': '98765'},) 
Header (1 fields): ({'City': 'City', 'State': 'ST', 'PhoneNum': '(800) 555-4321', 'Name': 
 'Bambam Flinston', 'Zip': '12345'},) 
Header (1 fields): ({'City': 'Bedrock', 'State': 'ZZ', 'PhoneNum': '(800) 555-1111', 'Name': 
 'Barney Rubble', 'Zip': '98765'},) 
Header (1 fields): ({'City': 'Bedrock', 'State': 'ZZ', 'PhoneNum': '(800) 555-1111', 'Name': 
 'Betty Rubble', 'Zip': '98765'},) 

The weekday method returns 0 for Monday, 1 for Tuesday, and so on. One of the things you might 
need later is the ability to convert from a system timestamp value to a human-readable string. Here’s a 
snippet of code used in a later chapter that converts the timestamp for an SMS message into a string: 

b = '' 
for m in SMSmsgs: 
  millis = int(message['date'])/1000 
  strtime = datetime.datetime.fromtimestamp(millis) 
  b += strtime.strftime("%m/%d/%y %H:%M:%S") + ',' + m['address'] + ',' + m['body'] + '\n' 

Writing code for mobile devices will inevitably involve communicating with a web site in some 
fashion. The Python Standard Library has two modules to help with this task: urllib and urllib2. 
Although the two modules provide similar functionality, they do it in different ways. Here’s what you get 
when you import both and examine their methods: 

>>> import urllib 
>>> dir(urllib) 
['ContentTooShortError', 'FancyURLopener', 'MAXFTPCACHE', 'URLopener', '__all__', 
 '__builtins__', '__doc__', '__file__', '__name__', '__package__', '__version__', 
 '_ftperrors', '_have_ssl', '_hextochr', '_hostprog', '_is_unicode', '_localhost', 
 '_noheaders', '_nportprog', '_passwdprog', '_portprog', '_queryprog', '_safemaps', 
 '_tagprog', '_thishost', '_typeprog', '_urlopener', '_userprog', '_valueprog', 'addbase', 
 'addclosehook', 'addinfo', 'addinfourl', 'always_safe', 'basejoin', 'ftpcache', 
 'ftperrors', 'ftpwrapper', 'getproxies', 'getproxies_environment', 'getproxies_registry', 
 'localhost', 'main', 'noheaders', 'os', 'pathname2url', 'proxy_bypass', 
 'proxy_bypass_environment', 'proxy_bypass_registry', 'quote', 'quote_plus', 'reporthook', 
 'socket', 'splitattr', 'splithost', 'splitnport', 'splitpasswd', 'splitport', 'splitquery', 
 'splittag', 'splittype', 'splituser', 'splitvalue', 'ssl', 'string', 'sys', 'test', 
 'test1', 'thishost', 'time', 'toBytes', 'unquote', 'unquote_plus', 'unwrap', 
 'url2pathname', 'urlcleanup', 'urlencode', 'urlopen', 'urlretrieve', 'warnings'] 
>>> import urllib2 
>>> dir(urllib2) 



CHAPTER 1 ■ INTRODUCTION 

 

23 

['AbstractBasicAuthHandler', 'AbstractDigestAuthHandler', 'AbstractHTTPHandler', 
 'BaseHandler', 'CacheFTPHandler', 'FTPHandler', 'FileHandler', 'HTTPBasicAuthHandler', 
 'HTTPCookieProcessor', 'HTTPDefaultErrorHandler', 'HTTPDigestAuthHandler', 'HTTPError', 
 'HTTPErrorProcessor', 'HTTPHandler', 'HTTPPasswordMgr', 'HTTPPasswordMgrWithDefaultRealm', 
 'HTTPRedirectHandler', 'HTTPSHandler', 'OpenerDirector', 'ProxyBasicAuthHandler', 
 'ProxyDigestAuthHandler', 'ProxyHandler', 'Request', 'StringIO', 'URLError', 
 'UnknownHandler', '__builtins__', '__doc__', '__file__', '__name__', '__package__', 
 '__version__', '_cut_port_re', '_opener', '_parse_proxy', 'addinfourl', 'base64', 'bisect', 
 'build_opener', 'ftpwrapper', 'getproxies', 'hashlib', 'httplib', 'install_opener', 
 'localhost', 'mimetools', 'os', 'parse_http_list', 'parse_keqv_list', 'posixpath', 
 'proxy_bypass', 'quote', 'random', 'randombytes', 're', 'request_host', 'socket', 
 'splitattr', 'splithost', 'splitpasswd', 'splitport', 'splittype', 'splituser', 
 'splitvalue', 'sys', 'time', 'unquote', 'unwrap', 'url2pathname', 'urlopen', 'urlparse'] 

If you simply want to download the contents of a URL as you might do with a right-click and Save As 
on a desktop machine, you can use urllib.urlretrieve. There are a number of helper methods in 
urllib to build or decode a URL, including pathname2url, url2pathname, urlencode, quote, and unquote. 
Here’s a snippet of code for urllib: 

import urllib 
 
class OpenMyURL(urllib.FancyURLopener): 
    # read a URL with HTTP authentication 
 
    def setpasswd(self, user, passwd): 
        self.__user = user 
        self.__passwd = passwd 
 
    def prompt_user_passwd(self, host, realm): 
        return self.__user, self.__passwd 
 
urlopener = OpenMyURL() 
urlopener.setpasswd("user", "password") 
 
f = urlopener.open("http://www.aprivatesite.com") 
print f.read() 

If you need to download files over FTP, you’ll want to use urllib2. Here’s a sample I found on 
stackoverflow.com: 

>>> files = urllib2.urlopen('ftp://ftp2.census.gov/geo/tiger/TIGER2008/01_ALABAMA/') 
.read().splitlines() 
>>> for l in files[:4]: print l 
...  
drwxrwsr-x    2 0        4009         4096 Nov 26  2008 01001_Autauga_County 
drwxrwsr-x    2 0        4009         4096 Nov 26  2008 01003_Baldwin_County 
drwxrwsr-x    2 0        4009         4096 Nov 26  2008 01005_Barbour_County 
drwxrwsr-x    2 0        4009         4096 Nov 26  2008 01007_Bibb_County 



CHAPTER 1 ■ INTRODUCTION 

 

24 

For implementing a basic HTTP server there’s SimpleHTTPServer. Here’s what you get: 

>>> import SimpleHTTPServer 
>>> dir(SimpleHTTPServer) 
['BaseHTTPServer', 'SimpleHTTPRequestHandler', 'StringIO', '__all__', '__builtins__', 
 '__doc__', '__file__', '__name__', '__package__', '__version__', 'cgi', 'mimetypes', 
 'os', 'posixpath', 'shutil', 'test', 'urllib'] 

I’ll use this module in Chapter 7 to build a quick script to give you access to any directory on your 
Android device from a web browser. You might have occasion to need the value of your local IP address. 
The socket library comes to the rescue here. One trick to get your own address is to connect to a well-
known site and retrieve your address from the connection details. Here’s how to do that: 

>>> s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) 
>>> s.connect(("gmail.com",80)) 
>>> print s.getsockname() 
('192.168.1.8', 64300) 

There are some functions that return a decimal or hexadecimal number representing the IP address. 
The socket library provides two functions to help you go from a decimal number to the four numbers in 
standard IP address notation or vice versa. You’ll also need the Python struct module. Here’s the code: 

>>> import socket, struct 
>>> struct.unpack('L', socket.inet_aton('192.168.1.8'))[0] 
134326464 
>>> socket.inet_ntoa(struct.pack('L',134326464)) 
'192.168.1.8' 

To access any of the Android API functions from Python, you must import android and then 
instantiate an object like this: 

>>> import android 
>>> droid = android.Android() 

Once that’s done, you have full access to all API functions. Here’s what the Android class looks like 
from android.py: 

class Android(object): 
 
  def __init__(self, addr=None): 
    if addr is None: 
      addr = HOST, PORT 
    self.conn = socket.create_connection(addr) 
    self.client = self.conn.makefile() 
    self.id = 0 
    if HANDSHAKE is not None: 
      self._authenticate(HANDSHAKE) 
 
  def _rpc(self, method, *args): 
    data = {'id': self.id, 
            'method': method, 
            'params': args} 
    request = json.dumps(data) 
    self.client.write(request+'\n') 
    self.client.flush() 



CHAPTER 1 ■ INTRODUCTION 

 

25 

    response = self.client.readline() 
    self.id += 1 
    result = json.loads(response) 
    if result['error'] is not None: 
      print result['error'] 
    # namedtuple doesn't work with unicode keys. 
    return Result(id=result['id'], result=result['result'], 
                  error=result['error'], ) 
 
  def __getattr__(self, name): 
    def rpc_call(*args): 
      return self._rpc(name, *args) 
    return rpc_call 

Here’s a simple Python hello_world.py script from the SL4A installation: 

>>> import android 
>>> droid = android.Android() 
>>> name = droid.getInput("Hello!", "What is your name?") 
>>> print name 
Result(id=0, result=u'Paul', error=None) 
>>> droid.makeToast("Hello, %s" % name.result) 
Result(id=1, result=None, error=None) 
>>> 

When you combine the simplicity of the Python language with the breadth of the Python Standard 
Library, you get a great tool for implementing useful scripts on the desktop, server, or Android device 
with SL4A. 

Figure 1-4 shows the first thing you’ll see onscreen when you run the simple hello_world.py script. 
When you type in your name as I have done and press the Ok button, you should see the little popup 
message shown in Figure 1-5 as a result of the makeToast API call. 

 

 

Figure 1-4. Hello World input dialog box 

 



CHAPTER 1 ■ INTRODUCTION 

 

26 

 

Figure 1-5. Result of makeToast API call 

Summary 
This chapter introduces the Android platform in a general sense and SL4A more specifically. There are a 
few things here that are worth noting and remembering as you continue along through the rest of the 
book. 

Here’s what you should hold on to from this chapter: 

• Linux underpinnings: The Android OS is essentially Linux under the hood. Many 
of the same directories and programs are there.  

• Java is the language of Android: Applications built on top of the Android SDK 
run inside a Java DVM. Although it’s not an absolute necessity, it doesn’t hurt to 
know a little Java to help you understand some of the plumbing behind SL4A. 

• SL4A is a container application: It hosts all the different language interpreters 
and provides the interface using RPC to the underlying OS.  

• JSON is the way to pass data: Nicely formatted JSON is not hard to read and, in 
fact, has a very logical structure. Once you get used to the syntax, you should be 
able to handle any of the API functions. 

• Language options: Although Python is the most popular, you also have other 
options including Beanshell, JRuby, Lua, Perl, PHP, and Rhino. 



C H A P T E R  2 
 

 

    

 

   

 

  

 

 

  

 

27 

Getting Started 

This chapter will give you all the information you need to get going with Google’s Scripting Layer for 
Android (SL4A). 

■ Note A number of topics will be introduced in this chapter and covered in more detail later.  

Okay. Let’s get started. Here’s what I’ll cover in this chapter: 

• Installing the core files on your device 

• Installing the Android SDK 

• Remotely connecting to your device 

• Executing simple programs  

By using the instructions given here, you will be able to get up and running with SL4A in a very short 
time. Pay close attention to the sections on configuring your device and desktop as the instructions will 
need to be accomplished to get the two communicating. You will find it helpful to follow along with the 
examples as I walk you through them.  

Installing SL4A on the Device 
The quickest way to get started with SL4A is to simply install it on an Android device. There are several 
ways of doing this. If you navigate to the SL4A home page (http://code.google.com/p/android-
scripting), you’ll find download links for the .apk files and a QR code for use with a barcode scanner to 
install on your device. Here’s a list of the steps you need to accomplish to get SL4A installed: 

 

 

 

 



CHAPTER 2 ■ GETTING STARTED 

 

28 

1. Download the SL4A .apk file (see Figure 2-1). 

 

 

Figure 2-1. Downloading the .apk file 

2. Launch the .apk file from the notifications screen (see Figure 2-2). 

 

 

Figure 2-2. Launching the .apk file 

 
 
 
 
 
 
 
 
 
 



CHAPTER 2 ■ GETTING STARTED 

29 

3. Select Install on the next screen to actually install SL4A (see Figure 2-3). 

Figure 2-3. Installing SL4A 

Don’t worry about the warnings as they simply indicate that SL4A has the capability to perform any 
of those tasks, but won’t unless you actually write a script to do so. If you choose to install in the 
emulator, simply navigate to the SL4A web site from the browser inside the emulator and click either  
the QR code or the sl4a rx.apk link under Downloads. 

The first time you start the SL4A application you’ll be asked if you want to allow the collection  
of anonymous usage information. Either way, you can always change your mind later through the 
Preferences menu.  

Now that you have the main SL4A application installed you’ll still need to install your favorite 
interpreter. This is done by starting the SL4A application and then pressing the menu button (see  
Figure 2-4). 



CHAPTER 2 ■ GETTING STARTED 

 

30 

 

Figure 2-4. SL4A menu button popup 

This will present a number of buttons across the bottom of the screen including one labeled View. 
Touching this button causes a popup selection dialog box with options including Interpreters (see 
Figure 2-5). 

■ Note Because this book is primarily about working with Android devices using touch as the primary user 
interaction, you will see the words touch or select frequently used. There will also be references to other finger-
based motions such as drag down or swipe from left to right.  

 

Figure 2-5. SL4A view button popup 



CHAPTER 2 ■ GETTING STARTED 

 

31 

Choosing the Interpreters option will bring you to a default screen listing only Shell as an available 
option. To install additional interpreters, press the menu button again and then touch the Add button 
(see Figure 2-6). 

 

 

Figure 2-6. Interpreters screen options menu 

This will display a list of available interpreters for you to download and install (see Figure 2-8). 
Selecting one such as Python 2.6.2 will initiate a download of the primary Python interpreter package 
from the main SL4A website. You must again access the Notification bar by swiping down from the top 
of the display to launch the Python installer by touching the filename (see Figure 2-7). 

■ Note It would be worth your time at this point to review the Terminal Help available from the Interpreters 
screen menu option. With the Interpreters screen visible, press the hardware menu button and then choose Help. 
From there, select Terminal Help and read about entering and editing text.  

 

Figure 2-7. Python interpreter download notification 



CHAPTER 2 ■ GETTING STARTED 

 

32 

 

Figure 2-8. SL4A add an Interpreter 

I should mention at this point that there is an alternative way to install a Python interpreter. This 
method consists of downloading the .apk file and then using the Android Debug Bridge (ADB) to install 
it. You’ll need to use this method if you wish to try any of the newer Python for Android releases as the 
base SL4A installation typically points at the last official-release version. In this case you would use a 
web browser to navigate to the Google code site (http://code.google.com/p/python-for-android) and 
then use the right-click and save-as method to download the PythonForAndroid rx.apk file where the x 
represents the version you wish to test. Next you would use the following ADB command to install the 
.apk file onto either an emulator or a physical device: 

adb install PythonForAndroid r6.apk 

Touching the Install button starts the actual installation and presents you with the same “Open” 
and “Done” buttons as you saw when the SL4A installation completed. With early versions of the Python 
interpreter you would see a single Install button after touching “Open” (see Figure 2-9). More recent 
versions of Python for Android will present a screen like the one in Figure 2-10. Three new buttons have 
been added to facilitate module management. By modules I mean additional library modules not 
included with a normal Python distribution. The Python for Android project has made several of these 
modules available and you can see them when you click on the “Browse Modules” button. This will open 
a web page on the Python for Android wiki site and give you the opportunity to download them (see 
Figure 2-11). 

 



CHAPTER 2 ■ GETTING STARTED 

 

33 

 

Figure 2-9. Installing Python for Android 

 

Figure 2-10. Python for Android Installer 

You should see a quick popup dialog box with the words Installation Successful if everything runs 
without error. At this point there will be a screen with the Shell and Python 2.6.2 interpreters listed. 
Additional interpreters can be added in a similar fashion. Choosing the Python 2.6.2 option will launch 
the Python interpreter. 

 



CHAPTER 2 ■ GETTING STARTED 

 

34 

 

Figure 2-11. Python-for-android modules page 

Now you’re finally ready to start entering code at a standard Python command prompt, as shown in 
Figure 2-13. You can type any valid Python code and immediately see the results. If you want to access 
any Android functions, you must import the android module. It takes a total of three lines of code to 
implement the typical “Hello World” program as follows: 

>>> import android 
>>> droid = android.Android() 
>>> droid.makeToast('Hello, Android World') 

When you hit return after the third line, you should see a dialog box popup with the text “Hello, 
Android World” (see Figure 2-12). The dialog box will automatically close after a few seconds. 

 

 

Figure 2-12. Results of makeToast function call 



CHAPTER 2 ■ GETTING STARTED 

 

35 

 

Figure 2-13. SL4A Python interpreter prompt 

If you press the menu button while in the interpreter, you will see four buttons at the bottom of the 
screen labeled Force Size, Email, Preferences, and Exit & Edit. These buttons are generic to every 
interpreter so you’ll be able to access them from Python, BeanShell, or any of the other interpreters you 
choose to install. Figure 2-14 shows what these buttons look like. 

■ Note All scripts are stored on the SD card of your device in the directory /sdcard/sl4a/scripts. If you have your 
device connected to a host computer using the USB cable, the SD card will not be available, and your scripts won’t 
be visible. 



CHAPTER 2 ■ GETTING STARTED 

 

36 

 

Figure 2-14. SL4A Python interpreter menu 

The Force Size button allows you to change the screen dimensions of the interpreter. The default is 
80  25, which fits the screen in landscape mode fairly well. Once you choose your dimensions and 
select the Resize button your screen will adjust to the new size. Figure 2-15 shows the resize dialog box. 

 

 

Figure 2-15. SL4A interpreter screen resize dialog box 

The Email menu option will capture all text in the interpreter screen and load it into an e-mail 
message, allowing you to send everything you’ve typed to yourself (or anyone else, for that matter). 
Here’s what the text of the e-mail looks like for the previous “Hello World” code with a little editing to 
the actual message to add carriage returns for clarity: 



CHAPTER 2 ■ GETTING STARTED 

 

37 

Python 2.6.2 (r262:71600, Sep 19 2009, 11:03:28) 
[GCC 4.2.1] on linux2 
Type "help", "copyright", "credits" or "license" for more information. 
>>> import android 
>>> droid = android.Android() 
>>> droid.makeToast('Hello, Android World') 
Result(id=1, result=None, error=None) 
>>> 

This is a good point to stop and talk about moving files between your host computer and the device. 
The absolute easiest way is to connect your device using a USB cable and set the connection type to Disk 
drive. With this set, you should be able to browse the files on the device using your normal file manager 
application on any operating system (OS). At this point, moving files between host and device becomes a 
simple drag-and-drop operation. We’ll take a look at a few other methods in a later chapter when we 
discuss the Android SDK in more detail. 

Now back to the Interpreter Options menu. The Exit & Edit button is grayed-out for SL4A R3, 
meaning it is not currently implemented. Selecting the Preferences button presents a new scrollable 
page with multiple entries, grouped by functional area, allowing you to configure any number of 
different options. Some of these options, such as Font size, are repeated under different headings, 
making it possible to change the font size in both the Editor Tool and the Interpreter window. 

There are a few of the options that you should take note of. If you selected Allow Usage Tracking 
when you first installed SL4A, you can change that with the first entry on the Preferences screen. Figure 
2-16 shows the first four options of the Preferences screen including General Usage Tracking, Script 
Manager Show all files, Script Editor Font size, and Terminal Scrollback size. Most of these are pretty 
self-explanatory, but I’ll highlight a few things of interest. 

 

 

Figure 2-16. First part of SL4A Preferences Menu 



CHAPTER 2 ■ GETTING STARTED 

 

38 

Enabling the Show all files option under the Script Manager heading will display all files in the 
/sdcard/sl4a/scripts directory on the device. This can come in handy if you’re using other files as a 
part of your application and you want to verify that they are actually in the right directory. The Font size 
option under the Script Editor heading will set the font size for the text editor only. There’s another Font 
size option under the Terminal heading that will set the size of characters in the terminal window when 
you open an interpreter command prompt. 

The Terminal heading has a few other settings of interest. Rotation mode lets you choose how the 
screen behaves when the terminal window is visible. Options include Default, Force landscape, Force 
portrait, and Automatic. You might want your terminal window to always open in landscape mode, 
which is a little easier to see but gives you limited screen real estate to work with. The Automatic option 
will rotate the screen for you when you rotate the device.  

Default screen colors in the terminal window are white text on a black background. You can change 
them to be virtually anything you’d like using a color-wheel picker or a slider control. For screenshot 
purposes I set the colors exactly opposite of the default, meaning black text on a white background. The 
color picker dialog box displays the HSV, RGB, and YUB values of the current color, along with a hex 
code you could use with CSS. Figure 2-17 shows what the color picker looks like. You can accept your 
change by selecting the Accept button or revert to what you previously had with the Revert button. 

 

 

Figure 2-17. Terminal window color picker 

There is one more Terminal heading option you probably want to enable, and that’s the Keep screen 
awake option. It should be on by default, but if your screen starts disappearing on you while you’re 
thinking about the next line of code, you’ll know which option to look for. Next I’ll take you through 
installing the Android SDK on a development machine to take advantage of some of the tools there. 



CHAPTER 2 ■ GETTING STARTED 

39 

Installing the Android SDK 
There are a number of tools provided with the Android SDK that make life much easier for the developer. 
I’ll address installing the SDK here and do a deep dive on what’s inside in a later chapter. Step one is to 
download the appropriate install file for your operating system. Google provides installers for Linux, Mac 
OS X, and Windows. You’ll also need the Java Development Kit (JDK) installed first if you don’t already 
have that loaded on your machine. I’ll address installation on all three platforms to make sure the bases 
are covered. 

Linux 
To walk through installing the SDK on Linux I’ll start with a fresh install of a 64-bit version of Ubuntu 
10.10 desktop. You also want to make sure the system is up-to-date with the latest security patches 
before you proceed. The first thing you must install are the base Java packages. This can be 
accomplished with the following commands from a terminal window: 

$ sudo add-apt-repository ppa:sun-java-community-team/sun-java6 
$ sudo apt-get update 
$ sudo apt-get install sun-java6-jre sun-java6-bin sun-java6-jdk 

To get this to work properly, you’ll need to execute another command line install to get the SDK to 
fully function. This has to do with the use of 32-bit packages by the SDK. Creating a new Android virtual 
device (AVD) uses the mksdcard utility, which depends on the ia32-libs package. To install this 
dependency you’ll need to enter another command in a terminal window: 

$ sudo apt-get install ia32-libs 

For Linux there’s a .tgz file containing all the base SDK files on the Android SDK download page 
(http://developer.android.com/sdk). If you’re using Firefox for your web browser, you should be 
presented with the option to open the file using the File Roller utility. Extract the entire directory to 
somewhere convenient. Once you have the files extracted you need to run the SDK Manager app to 
actually install one or more versions of the Android platform. 

The SDK Manager application looks virtually identical on all three platforms so I’ll describe the 
process of downloading specific versions only once. On Linux, the manager app is named android and 
exists in the tools subdirectory below the main SDK root directory. You can launch it from a Nautilus file 
manager window by double-clicking the android file. If you’re really curious, you can open the file in a 
text editor because it is, in fact, a shell script that will launch sdkmanager.jar. This will bring up the main 
SDK Manager screen, as shown in Figure 2-18. 



CHAPTER 2 ■ GETTING STARTED 

 

40 

 

Figure 2-18. Android SDK Manager screen 

■ Note If you access the Internet through a proxy, you will need to add that information in the Settings menu, as 
shown in Figure 2-19. 

 

Figure 2-19. Proxy server Settings page 

Choosing which versions to install depends primarily upon the versions of Android running on the 
devices you will be supporting. For the examples in this book, I’ll install all the 2.x versions and samples. 
To do this you simply click the checkbox next to those items, along with the Android SDK Platform tools 
and Documentation entries, and then click the Install Selected button. The whole process should take 
less than ten minutes with a reasonably fast Internet connection. 



CHAPTER 2 ■ GETTING STARTED 

 

41 

It makes sense to create a few shortcuts on your desktop to frequently used programs installed by 
the SDK for later use. You can do this with GNOME by right-clicking the desktop and selecting Create 
Launcher. The dialog box prompts for a name to display underneath the icon along with a command to 
execute. If you click the Browse button next to the Command text box, you’ll be able to navigate to the 
SDK tools directory. Clicking the android file will set it as the target for execution for the new launcher. 
Now you have quick access to the SDK Manager application from an icon on the desktop. 

The SDK installation instructions recommend that you also add the tools and platform-tools 
directories to your path. If you unpacked the SDK files in your home directory, you could set this from 
the command line with the following: 

export PATH=${PATH}:~/android-sdk-linux-x86/tools:~/android-sdk-linux-x86/platform-tools 

■ Note Watch out for subtle changes between SDK releases that could throw you for a loop. Google changed 
conventions from SDK version 8 to 9 (Android 2.2 to 2.3), including the directories for several of the most 
commonly used utility programs. 

Mac OS X 
Installing on a Mac consists of downloading a zip file and then unpacking the contents. You must run 
the Android SDK and AVD Manager application and then choose which versions you want to install. To 
start the process, you can either launch the Android application from the Finder or from a terminal 
window in the directory where you unpacked the SDK download with this command: 

$ tools/android 

The first time you run the SDK Manager application you will be presented with a list of SDK versions 
to choose from. OS X will look almost identical to Linux from a command-line perspective, including 
setting the path statement. You can use the same syntax as before, taking care to specify the correct path 
to the SDK directory. In my case, I unpacked the SDK at the top level of my home directory and used this 
export statement: 

export PATH=${PATH}:~/android-sdk-mac-x86/tools:~/android-sdk-linux-x86/platform-tools 

You’ll need to add this same line to your .bash_profile file to make the path modification the next 
time you log in. You will probably want to create a shortcut on your dock to quickly launch the SDK 
Manager. All you have to do is drag the android file from the tools directory to the right side of the dock. 
Now you’ll have one-click access to the SDK Manager and from there you can launch a device emulator. 
We’ll take an in-depth look at using a device emulator in Chapter 3. 

Windows 
Google provides both a zip file and an executable to install the SDK on Windows. The download file size 
is almost the same, so that shouldn’t make any difference in choosing one over the other. If you 
download the .exe file, you’ll have one fewer step to perform to unpack the files. It’s also the 
recommended choice, so that’s what I will address. I’ll be using the 64-bit version of Windows 7 Ultimate 
for all Windows development and examples. To start the process, I simply clicked the installer r08-
windows.exe link on the Android SDK download page. Once that file has downloaded, you need to 



CHAPTER 2 ■ GETTING STARTED 

 

42 

double-click it to launch the installer. If you don’t have the Java Development Kit (JDK), you’ll see a 
screen like the one shown in Figure 2-20. 

■ Note The Android SDK .exe installer looks for the 32-bit version of the JDK and won’t continue if you don’t 
have it installed. 

 

Figure 2-20. Missing JDK screen 

Even though I’m testing on 64-bit Windows, I discovered that you must install the 32-bit JDK for the 
Android SDK to install. Once you have the JDK downloaded, you simply double-click the filename to 
start the installation. With that step complete you can now proceed to install the Android SDK. At the 
completion of the installation you’ll be given the option to launch the SDK Manager. Launching the SDK 
Manager for the first time on Windows looks slightly different from Linux and Mac OS X. Figure 2-21 
shows the dialog box you will see, allowing you to choose specific packages to install. 

You’ll notice the dialog box for choosing SDK versions is slightly different and requires you to select 
a specific line in the dialog box and then click the Reject radio button to unselect a version. Since I’ll only 
be using 2.x versions of the SDK, I deselected the 1.5 and 1.6 version options. With that complete, I 
clicked on the Install button, and everything then ran without intervention. When you choose the .exe 
installer, you’ll get a new option added to your Windows programs menu labeled Android SDK Tools. 
You can also right-click the SDK Manager icon and drag it to the desktop for quick access. Be aware that 
if you simply drag the icon from the Windows Programs menu you’ll actually move it to the desktop. 



CHAPTER 2 ■ GETTING STARTED 

 

43 

 

Figure 2-21. Initial Android SDK Manager Screen 

Installing Python 
Although you can type in code directly on your device, you’ll quickly find the process quite tedious 
unless you happen to have a full-size keyboard attached. Connecting remotely from a host computer 
provides a much more productive environment for developing and testing applications. I’ll look at using 
Eclipse for this purpose in Chapter 4, but for now I’ll show you how to use the Android SDK tools to do 
essentially the same thing. 

There is one more thing, however, that needs to be done first. If you happen to be using either Linux 
or Mac OS X, you will more than likely have a version of Python already installed. On both platforms you 
can tell for sure by opening a terminal window and launching Python. Figure 2-22 shows what this looks 
like on my Mac Mini running OS X Snow Leopard version 10.6.5. 

■ Note Any 2.6 version of Python should work on the host computer, but be aware that SL4A is based on 2.6.2 
just in case you see some peculiar behavior when running scripts from the host remotely to the device. 



CHAPTER 2 ■ GETTING STARTED 

 

44 

 

Figure 2-22. Python running on Mac OS X  

Python is not installed by default on Windows. To install Python, go to http://python.org and find 
the releases page (http://python.org/download/releases). There you will find all the major version 
releases, including version 2.6.6. Options include versions for 32- and 64-bit Windows. I chose the 64-bit 
version for my testing purposes. Double-clicking the .msi file launches the installer, which prompts you 
for permission to install.  

Once that completes, you can modify your Windows path to add the Python26 directory. The 
quickest way to accomplish that task is to press the Windows key and type in the word system. You 
should see the option Edit the System Environment Variables under the Control Panel heading. Click 
that line to launch the System Properties dialog box and then click the Environment Variables button. 
Locate the Path variable in the System variables section and click the Edit button. This will display a 
single text box with the current system path statement. Navigate to the end of the string and add the 
following text: 

;C:\Python26 

This will add the Python directory to the search path and make Python available from any command 
window. To verify that you have Python installed correctly and the path set properly, launch a command 
window and type the word Python. You should see something like Figure 2-23. 

 



CHAPTER 2 ■ GETTING STARTED 

 

45 

 

Figure 2-23. Python running on Windows 7 

Remotely Connecting to the Device 
Connecting from a host computer to your device requires the Android SDK and ADB tool. I’ll take an in-
depth look at that tool in a later chapter, but for now I’ll talk about how to use the command for 
remotely connecting to the device. In essence, you are setting up a proxy that passes communication 
over a specific port to the device. 

There are a few hurdles to overcome in order to connect to your device from Windows. The first and 
probably biggest hurdle is getting Windows to recognize your device. One of the optional components 
when you download the SDK package is a USB driver for Windows. This is required if you want your 
computer to recognize your device. Figure 2-24 shows this item under the Available Packages window. 

Select this option and then click the Install Selected button. This will download the driver files into a 
subdirectory below the root SDK directory. The next steps you take will depend on the type of device 
you’re trying to connect to your Windows computer. 

 



CHAPTER 2 ■ GETTING STARTED 

 

46 

 

Figure 2-24. USB driver for Windows 

If your device happens to be a G1, myTouch 3G, Verizon Droid, or Nexus One, you should be all set. 
If not, you’ll have a little more work to do. Connecting to another device, such as the HTC EVO 4G 
smartphone, requires additional information to be added to the driver .inf file in order for the driver to 
recognize the device. This file can be found in the same directory tree with the SDK in the google-
usb_driver subdirectory. The only thing you really need to know is the vendor ID (VID) and the product 
ID (PID) for your device. You can probably find the right numbers for your device with a few Google 
searches. Another good place to look for answers about ADB connectivity issues is the Android 
Developers group on Google groups (http://groups.google.com/group/android-developers).  

As a last resort, you’ll have to go into sleuthing mode. When you connect your device to Windows, it 
will try to install the appropriate driver for you. If it can’t find one, you’ll get a popup message indicating 
that the device failed to install properly. At this point you’ll have to use Device Manager to discover the 
information needed. The easiest way to launch Device Manager is to press the Windows key and start 
typing device in the search box. This should give you a list of options, including Device Manager. 
Choosing Device Manager will bring up a dialog box similar to Figure 2-25. 

Since Windows did not recognize the device when you connected it, you’ll see ADB listed under 
Other Devices. Now you have to right-click the ADB device and choose Properties to find the VID and 
PID listings for your device. I’ll show you what it looks like for the HTC EVO 4G, and hopefully, you can 
use the same approach to get your device connected. 

 



CHAPTER 2 ■ GETTING STARTED 

 

47 

 

Figure 2-25. Windows Device Manager showing unknown devices 

With the ADB Properties screen displayed you need to select the Details tab and then choose 
Hardware Ids from the dropdown box. Figure 2-26 shows the information you should see for an HTC 
EVO 4G. You’ll need the VID and PID information to modify the driver .inf file next. 

■ Note If you took the defaults for the Android SDK .exe installer, you will find the USB driver files in the 
following directory: C:\Program Files (x86)\Android\android-sdk-windows\google-usb_driver. 



CHAPTER 2 ■ GETTING STARTED 

 

48 

 

Figure 2-26. Device properties for an ADB device 

Armed with the VID and PID, you’ll need to edit the android_winusb.inf file. The lines of interest 
you need to add are as follows: 

; 
;HTC EVO 4G 
%SingleAdbInterface%        = USB Install, USB\VID 0BB4&PID 0C8D 
%CompositeAdbInterface%     = USB Install, USB\VID 0BB4&PID 0C8D&MI 01 

The simplest way to make the changes is to edit the file using Notepad. You will have to launch 
Notepad as administrator if you want to be able to save it back to the same directory. To do this, you can 
press the Windows key and start typing notepad. Right-click Notepad in the popup window and select 
Run As Administrator. Once Notepad is open, navigate to the google-usb driver directory and then 
double-click the android winusb.inf file. When you have the file open, you need to find the section with 
the label [Google.NTx86] and copy the first three lines right below. In my case, this was an entry for the 
HTC Dream device. Paste those lines at the end of both [Google.NTx86] and [Google.NTamd64] sections, 
changing the VID and PID values you discovered previously. I didn’t have to change the VID since the 
EVO 4G is an HTC device. 

Now you should be ready to connect your device to the host computer using a USB cable. I also had 
to change USB Connection Type on the device to HTC Sync. This will bring up a dialog box on the phone 
as it tries to connect to an HTC Sync application on the host computer. At this point you can either press 
the back key on the device or wait for the connection attempt to time out. Update the driver for the ADB 
device by launching Device Manager again and right-clicking the ADB device under Other Devices. 
Choose Update Driver from the popup dialog box and then select Browse My Computer For Driver 
Software from the next screen. This dialog box will allow you to browse for the directory where you 
placed the edited .inf file. Make sure you choose the google-usb driver directory and then click Next. If 
all goes well, you should see a screen indicating that Windows Has Successfully Updated Your Driver 
Software.   



CHAPTER 2 ■ GETTING STARTED 

49 

Finally, enable USB debugging on your device. This happens from the Device Settings screen. From 
Settings, touch Applications and then Development. On the Development screen, you must select the 
checkbox next to USB debugging to enable that feature.  

If you managed to get everything configured correctly, you will be able to open a command window 
or terminal session and issue adb commands. On Windows, you should be able to see your device with 
the command shown in Figure 2-27. 

Figure 2-27. Output of adb devices command 

If you’re using Linux or Mac OS X, you shouldn’t have any issues connecting your device. I was able 
to see the HTC EVO 4G with the adb devices command on both platforms after connecting the USB 
cable without any additional steps. 

Device Settings 
Connecting to your device remotely requires a few steps on both the device and the desktop. On the 
device, you have to launch a server from the Interpreters screen. The steps you must accomplish to do 
this are as follows: 

1. Start SL4A from the All apps screen on the device.  

2. Press the Menu button and then select the View option. 

3. Choose the Interpreters from the list. 

4. Press the Menu button again and then choose Start Server. 

5. Select either Public, if you want to connect over WiFi, or Private, if you are 
connected over USB. 



CHAPTER 2 ■ GETTING STARTED 

 

50 

At this point, your server should be started and ready for access over a specific port. To find out 
what port number was assigned you must open the Script Monitor by dragging down the status window 
from the top of the device screen. This will show the SL4A service and the number of running scripts that 
should be 1 at this point. To determine the port number, you must click (touch) the SL4A service line to 
bring up the Script Monitor. You should see something like Figure 2-28 with the port number displayed 
after the localhost: string. 

 

 

Figure 2-28. SL4A server mode with port address 

You’re now ready to connect to your device remotely. To get this to work, you must enter a few more 
commands to define an environment variable and enable port forwarding. These commands and 
Python itself need to run from a command window started with the Run As Administrator option. The 
environment variable must be named AP_PORT with a default value of 9999 for the examples to work. To 
enable port forwarding, an adb command is used to forward all internal tcp traffic for port 9999 to the 
port number of the remote server. Figure 2-29 shows what this should look like on Windows. 

There are slight differences for the commands between Linux, Mac OS X, and Windows. On both 
Linux and Mac OS X you create an environment variable with the export command: 

$ export AP PORT=9999 

You’ll probably want to add that to your startup script as well. On Linux, this will be either 
~/.bash profile or ~/.bashrc. On Mac OS X, it will be .bash profile in your home directory. 

 

 

Figure 2-29. Windows environment variable and adb commands for remoting 



CHAPTER 2 ■ GETTING STARTED 

 

51 

On Windows-based computers, you can make this a permanent environment variable by adding it 
through the Environment Variables screen used earlier. This time you create a new User variable with 
the new button and then enter the name AP_PORT and value 9999, as shown in Figure 2-30. 

 

 

Figure 2-30. Creating a permanent Windows environment variable for AP_PORT 

Executing Simple Programs 
Once you get everything connected, you might want to start exploring using Python and IDLE. IDLE is a 
simple cross-platform integrated development environment (IDE) written in Python and the Tkinter 
GUI toolkit. First of all, it provides a Python interpreter command line where you can type in lines of 
code and get immediate feedback on the results of the code. You can also open an editor window for 
creating and modifying Python scripts. These scripts can be saved and then run with output occurring in 
the main interpreter window. You also get feedback on any syntax errors in the editor window before 
you execute the script. 

The neat thing about this approach is that you can code on your desktop machine and test the code 
on your device. Keep in mind that any library you source will need to be available on your desktop 
machine. The other thing you need to note is Python version numbers. As of the writing of this book, 
SL4A uses version 2.6.2 of Python. You can probably get away with any 2.6 version after 2.6.2, but be 
aware that you run the risk of some obscure compatibility issue if you use something different than 2.6.2 
on the desktop. Figure 2-31 shows IDLE running the “Hello World” program. 

You will need to copy the android.py file into the same directory as your code or into the default 
Python installation directory on your development machine. The interpreter must be able to locate 
android.py when you execute the import android code in your script. 

 



CHAPTER 2 ■ GETTING STARTED 

 

52 

 

Figure 2-31. Python IDLE program connected to device 

You can also use IDLE to edit and run scripts in a separate editor window. If you click the File menu 
and select New Window, you’ll be presented with a blank editor screen for entering Python code. You 
can also cut and paste between the immediate window and the editor window. Giving this a try with the 
“Hello Android World” code will require a minor amount of editing to remove the extra prompt 
characters. Figure 2-32 shows the results. 

 



CHAPTER 2 ■ GETTING STARTED 

 

53 

  

Figure 2-32. Python IDLE editor window 

Another great way to start exploring with SL4A is to take a look at some of the sample programs 
installed along with the Python interpreter. One of those is Test.py, a sample program that exercises 
many of the dialog types supported by SL4A along with a few other test cases. This is one of those 
programs that imports several modules that are installed by default on the device but probably won’t be 
on your host computer unless you explicitly install them. 

You can give Test.py a run on your device by launching SL4A and selecting Test.py from the list of 
files. When you select one of the files from the main SL4A window, you’ll see a little dialog box pop up 
with a number of icons. Figure 2-33 shows what you should see. 

 

 

Figure 2-33. SL4A script launch options 

The terminal icon launches the script in a terminal window on the device so you can see any error or 
debug messages while the cog-wheel icon launches the script in the background. Selecting the pencil 
icon will open the script in a text editor, and the disk icon will let you rename a script. If you choose the 
trash can icon, you will have one more chance to change your mind about deleting because a yes/no 
dialog box will open with a prompt to make sure that’s what you want to do. 

The script editor provides a simple way to enter or edit scripts on your device. It’s not very efficient 
on small devices, but works relatively well on devices with larger screens such as tablets. You can use it 
in the emulator as well to test your scripts before loading them on an actual device. Once you’re done 
editing, you must press the Menu button to bring up the options menu to Save & Exit or Save & Run. 
Figure 2-34 shows what this will look like on your device. 

 

 

Figure 2-34. SL4A script editor options menu 



CHAPTER 2 ■ GETTING STARTED 

 

54 

The Preferences button will bring up the same menu as before with options for the SL4A application 
as a whole. Selecting the Help button will display a dialog box with three options, including Wiki 
Documentation, YouTube Screencasts, and Terminal Help. The first two options will open a web 
browser and redirect to the same pages you’ll find if you go to the home page of the SL4A project.  

The API Browser button will present a screen with all the available API functions listed (see  
Figure 2-35).  

 

 

Figure 2-35. API browser tool 

If you long-press (meaning touch one line and hold) you’ll see a screen like the one in Figure 2-36.  
Selecting Prompt will bring up an additional dialog with individual text boxes for you to fill in the 
necessary parameters needed by that API function call (see Figure 2-37). This makes for a great way to 
explore some of the more complex API functions and have the SL4A interpreter walk you through the 
process of filling in the correct entries. 

 



CHAPTER 2 ■ GETTING STARTED 

 

55 

 

Figure 2-36. API browser options 

 

Figure 2-37. API browser prompt option 

Summary 
This chapter has a lot of information in it, but hopefully, by the time you get to this point you will have 
your SL4A test environment fully configured both on the device and on a host computer. The OS for the 
host computer shouldn’t matter, so you’re free to go with whatever platform you’re most comfortable 
with. Google search is your friend if you happen to get stuck somewhere along the way.  

As a recap, let’s identify the key points from this chapter: 

• Installing SL4A: This happens on a physical device or in the emulator. You first 
install the SL4A .apk file and then add interpreters from an SL4A menu. 

• Installing the Android SDK: This happens on your development machine, which 
can run Linux, Mac OS X, or Windows. You might also have to install Java first if 
your OS doesn’t have it installed already. 



CHAPTER 2 ■ GETTING STARTED 

 

56 

• Configuring the USB driver on Windows: This is probably the trickiest step, and 
unfortunately there’s no way around it if you’re developing on a Windows 
machine. You must have this working to establish communication between your 
development machine and a physical device. 

• Installing Python on Windows: Again, you won’t find Python on any stock 
Windows machine, so you’ll have to install it yourself. Fortunately this is pretty 
simple. 

Don’t be afraid to kick the tires here. If you’re not comfortable trying some of this stuff out on your 
shiny new phone, use the emulator. That’s what it’s there for. Understand that there will come a time 
that you will have to use the device because not every function of a real device can be simulated in the 
emulator. The good news is that the list of those capabilities is pretty short. 



C H A P T E R  3 
 

 

    

 

   

 

  

 

 

  

 

57 

Navigating the Android SDK 

This chapter will take an in-depth look at the Android Software Development Kit (SDK) and how to use it 
for developing code targeted at the Scripting Layer for Android. 

■ Note All examples in this chapter are based on release 8 of the Android SDK.  

Here’s how I’ll break it down in this chapter: 

• Wading through the SDK documentation 

• Examining the different SDK components 

• Testing with the Android emulator 

• Exploring with the Android Debug Bridge (ADB) 

• Debugging and more with the Dalvik Debug Monitor Service (DDMS) 

Get ready to dive right into the world of the Android SDK. Each release of Android brings with it an 
SDK specific to that release. When building native Android apps you have the option to target a specific 
release in order to take advantage of the latest features. That means you can use the latest SDK release 
and still build and test apps running on older versions. I’ll be using release 8 (r8) for the target as that is 
the version of Android on all the devices I will be testing with. 

Wading Through the SDK Documentation 
If you look in the root directory of the SDK installation, you’ll see an entry named docs. This is essentially 
a copy of the documentation on the main Android developer site for local access. Open the docs 
directory and you’ll see several .html files. Index.html is what you would see if you opened your web 
browser and navigated to developer.android.com. Offline.html has links to help you get the SDK 
installed if you haven’t already done that along with a note pointing you to the main site “for the most 
current documentation and a fully-functional experience.” 

It’s not hard to get overwhelmed the first time you browse the Android developer site. The amount 
of information there is pretty staggering. The best thing to do is to step back and pick a few areas you 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

58 

want to read up on and then focus your exploring on those topics. There’s a search box at the top of 
every page that will return your request in sorted order, along with a list of tabs to let you quickly narrow 
the results to specific areas of the documentation tree including Dev Guide, Reference, Developer 
Groups, Android Source, and Blog.  

If you haven’t looked at the Android platform from an architectural perspective, then you probably 
want to start with the Application Fundamentals (developer.android.com/guide/topics/ 
fundamentals.html) section to get a good overview of what makes Android tick. There are a number of 
top-level concepts discussed in great detail that will help you understand how applications 
communicate with lower-level functionality provided by specific Android application programming 
interfaces (APIs). Of particular interest in the context of this book is how different processes 
communicate using remote procedure calls (RPCs). Scripting Layer for Android (SL4A) uses this 
mechanism to pass information from a script interpreter process to an Android API.  

Understanding content providers in Android will make it easier to work with the information 
available to your scripts. Figure 3-1 shows a snapshot from the Dev Guide section of the Android 
developer documentation of what a content Uniform Resource Identifier (URI) looks like and how to 
interpret it. The key piece of a content URI is the authority part, which looks a lot like a web address. 
Once you see the pattern, you will be able to read one of these URIs and know exactly what it means. 

 

 

Figure 3-1. Android content provider description 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

59 

Another good place to spend some time reading is the User Interface Guidelines section. Any 
program that will interact in some way with the user should try to adhere to Google’s conventions for 
buttons, icons, and text entry. SL4A provides access to a wide range of user interface elements, and you 
will do well to invest some time in understanding how and when to use them. A good example here 
would be when to use a context menu versus an option menu. An option menu typically appears when 
the user presses the menu button, while a context menu is similar to what you would get on a desktop 
operating system when you right-click the mouse. On Android, the long-press or touch-and-hold actions 
are equivalent to a right-click with a mouse. 

In Chapter 2, I introduced an Android utility function called makeToast. This little function creates a 
short popup message that appears on the screen, but doesn’t take focus or pause the current activity. It’s 
part of a class of messages falling under the heading of notifications. A toast notification is an easy way to 
give users feedback about something they just did, like setting an alarm to go off at a specific time. 
Android also supports status bar notifications to add an icon and optional short message to the system’s 
status bar along with an expanded message in the Notifications window. You can also generate things 
like a sound or vibration to give additional feedback. 

Dialog boxes are other user interface elements worth reading up on. DatePickerDialog and 
TimePickerDialog are two special dialog boxes that make entering dates and times much easier on a 
small screen. ProgressDialog is a user feedback element for providing progress information for a long-
running activity. AlertDialog is without question the most flexible and probably the most used dialog box 
of them all. Alert dialog boxes can also contain lists of items, check boxes, and radio buttons. Figure 3-2 
shows an alert dialog box with text and buttons. 

Figure 3-2. Alert dialog box with text and buttons 

One more area of interest in the documentation is the WebView. If you want to build any user 
interface with something more than buttons and dialog boxes, you’ll have to use a WebView. I’ll spend  
a lot of time in Chapter 9 on building interfaces using a WebView, so understanding the basics  
will help. 

Examining the Different SDK Components 
If you take a look at the directory tree where you installed the Android SDK, you should see a list of 
folders containing documentation, sample code, and a number of tools. There’s also a directory named 
market_licensing with information on how to market your finished application. With release 8 of the 
SDK, Google made some changes to the directory structure, affecting where some of the more common 
tools are located. If you set up shortcuts or modified your path for a previously installed version of the 
SDK, you’ll need to change the target directories. 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

60 

Figure 3-3 shows a screen capture of the top-level directory on a Windows 7 machine. This shows 
the 32-bit SDK installed on a 64-bit version of Windows 7, hence the Program Files (x86) parent 
directory. 

 

 

Figure 3-3. Android SDK file structure on Windows 

If you want to create a shortcut to the SDK Manager application on Windows, be sure you right-click 
the SDK Manager Application in the android-sdk-windows directory, drag it onto your desktop, and then 
select Create shortcuts here. If you don’t do that, you’ll move the application or make a copy of it which 
won’t run from the desktop. 

Navigating to the tools subdirectory will reveal a number of executable files. The first and arguably 
most important is the Android Debug Bridge (ADB) tool. You can use ADB for moving files from your 
local machine to the device in much the same way you would copy files from a command line. I’ll dive 
into the ADB in depth a little later in the chapter. The SDK Manager application is your starting place for 
SDK updates, creating and launching virtual devices, and finding third-party add-ons. 

Testing With the Android Emulator 
The first thing you must do before you can use the Android emulator is to configure a target device. An 
Android virtual device (AVD) consists of a number of different files, including configuration and virtual 
storage, which the emulator needs to do its job. You can create as many AVDs as you need for simulating 
different devices. The easiest way to create an AVD is to use the SDK and AVD Manager application, as 
shown in Figure 3-4. 

 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

61 

 

Figure 3-4. Android SDK and AVD Manager tool 

To start the process of creating a new AVD, you simply click the New button. That will bring up a 
dialog box as shown in Figure 3-5. The first thing you have to do is give your new AVD a name. You 
should make it descriptive, but the name cannot have any spaces. After picking a name you must select a 
target environment. Finally, you’ll want to choose a size for your SD card. You shouldn’t need a lot of 
space if you’re using it exclusively for testing SL4A. A value of 100 MB was used for this example. 

■ Tip Additional target devices such as the Samsung Galaxy Tab are available through the SDK Manager, 
whereas others may be available directly from the vendor as in the case of the Barnes & Noble Nook Color. You 
can also modify one of the generic devices to accommodate features of a real device such as the presence of a 
hardware keyboard or a specific screen size. 

Screen resolution will default to one of the built-in devices unless you check the Resolution radio 
button and specify specific dimensions. To add or remove hardware features, click the New button next 
to the Hardware section and choose a feature from the drop-down list. To remove a feature such as a 
keyboard, first add Keyboard support by clicking the New button and then changing its value by clicking 
in the Value column and choosing No. 

 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

62 

 

Figure 3-5.  New AVD dialog box 

You can start any of the defined AVDs from the SDK Manager screen by selecting your device and 
then clicking the Start button. That will bring up another dialog box, giving you the chance to set a few 
options before it starts. One of the options you will want to change is the Scale Display To Real Size 
check box. This enables the Screen Size and Monitor DPI text boxes, in which you can choose how big 
you want the emulator to appear on your screen. This will depend on your actual monitor size, although 
I found 10 inches a good choice for a typical 20-inch display. 

The last check box, Wipe User Data, gives you a quick way to start your virtual device with no data 
from any previous sessions. This feature allows you to test applications with first-time-run behavior that 
differs from normal behavior without re-creating a new AVD each time. Figure 3-6 shows what this 
dialog box looks like with the Screen Size option set to ten inches. 

 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

63 

 

Figure 3-6.  AVD Launch Options dialog box 

For devices with keyboards, there is a standard set of mappings from the host keyboard to actions 
on the device. Table 3-1 shows the default set of definitions stored in the .android subdirectory below 
your home directory in the file default.keyset. You can change these settings by editing the 
default.keyset file or by creating your own keyset file and then adding the –keyset option on the 
emulator command line. 

Table 3-1. Emulator Key Mappings 

BUTTON_CALL F3 

BUTTON_HANGUP F4 

BUTTON_HOME Home 

BUTTON_BACK Escape 

BUTTON_MENU F2, PageUp 

BUTTON_STAR Shift+F2, PageDown 

BUTTON_POWER  F7 

BUTTON_SEARCH F5 

BUTTON_CAMERA Ctrl+Keypad_5, Ctrl+F3 

BUTTON_VOLUME_UP Keypad_Plus, Ctrl+F5 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

64 

Continued 

BUTTON_VOLUME_DOWN   Keypad_Minus, Ctrl+F6 

TOGGLE_NETWORK  F8 

TOGGLE_TRACING  F9 

TOGGLE_FULLSCREEN    Alt-Enter 

BUTTON_DPAD_CENTER   Keypad_5 

BUTTON_DPAD_UP  Keypad_8 

BUTTON_DPAD_LEFT Keypad_4 

BUTTON_DPAD_RIGHT    Keypad_6 

BUTTON_DPAD_DOWN Keypad_2 

TOGGLE_TRACKBALL F6 

SHOW_TRACKBALL  Delete 

CHANGE_LAYOUT_PREV   Keypad_7, Ctrl+F11 

CHANGE_LAYOUT_NEXT   Keypad_9, Ctrl+F12 

ONION_ALPHA_UP  Keypad_Multiply 

ONION_ALPHA_DOWN Keypad_Divide 

 
Launching a generic AVD with the keyboard will bring up a screen that should look like Figure 3-7. 

 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

65 

 

Figure 3-7. Generic emulator window 

The emulator should function just like a real device, with a few minor exceptions. You should 
remember which keys on your PC keyboard mimic the hardware button keys because you will use them 
frequently. By default, the mappings for PC to Device are Home to Home, F2 to Menu, Esc to Back, and 
F5 to Search. The mouse on the PC takes the place of your finger on a real device. Left-clicking the 
mouse is the same as touching or pressing on the screen. If you click the icon at the bottom-center of the 
screen resembling a checkerboard, you will launch the Applications screen as shown in Figure 3-8. 

 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

66 

 

Figure 3-8. Emulator application launcher screen 

To view messages in the notification area, you first have to click and hold your mouse near the top 
of the device screen, in the same white bar area as the signal strength, battery level, and time icons. Next, 
you perform a drag-downward movement with the mouse as you would with your finger. It is similar to 
pulling a window shade down. This motion will reveal the notification window at any time and display a 
“No notifications” message if none is present. The same technique can be used to simulate swiping from 
left to right or vice versa, using the mouse to click, hold, and drag across the emulator device screen.  

Bluetooth is not functional in the emulator, so if you have any need to test using Bluetooth you’ll 
have to do that on a real device. WiFi is also not available. The emulator does support 3G data 
connections, meaning that you will have connectivity to the Internet. You can simulate calls by selecting 
a contact or by directly entering a phone number. All calls show up in the call log, providing another 
data source for you to test against. While you can simulate making and receiving calls, there is no real 
voice capability, so don’t expect to actually make a real call. That also means you won’t be able to test 
any of the voice recognition capabilities on an emulator. 

You’ll probably want to configure the e-mail account on your emulator for testing purposes, which 
works just like on a real device. Figure 3-9 shows the opening screen when you first launch the app. 

 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

67 

 

Figure 3-9. Emulator e-mail configuration screen 

To configure a Gmail account, enter your full address including the @gmail.com part. After entering 
your password, click the Next button. If you entered your information correctly, you should then see a 
screen asking you for an (optional) account name and a name (signature) to be added on outgoing 
messages. 

For convenience, you can add a shortcut on your emulator home screen to the SL4A application and 
the scripts folder. To do this, click and hold the mouse anywhere on the home screen. That will launch 
the Add to Home screen dialog box. At this point you have the option to add a Shortcut, Widget, Folder, 
or Wallpaper. Select the Shortcuts entry to add one for the SL4A application. This will display another 
dialog box with all available applications and actions that support a shortcut. Select Applications and 
from the Select activity dialog box, choose SL4A. 

Another handy way to quickly access your scripts is to add a folder to your home screen. You do this 
the same way as adding a shortcut except you select Folder from the Add to Home dialog box. After 
choosing Folder, you should see a new dialog box labeled Select Folder with a list of available folders. 
Choose the entry labeled Scripts, and you should be all set. Now you should see a screen like Figure 3-10 
when you click the Scripts icon on your home screen. This will display a list of all scripts in that folder 
and give you one-click access to running any of them. I will use this feature in Chapter 8 to build a handy 
phone settings script to change multiple settings with just two clicks. 

 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

68 

 

Figure 3-10. Home screen scripts folder 

Another thing that does not work on the emulator is live SMS messages. You can open the 
messaging application and type in a message, but nothing will actually go out. It will populate a database 
with outgoing messages if you need that for testing. To simulate an incoming SMS message you’ll have 
to use the ADB tool, which is the next topic of discussion. 

Android Debug Bridge 
Chapter 2 has a brief introduction to the Android Debug Bridge (ADB), but really only brushes the 
surface of the things you can do with this tool. ADB actually requires three separate components to do its 
job. On your development machine, ADB consists of a client and a server. The ADB server handles all 
communication between the client running on the development machine and a daemon running on 
either an emulator or a target device. 

Command-line options are used to instruct ADB to perform a specific task. Table 3-2 shows each of 
these commands with a brief description. For the Install, Sync, and Uninstall commands there are 
options available to modify how the command behaves. If you happen to have an emulator running and 
a real device connected, you must specify where you want the ADB commands to execute. To direct ADB 
commands to a real device, use the option –d and for the emulator, use –e.  

Table 3-2. List of ADB Commands 

adb push <local> <remote>  Copy file/dir to device 

adb pull <remote> [<local>]  Copy file/dir from device 

adb sync [ <directory> ] Copy host->device only if changed (-l means list but don't copy) 

adb shell  Run remote shell interactively 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

69 

adb push <local> <remote>  Copy file/dir to device 

adb shell <command> Run remote shell command 

adb emu <command> Run emulator console command 

adb logcat [ <filter-spec> ] View device log 

adb forward <local> <remote> Forward socket connections 

Forward specs are one of the following:  

tcp:<port> 
localabstract:<unix domain socket name> 
localreserved:<unix domain socket name> 
localfilesystem:<unix domain socket name> 
dev:<character device name> 
jdwp:<process pid> (remote only) 

adb jdwp List PIDs of processes hosting a JDWP transport 

adb install [-l] [-r] [-s] 
<file> 

Push this package file to the device and install it 

(-l means forward-lock the app) 
(-r means reinstall the app, keeping its data) 
(-s means install on SD card instead of internal storage) 

adb uninstall [-k] <package> Remove this app package from the device 

(-k means keep the data and cache directories) 

adb bugreport Return all information from the device that should be included in a 
bug report 

adb help Show this help message 

adb version Show version number 

Files and Applications 
There are three commands that deal with copying files between a host computer and either the emulator 
or a physical device. push will copy a file from the host to a target, while pull will copy from the target to 
the host. sync attempts to synchronize files between directories on the host and target. You can also pass 
the -l option to sync and it will simply list the contents of the directory. 

Installing or uninstalling .apk files to either the emulator or a physical device uses the adb install 
or uninstall command, respectively. Options for the install command include -l to forward-lock the 
app, -r to reinstall keeping all old data, and -s to install the app on the SD card instead of internal device 
storage. 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

70 

■ Tip You can use the adb push tool to quickly load contacts on an emulated device for testing purposes. If you 
have contacts stored in a Gmail account, you can easily export those to a vCard file and then use adb push to 
move it to the SD card on the device. All that’s left is to start contacts and import the vCard file from the SD card. 

The Shell 
The adb shell command provides a way to send shell commands to the device and display the results or 
to launch an interactive shell locally. One of the things you can use the shell command for is to 
automate testing on a device. This uses the shell input keyevent and sendevent commands. Input is an 
application that lives in the /system/bin directory on a device, making it possible to simulate keyboard 
input of any kind. You can push a text string with this command: 

adb shell input text "ANDROID" 

To simulate pressing a key on either a physical or virtual keyboard, use the keyevent qualifier to the 
input command along with an integer representing the specific keycode you wish to invoke. A list of 
keycodes is shown in Table 3-3. You would simulate pressing the menu key with the following: 

adb shell input keyevent 1 

Table 3-3. Listing of Keycodes 

Keycode Key sent Keycode Key sent 

0  UNKNOWN 55  COMMA 

1  MENU 56  PERIOD 

2  SOFT_RIGHT 57  ALT_LEFT 

3  HOME 58  ALT_RIGHT 

4  BACK 59  SHIFT_LEFT 

5  CALL 60  SHIFT_RIGHT 

6  ENDCALL 61  TAB 

7  0 62  SPACE 

8  1 63  SYM 

… … 64  EXPLORER 

15  8 65  ENVELOPE 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

71 

Keycode Key sent Keycode Key sent 

16  9 66  ENTER 

17  STAR 67  DEL 

18  POUND 68  GRAVE 

19  DPAD_UP 69  MINUS 

20  DPAD_DOWN 70  EQUALS 

21  DPAD_LEFT 71  LEFT_BRACKET 

22  DPAD_RIGHT 72  RIGHT_BRACKET 

23  DPAD_CENTER 73  BACKSLASH 

24  VOLUME_UP 74  SEMICOLON 

25  VOLUME_DOWN 75  APOSTROPHE 

26  POWER 76  SLASH 

27  CAMERA 77  AT 

28  CLEAR 78  NUM 

29  A 79  HEADSETHOOK 

30  B 80  FOCUS 

31 C 81  PLUS 

… … 82  MENU 

52 X 83  NOTIFICATION 

53  Y 84  SEARCH 

54  Z 85  TAG_LAST_KEYCODE 

 
If you plan to develop any applications to interact with functionality of the phone (initiating a 

phone call; sending or receiving SMS messages), you must use the telnet command to connect to the 
emulator console. On Windows 7 there is no Telnet program installed by default. Fortunately, it is a part 
of the operating system and just needs to be enabled. To enable Telnet, you must open the Control Panel 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

72 

and select the Programs category. This will bring up a window like the one in Figure 3-11. You can also 
directly launch the Windows Features dialog box by pressing the Windows key and typing the word 
features. This will show a list of options including several under the heading Control Panel. Selecting the 
“Turn Windows features on or off” item will bring up the dialog box shown in Figure 3-12. 

 

 

Figure 3-11. Windows 7 Control Panel programs page 

To enable the Telnet client program, you simply click the check box next to Telnet Client in the 
Windows Features dialog box. as shown in Figure 3-12. If you would like your machine to also function 
as a Telnet server, you can check the Telnet Server box, although most Windows firewalls will block 
incoming Telnet traffic for security reasons. 

 

 

Figure 3-12. Windows 7 Features dialog box 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

73 

Assuming you have started an ADB device with the normal defaults, you would initiate a telnet 
session on Linux or Mac OS X from a terminal window or from a command prompt in Windows with this 
command: 

telnet localhost 5554 

Now you’re ready to issue commands directly to the device. Figure 3-13 shows the output of the 
help command with a telnet session started. 

 

 

Figure 3-13. Telnet session on Linux to emulator 

Emulating an incoming SMS message would require a command such as this: 

sms send 3015551212 "This is a test SMS message from Telnet" 

On the emulator you should see a message arrive. Open the Messaging application, and you should 
see something like Figure 3-14. 

 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

74 

 

Figure 3-14. Messaging app with simulated SMS message displayed 

For testing location-based applications you can use the geo command, which will send either a GPS 
NMEA sentence or a simple GPS fix. These two commands would look like this: 

geo fix -82.411629 28.054553 
 
geo nmea $GPGGA,001431.092,0118.2653,N,10351.1359,E,0,00,,-19.6,M,4.1,M,,0000*5B 

You’ll have to use the NMEA command if you want to do anything more than simulate the current 
latitude and longitude. The $GPGGA code stands for Global Positioning System Fix Data. Fields in order, 
left to right, are Sentence Identifier ($GPGGA), Time (00:14:31.092), Latitude, North, Longitude (103 
degrees, 51 minutes and 13.59 seconds, number of satellites, horizontal dilution of precision (HDOP), 
Altitude, Height of geoid above WGS84 ellipsoid, Time since last DGPS update, DGPS reference station 
ID, and a checksum.   

There is a shell command to allow you to change the date and time on the emulator. This can come 
in handy if you’re testing any time-based logic such as an alarm or elapsed time application:  

adb shell date secs 

The only downside to using this command is you must enter the time in seconds since January 1, 
1970; otherwise known as the UNIX epoch. There is a way from a Linux or Mac OS X terminal prompt to 
determine the value for secs of the current time with this command: 

date +%s 

The Python language has many handy features and functions as a part of the Python standard 
library. Time and date manipulation is one task Python can handle with just a few lines of code. Here’s a 
short script to convert any date and time into the proper seconds value: 

 
 
 
 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

75 

Listing 3-1. Python Epoch Time Converter 

#!/usr/bin/python 
#-----------------------------  
# This script will convert arg1 (Date) and arg2 (Time) to Epoch Seconds 
# 
import sys, time, datetime 
 
if len(sys.argv) < 3: 
    print "Usage pyEpoch YYYY-MM-DD HH:MM" 
else: 
    intime = sys.argv[1] + " " + sys.argv[2] 
 
t = time.strptime(intime, "%Y-%m-%d %H:%M")  
t = datetime.datetime(*t[:6]) 
print "Epoch Seconds:", time.mktime(t.timetuple()) 

A quick Google search for UNIX epoch converter turns up several web sites that will convert 
to/from a date and seconds. Be advised that executing this command will generate an error message that 
settimeofday failed, but it does actually work. Figure 3-15 shows a Windows command prompt with 
several times set and the time of day read using the same date command with no argument to show the 
current time. 

 

 

Figure 3-15. Setting the emulator date with the shell command 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

76 

You can launch any application on the emulator using the command-line interface to the 
ActivityManager, as follows: 

adb shell am start command 

Figure 3-16 shows the output of the help given when you type in am at the telnet prompt. 

 

 

Figure 3-16. Launching activities on the emulator with the shell am command 

To launch a web browser, you would use this command: 

adb shell am start 'http://www.google.com' 

The command adb shell dumpsys provides insight into virtually everything about the current state 
of any attached Android device. If you run this command against the emulator, you’ll get a list of 
available subcommands as shown in Table 3-4. 

 
 
 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

77 

Table 3-4. Listing of Dumpsys Subcommands 

SurfaceFlinger accessibility account 

activity alarm appwidget 

audio backup battery 

batteryinfo clipboard connectivity 

content cpuinfo device_policy 

devicestoragemonitor diskstats dropbox 

entropy hardware input_method 

iphonesubinfo isms location 

media.audio_flinger media.audio_policy media.camera 

media.player meminfo mount 

netstat network_management notification 

package permission phone 

power search sensor 

simphonebook statusbar telephony.registry 

throttle uimode usagestats 

vibrator wallpaper wifi 

window   

 
For the emulator, the output of the command adb shell dumpsys battery looks like this: 

Current Battery Service state: 
  AC powered: true 
  USB powered: false 
  status: 2 
  health: 2 
  present: true 
  level: 50 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

78 

  scale: 100 
  voltage:0 
  temperature: 0 
  technology: Li-ion 

Another interesting subcommand is location. If you look at the output of the command adb shell 
dumpsys location for the emulator, you won’t see much. Run the same command on a real device, and 
you’ll see all kinds of information. If you examine the output of the command adb shell dumpsys 
activity, you’ll see a long list of information about the current activity state on the device.  

You can get a list of information maintained by the PackageManagerService with the command adb 
shell dumpsys package. The output of this command has a number of different sections, with the first 
being the Activity Resolver Table. This section contains lists of MIME types, Non-Data Actions, and 
MIME Typed Actions complete with the intent used to launch a specific action. Non-Data Actions start 
an activity that does not require any data to launch. An example of one of these would be 
com.android.contacts.action.LIST_ALL_CONTACTS. The behavior of this intent is fairly obvious from the 
name, but you can see the results with this command: 

adb shell am start –a com.android.contacts.action.LIST_ALL_CONTACTS 

To launch more complex actions through the intent mechanism, you must specify a number of 
different fields. As seen in Figure 3-16, you have a number of options available including -a to specify the 
action, -c for a category, -d to specify a Data URI, -t for MIME type, and -e for extras. You could launch 
the contacts application to add an entry with this command: 

adb shell am start -a android.intent.action.INSERT -d 'content://contacts/people' -t 
 'vnd.android.cursor.dir/person' -c 'android.intent.category.DEFAULT' -e 'name' 'Paul' 
 -e 'phone' '1112223333' 

At this point you might want to refer to the Android developer documentation and read up on the 
Intent topic. Understanding how Intents are used to launch an activity will give you insight into what 
you would need to provide for your application. While you can launch pretty much any Android activity 
from the command line using the ADB utility, you can also launch an activity programmatically. Later 
chapters will use this concept to build scripts to automate multiple activities. 

This same technique can be used to launch SL4A to execute a script as follows: 

am start -a 
com.googlecode.android_scripting.action.LAUNCH_FOREGROUND_SCRIPT -n 
com.googlecode.android_scripting/.activity.ScriptingLayerServiceLauncher -e 
com.googlecode.android_scripting.extra.SCRIPT_PATH 
“/sdcard/sl4a/scripts/hello_world.py" 

I’ll show you how to do this in the next chapter on using Eclipse to automatically deploy a solution 
to either the emulator or a target device and launch it. One last command that I find really useful will 
launch a private server on the device to enable remote debugging: 

adb shell am start -a com.googlecode.android_scripting.action.LAUNCH_SERVER -n 
com.googlecode.android_scripting/.activity.ScriptingLayerServiceLauncher 

logcat 
logcat is the name of the ADB command to dump or cat the current logfile from either an emulator or 
hardware device. If you type this command either at a command prompt in Windows or a terminal 
window in Linux or Mac OS X, it will dump the current log and continue displaying new entries until you 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

79 

hit Ctrl+C to stop it. This tool will help you debug applications that unexpectedly stop without error. It is 
also available from an Eclipse window, as you will see in the next chapter. 

Dalvik Debug Monitor Service (DDMS) 
The DDMS is a complementary tool to ADB and actually uses the ADB host server-to-device daemon for 
all communication. This will become painfully obvious if you upgrade from a version of the SDK with the 
ADB tool in a different directory. Figure 3-17 shows what the DDMS user interface looks like with both 
an emulator and physical device currently connected. 

Figure 3-17. DDMS display 

DDMS has a number of features you will want to learn more about. One is the File Explorer tool 
available from the Device menu. To browse files on a particular device, select the device in the top-left 
pane of the DDMS application and then open File Explorer. Be aware that you won’t be able to see any of 
the files in the system area on a normal device because they are protected. You will be able to see those 
files if the device has been rooted. The term rooted means gaining root access to a device by using either 
a third-party application or by some other nontrival method. Most devices ship with the system file area 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

80 

set to read only, so a user can’t make any changes. Full browsing is allowed on an emulated device and 
will look something like Figure 3-18. Here you can see the contacts database which is actually an SQLite 
database file. 

 

 

Figure 3-18. DDMS File Explorer 

You can take screenshots of any connected device from the DDMS Device menu by selecting Screen 
Capture. This feature comes in handy if you’re writing documentation about a specific application and 
you need to include screen images. Figure 3-19 shows a sample screen shot using DDMS of the 
hello_world.py file from the SL4A distribution. 

 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

81 

 

Figure 3-19. DDMS screen capture example 

In the next chapter I’ll show you how these tools integrate directly with Eclipse to provide access to 
everything you need to code, test, debug and deploy any application for Android. 

Summary 
This chapter focused on getting the Android SDK fully installed and configured to make it easier to 
develop and test on both emulated and real devices. Many of the tools and concepts discussed here will 
be used later to help streamline and, in some cases, automate the development process. The next 
chapter covers using Eclipse as a primary development platform along with the Android Development 
Toolkit (ADT). 

Here’s a list of key take-aways for this chapter: 

• Android SDK: It’s really big and probably has more stuff than you’ll ever look at, 
but it does have a number of tools like ADB, device emulators, and DDMS that are 
really useful 

• Linux command line: If you’re not comfortable typing in commands at either the 
Linux command line or a Windows DOS prompt, you might want to take some 
time to read up on the subject. Many of the tools like ADB use the command line 
to accomplish tasks, and you might as well learn how to take advantage of them. 

• Use the emulator: The best thing about an emulator is you can delete it and start 
over. The emulator should work just fine for many of the things you’ll want to try 
out. Better to test something on an emulator before you try it on a real device. 
Don’t be afraid to delete an emulator and start over if it gets really slow or doesn’t 
seem to work right. 



CHAPTER 3 ■ NAVIGATING THE ANDROID SDK 

 

82 

• Use batch/script files: One of the first things I did was to write a few batch scripts 
on Windows to do things like launch a private server on the device and copy files 
to the right directory. If you’re doing any amount of coding and testing you’ll want 
to have some of these scripts around. 



C H A P T E R  4 
 

 

    

 

   

 

  

 

 

  

 

83 

Developing with Eclipse 

This chapter will walk you through installing, configuring, and developing with Eclipse. 

■ Note While Eclipse will work on Linux, Mac OS X, and Windows, this chapter will use Windows as the primary 
development environment.  

Okay. Let’s get started. Here’s what I’ll cover in this chapter: 

• Installing Eclipse on a development machine 

• Using Eclipse basics 

• Understanding the Android Development Toolkit 

• Using Pydev 

By using the instructions given here, you will be able to get Eclipse installed and ready for 
productive work in just a few minutes. I’ll walk you through the basic installation steps for Eclipse itself 
along with a number of other plugins to help us with developing all of the examples in this book. 

It’s important to point out at this point that Eclipse was developed from the outset as an extensible, 
integrated development environment (IDE) written in the Java language. Since it’s written in Java, it 
automatically qualifies as a cross-platform application and, in fact, that was the general idea from the 
beginning. Eclipse has grown into a huge project, and this single point often scares some people off. 

Installing Eclipse on a Development Machine 
Eclipse comes in many flavors. Choosing the right one for you is, in large part, a matter of taste. If you 
plan on using it just for completing the exercises in this book, you can go with the “Classic” download. 
The current version as of the writing of this book is 3.6.1 code named Galileo. For both Linux and 
Windows you will be offered the choice of a 32-bit or 64-bit download. For the Mac you’ll have the 
option of Mac OS X (Carbon), Mac OS X (Cocoa 32) or Mac OS X (Cocoa 64). Choose the one that 
matches your operating system. Eclipse requires an installation of Java to work, so if you skipped the 
section in Chapter 2 on downloading and installing Java you’ll need to go back and do that now. Eclipse 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

84 

is distributed in a single .zip file, meaning all you have to do to install the program is unpack the 
contents. On Windows Vista and Windows 7 you can double-click the .zip file, and Windows Explorer 
will open, giving you the option to extract all the files as shown in Figure 4-1. 

 

 

Figure 4-1. Eclipse SDK installation 

Once you have a directory with all the Eclipse files unpacked, you should be able to start the 
program in Windows by double-clicking the Eclipse.exe file. You probably want to create a shortcut on 
your desktop since this will be a frequently used application. Remember to use the right-click Create 
Shortcut Here method to ensure that Eclipse will start properly. The first time you run Eclipse you will 
see a dialog box screen like the one in Figure 4-2, prompting you to choose where to store your project 
files. This is called the Workspace in Eclipse. You have the option to select the default, and if you check 
the box next to Use This As The Default And Do Not Ask Again, it will become the permanent default 
directory. If you don’t select this box, you’ll be prompted to select a Workspace every time you start 
Eclipse. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

85 

 

Figure 4-2. Select workspace directory dialog box 

Installing plugin modules in Eclipse happens from the Help menu by selecting the Install New 
Software option. This will open the dialog box shown in Figure 4-3. Each add-on is typically installed 
from a default repository on the Internet. This makes it easier to keep current with updates and to install 
the most up-to-date version. To add a new repository, click the Add button next to the text box labeled 
Work With. You can also just type in the URL in the same text box and the Eclipse installer will go out to 
that address to look for add-on packages. Figure 4-3 shows the result of entering the URL for the Android 
Development Tools (ADT) plugin for Eclipse. If you use the Add button, you’ll be given the chance to 
name the repository. The URL for the ADT is 

https://dl-ssl.google.com/android/eclipse 

You must choose either individual options underneath the Developer Tools line or just check the 
box next to Developer Tools to select them all. Once the download completes, you’ll be instructed to 
restart Eclipse for the changes to take effect. If you can’t remember what you have installed, just check 
the box next to Hide Items That Are Already Installed and all you’ll see is new items. If you’d like to see a 
list of what has been installed, you can click the Already Installed link. There’s also a link named 
Available Software Sites that will take you to a list of predefined add-on sites. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

86 

 

Figure 4-3. ADT installation dialog box 

The next add-on you’ll want to install is Pydev. Writing and debugging Python code using Eclipse 
and Pydev is a truly integrated development experience. I’ll walk you through using Pydev a little later. 
For now, open the Software update screen from the Help menu again. This time we’ll enter another URL 
for the Pydev update site. It should look like the following: 

http://Pydev.org/updates 

3



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

87 

Figure 4-4 shows the dialog box you will see after entering the pydev.org URL. 

 

 

Figure 4-4. Pydev installation dialog box 

The last Eclipse add-on you’ll need for the exercises in this book is Aptana Studio. It shines when it 
comes to editing HTML, CSS, and JavaScript. Using the same procedure as with ADT and Pydev, enter 
the following line in the text box beside the label Work with: 

http://download.aptana.com/tools/studio/plugin/install/studio 

This will create a new entry in the list of available sites and display another dialog box in which you 
can select and download the add-in. 

It’s a good idea to periodically check for updates to Eclipse and the add-ons. You do this by selecting 
Check For Updates from the Help menu. You’ll see a dialog box like the one in Figure 4-5 if any updates 
are found. This particular update was for Pydev on an Ubuntu system. 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

88 

 

Figure 4-5. Available Updates dialog box 

Eclipse Basics 
Eclipse is a huge application with many capabilities and options. Entire books have been written on 
using Eclipse for developing complex applications. The first time you launch Eclipse you’ll be greeted by 
a Welcome screen like the one in Figure 4-6. The Tutorials and Samples items are targeted specifically at 
Java developers. Although it won’t hurt you to read them, you might want to skip over them for now as 
they don’t really apply to the topic at hand. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

89 

Figure 4-6. Eclipse welcome screen 

If you click the Overview item, it will open another screen with four topics: Workbench Basics, Java 
Development, Team Support, and Eclipse Plug-In Development.The only item of any real importance to 
this book is the Workbench Basics topic. Clicking this item will launch the Eclipse Help system, as shown 
in Figure 4-7. If you expand the Getting Started section, you’ll find a detailed tutorial covering all the 
basic operations you’ll need to know to navigate through Eclipse. It will be well worth your time to 
explore the tutorial material if you haven’t worked with Eclipse before. 

Eclipse uses a number of basic concepts and terminology to address different functions and 
operations of the program. Workbench is the term used to identify the overall window of the Eclipse 
application. The Workbench window will typically contain multiple child windows with editors and 
views such as the Project Explorer. When you open additional windows, they will hold either an editor or 
a view. Eclipse also supports multiple tabs within windows, so you can have multiple files open in the 
same editor window. Use the Help menu to navigate back to the Welcome page at any time. 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

90 

 

Figure 4-7. Eclipse Help screen 

Perspectives 
The concept of a perspective is better understood from the viewpoint of a person using the program. 
Each person brings his or her own perspective or preferences to any activity. A perspective is really 
nothing more than personal preferences for which menus and windows are open at any one time.  
The Eclipse definition of a perspective is “a visual container for a set of views and editors (parts)” 
(http://www.eclipse.org/articles/using-perspectives/PerspectiveArticle.html). Eclipse comes with 
a number of perspectives already configured for typical usage, such as writing code. You switch to a 
different perspective when your activity changes, such as when you switch from coding to debugging. 
Figure 4-8 shows a typical Pydev perspective. 

■ Note Large-screen monitors at high resolution provide a lot of real estate from which to run Eclipse with 
multiple windows. You can also run Eclipse with multiple monitors and use the tear-away feature to move an 
individual window out of the Workspace container and over to a different monitor.  



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

91 

 

Figure 4-8. Pydev perspective Workspace 

Perspectives are customizable to the fullest extent. If you don’t like a particular toolbar, you can turn 
it off. Each perspective will load specific windows into default locations on the screen. You can move any 
of these windows around to arrange them to your liking. To customize the current perspective, right-
click the name/icon at the top-right corner of the Workspace and select Customize. You’ll be presented 
with the screen shown in Figure 4-9. Several of the options have been expanded to show the difference 
between selections. 

This dialog box gives you full control over every aspect of the current perspective. If a check box 
beside an item in this screen has a check, it means every option beneath it is also selected. A blue box 
filling the check box indicates some of the options beneath this item are selected and some are not. If 
you expand every item, you will quickly see that Eclipse has a lot of options. The best approach to take at 
this point is to tweak the things you think will help you be more productive and leave the rest alone. 

The additional tabs allow you to customize Tool Bar Visibility, Menu Visibility (or which items 
appear across the top of your main Workspace window), Command Groups Availability, and which 
Shortcuts will appear as submenu items. The Filter By Command Group check box will open or close 
another list of items on the left side of the dialog box, showing options as they appear in the different 
command groups. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

92 

 

Figure 4-9. Customize perspective screen 

You can quickly open a new perspective by clicking the small icon that looks like a window with a 
little plus sign in the top-right corner. It is found next to the current perspective indicator at the top of 
the screen. (See Figure 4-8.) This brings up the Open Perspective dialog box shown in Figure 4-10 with a 
list of every available perspective. Clicking any item opens that perspective along with all its windows 
and views. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

93 

 

Figure 4-10. Eclipse Open Perspective dialog box 

You can always change your mind and return to the currently opened perspective by clicking the 
Cancel button. 

Projects 
Projects are where all the moving parts of a particular application are collected. A project could be 
nothing more than a single source file or any number of different files and file types. Creating a new 
project happens using either File ➤ New Project or with the Alt+Shift+N key combination. On the Mac 
you would use Command+Shift+N. Either method will launch the New Project Wizard (see Figure 4-11). 

Selecting General Project will launch one additional dialog box prompting you to name your project 
and will then create an empty folder underneath your default workspace directory with that name. We’ll 
cover creating a Pydev project a little later. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

94 

 

Figure 4-11. Eclipse New Project wizard 

Android Development Toolkit 
Google has made every attempt to simplify the process of developing applications for the Android 
platform including providing the Android Development Toolkit (ADT) extension for Eclipse. One of the 
options when creating a new project is Android Project. This is a good way to explore what developing a 
native application using Java for the Android platform is like. Figure 4-12 shows the New Android Project 
Wizard creating a new project named MyTestApp based on the sample NotePad app. The ADT ships 
with a number of sample applications in an effort to demonstrate how to take advantage of the different 
features of the Android platform. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

95 

 

Figure 4-12. New Android Project wizard 

When you click the Finish button, the wizard creates the new project and copies all the sample 
source code into the working directory. Figure 4-13 shows shows what this project will look like in the 
editor. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

96 

 

Figure 4-13. MyTestApp created with New Android Project wizard 

At this point you can click the Run icon, and Eclipse will go through the compile-and-deploy 
process. If you have configured an emulator on your development machine, it will launch it and push 
the app to the device. Figure 4-14 shows what the app looks like running on a generic emulator. The 
beauty of this process is the rapid compile, deploy, and test sequence available using Eclipse and the 
ADT. The goal is to make the same experience possible, but with Python and SL4A. 

■ Tip You have multiple ways to accomplish the same task within Eclipse. If you prefer mouse clicks, you’ll 
find icons for just about any action you need to perform. If you’re more of a keyboard person, you’ll find those as 
well. You can explore the different options using the Customize Perspective dialog box mentioned earlier in this 
chapter.  



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

97 

 

Figure 4-14. MyTestApp running on a generic emulator 

One of the perspectives available is labeled DDMS. Figure 4-15 shows this perspective with 
MyTestApp running in the emulator. This perspective gives you access to the complete functionality of 
the DDMS utility discussed in Chapter 3. Windows opened by this perspective include Devices; 
Emulator Control; Logcat; and a tabbed window with quick access to Threads, Heap, Allocation Tracker, 
and File Explorer.  

To see the information related to MyTestApp you have to scroll down to the bottom of the Devices 
window and locate the application. In this case, it’s named com.example.android.notepad. When you 
select this line, you’ll be able to see everything you ever wanted to know about an Android 
application―and then some. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

98 

 

Figure 4-15. DDMS Perspective with MyTestApp running 

One of the features mentioned earlier when discussing multiple monitors is the ability to “tear off” 
any window and drag it out of the main Eclipse window. Figure 4-16 shows the Emulator Control 
Window after it has been moved out on its own. To do this, left-click and hold under the window title; 
then drag the mouse away from the main Eclipse window. This won’t work if the main window is 
maximized. To close the window, simply click the X at the top-right corner of the window. To re-open 
the window within Eclipse, open the Window menu; then from Show View, select the window you want 
to open. If you previously separated it from Eclipse, it will restore undocked from the main window. You 
can drag it back into the main window using the same technique as when you un-docked it. If you just 
want to get back to the default settings for any perspective, there’s a Reset Perspective option on the 
Window menu to get you back to the initial starting place. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

99 

Figure 4-16. Emulator Control window separated from main Eclipse window 

Using Pydev 
Pydev is an Eclipse plugin created to make life easier for the Python developer. It has many features 
specifically targeted at the Python language along with shortcuts, templates, and its own default 
perspective. Probably the most important part of Pydev is that it was created by Python developers for 
Python developers. If you develop Python code on any platform, this is one of those tools you don’t want 
to leave home without. 

One of the things you must do before Pydev will work is configure the location of your Python 
installation. Figure 4-17 shows the Pydev menu item expanded from the Preferences window. You’ll find 
the Preferences option under the Window menu on the list at the top of the Workspace window. 
Selecting the Interpreter - Python menu item initially displays a blank window. This needs to be 
configured to point to your Python 2.6 interpreter installation directory. On Windows, this is typically in 
the path C:\Python26. On Ubuntu 10.10, and most other Debian-based distributions, you’ll find the 
Python executable in /usr/bin/python. 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

100 

 

Figure 4-17. Preferences dialog box for configuring Python interpreter 

With Pydev installed, you are given two options at this point: new Pydev project and new Project. 
Figure 4-18 shows what the new Pydev project screen looks like. There are a number of items that must 
be set in this dialog box. At the top of the dialog box you must enter a name for your new project, which 
will be used as the name of the subdirectory beneath your default workspace area as well as the title that 
will be displayed in the Project Explorer window. Next, you must change the Grammar Version using the 
drop-down box and select 2.6. Finally, you should set the Interpreter to point to the Python26 directory 
just in case you happen to have multiple versions of Python installed. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

101 

 

Figure 4-18. New Pydev Project dialog box 

Once the new project is created you’re ready to start entering code. Pydev uses templates to help 
you quickly build code with predefined sources. You can use any of the provided templates or create 
your own. This is where you would put some standard header comments including copyright 
information, your name, and anything else that might be pertinent. 

If you want to get a look at all the default keyboard shortcuts, you can press Ctrl+Shift+L. This will 
bring up a scrollable window of all currently defined shortcuts as shown in Figure 4-19. As with just 
about everything else in Eclipse, you can define your own shortcut keys from the Preferences dialog box. 
If you have the shortcut list onscreen, you can jump straight to that page by pressing Ctrl+Shift+L again. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

102 

 

Figure 4-19. Example of shortcut display window 

Pydev comes with a number of predefined templates available to use when you create a new source 
file or for quick insertion into your code window. You’ll have the chance to use a template file when you 
use the File ➤ New ➤ Pydev Module procedure to create a new source file. This will open a dialog box 
like the one shown in Figure 4-20. If you have an editor window open, you can access the templates 
using the Ctrl+space key combination. This opens a window with a list of potential code snippets for you 
to insert. Pressing Return with any of the items highlighted will insert the code at that point. 

If you press Ctrl+space a second time, you’ll see a list of available templates applicable at this point. 
This will switch the current list to show available templates and, in a second window, a view of the 
statements that will be inserted if you hit Return. New templates can be created from the config link 
shown on the Create A New Python Module dialog box. Clicking this link will open up the Preferences 
dialog box with the Templates option selected. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

103 

 

Figure 4-20. New Pydev module dialog box 

To define a new template, click the New button and complete the dialog box shown in Figure 4-21. 
This will allow you to save keystrokes when creating the same basic code at the beginning of every 
Python module. The Insert Variable button lets you insert text based on some variable such as file path, 
file or module name, date, time, or the currently selected word. 

The text in the Pattern window will be inserted when the template is chosen. In this case, you’ll see 
code that will be found at the beginning of virtually every SL4A application. The Android module 
includes the code to communicate between SL4A applications and the underlying native APIs using a 
remote procedure call (RPC) mechanism. In this case, the RPC calls are used with a pseudo-proxy to pass 
information to and from the underlying Android OS. This provides an extra layer of security to keep a 
rogue application from doing something nefarious on your device. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

104 

 

Figure 4-21. Pydev New Template dialog box 

You must use the ADB tool in order to deploy an SL4A application to either the emulator or a real 
device. This can be done from the command line, or you could automate the process with a little code:  

#!/usr/bin/env python 
 
import subprocess 
 
ADB = r'C:\Program Files (x86)\Android\android-sdk-windows\platform-tools\adb.exe' 
APPLICATION = 'hello_world.py' 
TARGET = '/sdcard/sl4a/scripts/' 
 
def main(): 
    # Upload the application. 
    subprocess.call([ADB, '-e', 'push', APPLICATION, TARGET + APPLICATION]) 
     
    # Launch the application. 
    subprocess.call('"%s" -e shell am start \ 
                  -a com.googlecode.android_scripting.action.LAUNCH_BACKGROUND_SCRIPT \ 
                  -n \ 
                  com.googlecode.android_scripting/.activity.ScriptingLayerServiceLauncher \ 
                  -e com.googlecode.android_scripting.extra.SCRIPT_PATH \ 
                  "%s%s"' % (ADB, TARGET, APPLICATION)) 
 
if __name__ == '__main__': 
    main() 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

105 

If you create a file with this code, include it in your Pydev project, and run it when you get ready to 
test, it will do the work for you. A good descriptive name such as Launch_app.py will help you identify it 
when it comes time to use it. Save it to a directory in your workspace area so you’ll be able to copy it into 
each project. The only thing you should have to change is the following line: 

APPLICATION = 'hello_world.py' 

This will obviously change for each application and should match the name of the file as stored on 
disk. Pydev provides a complete debugging facility allowing you to set breakpoints, examine variables, 
and step through lines of code as shown in Figure 4-22. You can set breakpoints while viewing your code 
in an editor window using the mouse to right-click Add Breakpoint. Once a breakpoint has been set, you 
can modify its properties and add conditions. This is invaluable when you have a long loop and you 
want to break after some number of iterations. Now when you run the application you will be prompted 
once the breakpoint has been hit and the condition satisfied. 

 

 

Figure 4-22. Pydev application debugging 

Another way to execute code from within Eclipse on either a real or emulated device is to use the 
ADB utility to establish a proxy to the device. This was covered in Chapter 3, but I’ll go through the steps 
again here to show you how to do it from Eclipse. To make this work with a real device, you will need to 
connect it using a USB cable and with the appropriate settings configured on the device such as USB 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

106 

Debugging enabled and something other than Charge Only enabled. Next, you must launch SL4A and 
start a server from the Interpreters menu. Finally, you must take note of the TCP port assigned to the 
server from the Notifications page on the device. Last, but not least, you must type the following in a 
command window with administrator privileges: 

adb forward tcp:9999 tcp:50681 

This instructs ADB to forward all TCP traffic from local port 9999 to remote port 50681. With all that 
accomplished, you should now be able to run your Python code from Eclipse, and all calls to an Android 
API will be sent via proxy to the device. The nice thing about running from within Eclipse is that you’ll be 
able to see all the debug information in DDMS and all the console output, including any error messages 
returned from the device. 

One of the tools I find invaluable is the file comparison or diff tool. To use it, first select the two files 
in the navigator pane on the left side of the Workspace window by a single left-click on the first file and 
then a Shift left-click on the second file. Next, use a right-click mouse action and choose Compare With 
➤ Each Other. This will produce a two-pane window with any differences highlighted, as shown in 
Figure 4-23. 

 

 

Figure 4-23. File comparison tool 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

107 

Using Multiple File Types in Eclipse 
One of the things that Eclipse is really good at is managing complex applications with multiple file types. 
Chapter 9 will examine the SMS Sender program in great detail, but for now it will serve as an example of 
how to create a project with a number of different files. This can be done from scratch or from existing 
files. In this case we’ll use existing files and add them to a new Pydev project. 

The first thing you have to do is create a new Pydev project. This will create a new folder under your 
workspace and a single src directory. To add files to the project you can either use the Import tool from 
the File menu or just drag and drop files from a file manager such as Windows Explorer on Windows or 
Nautilus on Linux into your project. Figure 4-24 shows the dialog box you will see if you choose the 
Import method. 

 

 

Figure 4-24. Import files tool 

When you click the next button you’ll be presented with another dialog box allowing you to browse 
for the directory you wish to import (see Figure 4-25). This should be the top or root directory with all 
files you wish to import in that directory or subdirectories. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

108 

 

Figure 4-25. Import directory chooser dialog box 

If you choose the drag-and-drop method, you’ll need to select the files and directories in the file 
manager and then drag them onto the Eclipse window and release the mouse while pointing to the 
project. This will bring up a new dialog box, which allows you to choose what to do with these files (see 
Figure 4-26). 

 

 

Figure 4-26. File and Folder Operation dialog box 

Once the import is complete you will have a new Pydev project. Figure 4-27 shows the SMSSender 
project with files that were included using the drag-and-drop method. The left pane shows a directory 
tree containing all files associated with this project. You can and should include all files, even those you 
wouldn’t edit with Eclipse such as images, in your project to simplify the deployment process later. 
Building a package for distribution requires that all files be included in your project so you might as well 
learn how to do that now. This also includes any library files, such as the JavaScript library, that your 
project depends on. 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

109 

Figure 4-27. Multifile example created using drag-and-drop method   

If you double-click one of the non-text files in the project Eclipse will attempt to open the file with 
the default viewer application. If you right-click a file, you will be shown options including Open With. 
Figure 4-28 shows the open option menu. 

 

 

Figure 4-28. Open file option menu 

The Other option will open another dialog box (see Figure 4-29) with a long list of default editors. If 
you select the External programs radio button, you’ll get a list of every registered mime type on your 
system. 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

110 

 

Figure 4-29. Editor Selection menu 

Eclipse does a great job of providing the right editor for the file type, as you can see from the HTML 
tags in Figure 4-27. 

Summary 
Eclipse is a powerful IDE. It’s also a complex software application and can be somewhat daunting to the 
newbie. This chapter hit the highlights of configuring Eclipse and using it to quickly and efficiently build 
and test your application. Hopefully you have caught a glimpse of what you can do with the combination 
of Eclipse, Pydev and the ADT. 

Here’s a list of things to remember about Eclipse: 

• Don’t be afraid of Eclipse: Many people shy away from using Eclipse because of 
something they’ve heard or read about how big and clunky it is. While it may have 
been slow on older computers with limited memory, it really runs well on a typical 
modern workstation.  

• Read the documentation: If you haven’t used Eclipse before, it’s not a bad idea to 
take a look through the documentation. At least look around for a recent Eclipse 
tutorial to help get you going quickly. 

 

 



CHAPTER 4 ■ DEVELOPING WITH ECLIPSE 

 

111 

• Find your plugins: There are many plugins besides the ones mentioned in this 
chapter. Browse the eclipse.org site and do a few Google searches if there’s 
something else you think you need. Aptana Studio isn’t the only HTML editor so 
feel free to check out some of the other options. 

• Learn the quick keys: Learning a few keyboard shortcuts can save you a lot of 
time and help keep your hands on the keyboard. Every time you have to move 
your hand to the mouse not only takes time but also potentially increases your 
fatigue factor. 



C H A P T E R  5 
 

 

    

 

   

 

  

 

 

  

 

113 

Exploring the Android API 

This chapter will examine the Android application programming interface (API) in depth and show how 
to use Python to call the different functions. 

■ Note Python cannot access every Android API with the r3 release of SL4A. Other languages such as BeanShell 
do have this capability and will be used to look at some of the missing functions.  

This chapter will rely heavily on a basic understanding of the concepts introduced in Chapter 1. The 
topics include Android activities and intents, JSON, Python types, and RPC. I’ll walk you through each 
API facade and include examples of how to use them where appropriate. They’re all fairly self-
explanatory with descriptive names such as cameraCapturePicture and recognizeSpeech. 

All communication in both directions to and from the Android API uses JSON as the underlying 
structure for passing data. You might want to go back to Chapter 1 and read the section on JSON at this 
point if you skipped over that portion. JSON is not complicated, but it can be somewhat confusing if you 
don’t know what you’re looking at. Python handles JSON quite nicely and even has a built-in procedure, 
pprint, to pretty print a JSON structure. Figure 5-1 shows what the return from the API call 
getLaunchableApplications looks like without using the pretty print routine. 

 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

114 

 

Figure 5-1. Example of JSON return from getLaunchableApplications API call 

Figure 5-2 shows the same results, but in a much more readable form using the pprint module. 

 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

115 

 

Figure 5-2. Example of getLaunchableApplications JSON formatted using pprint 

The other concept I’ll assume you understand at this point is an Android activity. SL4A provides an 
interface to launch and forget (or launch and wait) for an Android activity to complete. 

Exploring the Android APIs 
From Python, all SL4A API calls return an object with three fields:  

• id: A strictly increasing, numeric ID associated with the API call  

• result: The return value of the API call, or null if there is no return value  

• error: A description of any error that occurred, or null if no error occurred  



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

116 

The android.py file defines an Android class with three methods. Examining the _rpc method gives 
some insight into how API requests are passed to the underlying operating system using an RPC call and 
JSON: 

def _rpc(self, method, *args): 
    data = {'id': self.id, 
            'method': method, 
            'params': args} 
    request = json.dumps(data) 
    self.client.write(request+'\n') 
    self.client.flush() 
    response = self.client.readline() 
    self.id += 1 
    result = json.loads(response) 
    if result['error'] is not None: 
      print result['error'] 
    # namedtuple doesn't work with unicode keys. 
    return Result(id=result['id'], result=result['result'], 
                  error=result['error'], ) 

The same basic concept applies to other languages as well. In BeanShell the code looks like the 
following: 

call(String method, JSONArray params) { 
    JSONObject request = new JSONObject(); 
    request.put("id", id); 
    request.put("method", method); 
    request.put("params", params); 
    out.write(request.toString() + "\n"); 
    out.flush(); 
    String data = in.readLine(); 
    if (data == null) { 
      return null; 
    } 
    return new JSONObject(data); 
  } 

Android Facades 
Chapter 1 discussed the basics of the RPC mechanism used by SL4A to pass information to the 
underlying Android API. Every supported API function has a corresponding interface in each  
SL4A language, called a facade, with the appropriate parameters required by the API. Some of  
these parameters will be mandatory, and some will be optional. Table 5-1 shows the top-level facades 
and what functionality they provide access to. Appendix A contains a complete listing of all the  
SL4A API calls. 

 

 

 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

117 

Table 5-1. Android API Facades  

ActivityResultFacade Sets return values for an activity 

AndroidFacade Common Android functions  

ApplicationManagerFacade Gets information about installed applications 

BatteryManagerFacade Exposes Batterymanager API 

BluetoothFacade Allows access to Bluetooth functions 

CameraFacade All camera-related operations 

CommonIntentsFacade Generic Android intents 

ContactsFacade Provides access to contacts-related functionality 

EventFacade Exposes functionality to read from the event queue as an RPC and 
functionality to write to the event queue as a pure Java function 

EyesFreeFacade Provides text-to-speech (TTS) services for API 3 or lower 

LocationFacade Exposes the LocationManager-related functionality 

MediaPlayerFacade Exposes basic mediaPlayer functionality 

MediaRecorderFacade Records media 

PhoneFacade Exposes TelephonyManager functionality 

PreferencesFacade Allows access to the Preferences interface 

SensorManagerFacade Exposes the SensorManager-related functionality 

SettingsFacade Exposes phone settings functionality 

SignalStrengthFacade Exposes SignalStrength functionality 

SmsFacade Provides access to SMS-related functionality 

SpeechRecognitionFacade Contains RPC implementations related to the speech-to-text functionality 
of Android 

TextToSpeechFacade Provides TTS services for API 4 or higher 

 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

118 

Continued 

ToneGeneratorFacade Generates DTMF tones  

UiFacade Creates and handles information from dialog boxes 

WakeLockFacade Exposes some of the functionality of the PowerManager (wake locks, in particular) 

WebCamFacade Captures video from the front-facing camera 

WifiFacade Manages all aspects of the WiFi radio 

ActivityResultFacade 
This facade provides a mechanism to explicitly set how your script will return information as an activity. 
It’s used whenever a script APK is launched using the Android API call startActivityForResult(). Using 
this method implies that your script will return a result of some kind, and it is important to set the type 
of the result (resultValue) and either RESULT_CANCELED (0) or RESULT_OK (-1). 

AndroidFacade 
This facade is somewhat of a catchall and presents a number of functions available from the Android 
operating system (OS). There are functions to check version numbers of the currently executing package 
(getPackageVersion and getPackageVersionCode) and the version of SL4A (requiredVersion). The second 
one provides a nice mechanism to check for a minimum version of SL4A in the event that your code 
requires some version-specific feature. 

There are a few deprecated calls in this façade, including getInput and getPassword. Both have been 
replaced with newer Android API calls, but are kept around to support older scripts. Figure 5-3 shows 
what you’ll see if you use a deprecated API call. 

 

 

Figure 5-3. Notification message for deprecated API call 

SL4A will add a message to your notification window whenever you use a deprecated function. 
You’ll find the functions here to start an Android activity and wait for a result or simply launch and 
return. Like both Windows and Linux, Android supports the concept of a Clipboard for copying and 
pasting information between applications. You can do this from a script using the functiongetClipboard 
and setClipboard functionsfunction. 

The log and notify functions provide a way to either display (notify) or save (log) information for 
viewing with the logcat application. There’s also the frequently used makeToast function that simply 
flashes a message on the screen of the device for a short time period and then removes it. If you want to 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

119 

get the user’s attention by vibrating the device, you can use the vibrate function. The sendEmail 
function will launch an activity to send an e-mail (the activity will depend on what applications you have 
loaded on your device that are able to send e-mail) and populate the recipient, subject, body, and 
attachment fields. You will have to use that application to actually send the message. In a later chapter, 
I’ll show you another method for sending an e-mail message that does not require an external activity. 

In the introduction I gave an explanation of the Android architecture and how an activity fits into 
the execution of different applications. Early versions of SL4A included the ability to just start an activity 
(startActivity) and also start an activity and wait for the result (startActivityForResult). SL4A r4 
introduced two additional functions allowing you to start an activity using an intent 
(startActivityIntent) and start an activity for a result intent (startActivityForResultIntent).  
Another new function call in SLA r4 is makeIntent. This function is needed to create an intent to be used 
by either of the startActivity calls requiring an intent. The return of this function is an object 
representing an intent. 

SL4A r4 also introduced the getConstants function in the Android facade to help you determine 
what constants are available from a specific Android class. This function can come in really handy when 
you want to query a content provider, but don’t have a clue what’s available. Here’s a single line of code 
demonstrating the use of this call to show the constants available from the contacts provider: 

res=droid.getConstants("android.provider.ContactsContract$CommonDataKinds$Phone").result 

Android 2.2 will return a total of 99 constants available from the contacts provider. Here’s a short list 
showing some of those constants: 

{u'AGGREGATION_MODE': u'aggregation_mode', 
 u'AVAILABLE': 5, 
 u'AWAY': 2, 
 u'CONTACT_ID': u'contact_id', 
 u'CONTACT_PRESENCE': u'contact_presence', 
 u'CONTACT_STATUS': u'contact_status', 
 u'CONTACT_STATUS_ICON': u'contact_status_icon', 
 u'CONTACT_STATUS_LABEL': u'contact_status_label', 
 u'CONTACT_STATUS_RES_PACKAGE': u'contact_status_res_package', 
 u'CONTACT_STATUS_TIMESTAMP': u'contact_status_ts', 
 u'CONTENT_FILTER_URI': u'content://com.android.contacts/data/phones/filter', 
 u'CONTENT_ITEM_TYPE': u'vnd.android.cursor.item/phone_v2', 
 u'CONTENT_TYPE': u'vnd.android.cursor.dir/phone_v2', 
 u'CONTENT_URI': u'content://com.android.contacts/data/phones', 
 u'CUSTOM_RINGTONE': u'custom_ringtone', 
 u'DATA': u'data1', 
 u'DATA1': u'data1', 
 u'DATA2': u'data2', 
 u'DATA_VERSION': u'data_version', 
 u'DELETED': u'deleted', 
 u'DISPLAY_NAME': u'display_name', 
 u'DISPLAY_NAME_ALTERNATIVE': u'display_name_alt', 
 u'DISPLAY_NAME_PRIMARY': u'display_name', 
 u'DISPLAY_NAME_SOURCE': u'display_name_source', 
 u'DO_NOT_DISTURB': 4, 
 u'HAS_PHONE_NUMBER': u'has_phone_number', 
 u'IDLE': 3, 
 u'INVISIBLE': 1, 
 u'IN_VISIBLE_GROUP': u'in_visible_group', 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

120 

 u'IS_PRIMARY': u'is_primary', 
 u'LAST_TIME_CONTACTED': u'last_time_contacted', 
 u'LOOKUP_KEY': u'lookup', 
 u'MIMETYPE': u'mimetype', 
 u'NAME_RAW_CONTACT_ID': u'name_raw_contact_id', 
 u'NAME_VERIFIED': u'name_verified', 
 u'NUMBER': u'data1', 
 u'_COUNT': u'_count', 
 u'_ID': u'_id'} 

The same getConstants function can be used to get a list of all the available constants in 
android.content.Intent. This will include all the standard Android intents. Here’s a short code snippet 
that will print the list to the console: 

import android 
droid = android.Android() 
myconst = droid.getConstants("android.content.Intent").result 
for c in myconst: 
    print c,"=",myconst[c] 

The result of running this code will produce a nice formatted list that will look something like the 
following: 

ACTION_AIRPLANE_MODE_CHANGED = android.intent.action.AIRPLANE_MODE 
ACTION_ALARM_CHANGED = android.intent.action.ALARM_CHANGED 
ACTION_ALL_APPS = android.intent.action.ALL_APPS 
ACTION_ANSWER = android.intent.action.ANSWER 
ACTION_APP_ERROR = android.intent.action.APP_ERROR 
ACTION_ATTACH_DATA = android.intent.action.ATTACH_DATA 
ACTION_BATTERY_CHANGED = android.intent.action.BATTERY_CHANGED 
ACTION_BATTERY_LOW = android.intent.action.BATTERY_LOW 
ACTION_BATTERY_OKAY = android.intent.action.BATTERY_OKAY 
ACTION_BOOT_COMPLETED = android.intent.action.BOOT_COMPLETED 
ACTION_BROADCAST_KEYEVENT = android.intent.action.BROADCAST_KEYEVENT 
ACTION_BROADCAST_MOTIONEVENT = android.intent.action.BROADCAST_MOTIONEVENT 
ACTION_BROADCAST_TRACKBALLEVENT = android.intent.action.BROADCAST_TRACKBALLEVENT 
ACTION_BUG_REPORT = android.intent.action.BUG_REPORT 
ACTION_CALL = android.intent.action.CALL 
ACTION_CALL_BUTTON = android.intent.action.CALL_BUTTON 
ACTION_CALL_EMERGENCY = android.intent.action.CALL_EMERGENCY 
ACTION_CALL_PRIVILEGED = android.intent.action.CALL_PRIVILEGED 
ACTION_CAMERA_BUTTON = android.intent.action.CAMERA_BUTTON 
ACTION_CHECK_CONTACT_DB_CORRUPT = android.intent.action.ACTION_CHECK_CONTACT_DB_CORRUPT 
ACTION_CHOOSER = android.intent.action.CHOOSER 
ACTION_CLOSE_SYSTEM_DIALOGS = android.intent.action.CLOSE_SYSTEM_DIALOGS 
ACTION_CONFIGURATION_CHANGED = android.intent.action.CONFIGURATION_CHANGED 
ACTION_CONTACTS_CHANGE = anddroid.intent.action.CONTACTS_CHANGE 
ACTION_CONTACTS_DB_READY = android.intent.action.CONTACTS_DB_READY 
ACTION_CONTACT_DATABASE_CORRUPT = android.intent.action.CONTACT_DB_CORRUPT 
ACTION_CREATE_SHORTCUT = android.intent.action.CREATE_SHORTCUT 
ACTION_DATE_CHANGED = android.intent.action.DATE_CHANGED 
ACTION_DEFAULT = android.intent.action.VIEW 
ACTION_DELETE = android.intent.action.DELETE 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

121 

ACTION_DELETE_THREAD_MSG = android.intent.action.DELETE_THREAD_MSG 
ACTION_DEVICE_STORAGE_LOW = android.intent.action.DEVICE_STORAGE_LOW 
ACTION_DEVICE_STORAGE_OK = android.intent.action.DEVICE_STORAGE_OK 
ACTION_DIAL = android.intent.action.DIAL 
ACTION_DIALER_NEED_CHANGE = android.intent.action.DIALER_NEED_CHANGE 
ACTION_DOCK_EVENT = android.intent.action.DOCK_EVENT 
ACTION_EDIT = android.intent.action.EDIT 

With this information you can then use the makeIntent function and startActivityForResultIntent 
to access virtually any functionality buried in the depths of the Android operating system. Here’s a short 
snippet that uses this technique to display your call log: 

import android 
droid = android.Android() 
myconst = droid.getConstants("android.provider.CallLog$Calls").result 
calls=droid.queryContent(myconst["CONTENT_URI"],["name","number","duration"]).result 
for call in calls: 
    print call 

Notice that this code first uses the getConstants function to determine the value for CONTENT_URI 
and then uses the queryContent (part of the ContactsFacade) call to actually return the results.  

ApplicationManagerFacade 
The four functions in this facade make it possible to list all available and all running packages, launch an 
activity, or force-stop a package. You could use these calls to write your own task manager or terminate a 
specific set of packages. Be aware that the getLaunchableApplications call could take a little while to 
return a result depending on the number of applications you have loaded on the device. Figure 5-1 
shows a partial list of applications in raw JSON form, whereas Figure 5-2 shows the same list formatted 
using the pprint function. 

BatteryManagerFacade 
Anything and everything having to do with your device’s battery is here. This facade is a good place to 
talk about the concept of monitoring. There are a number of other cases where you must start and stop 
monitoring for some type of information in order to gather meaningful data. Figure 5-4 shows an 
example of what you might see in an interactive session using some of these API calls. 

This is also a good place to point out some of the differences in the information returned by each 
API call. The Python IDLE tool makes it really easy to explore the different calls from the comfort of your 
workstation keyboard. That is assuming you’ve already launched SL4A on the device, started a server, 
and connected to it using ADB (see Chapter 2 if none of this makes sense). In the examples that follow, 
you’ll see three arrows, as in >>>, indicating a prompt from IDLE. Don’t type those in if you want to try 
out the code for yourself. 

As mentioned in Chapter 1, everything in Python is an object. Every return from an API call is a 
result object. If you examine the last line from the _rpc method, you’ll see the following: 

return Result(id=result['id'], result=result['result'], 
                  error=result['error'], ) 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

122 

To access just the result of a call from Python, you could assign it to a variable and then evaluate the 
result, as in the following: 

>>> apps = droid.getLaunchableApplications() 
>>> pprint.pprint(apps.result) 

To determine the type of an object in Python, you can use the type() function, as follows: 

>>> type(apps) 
<class 'android.Result'> 
>>> type(apps.result) 
<type 'dict'> 

This says that apps is an object derived from the class android.Result. The following line shows that 
apps.result is of type dict, which in Python is essentially a key/value pair. In Java this would be 
represented as a Map object. Figure 5-4 shows what you will see upon examining the results returned by 
different battery management API calls. 

 

 

Figure 5-4. Example of battery management API calls 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

123 

BluetoothFacade 
Android devices have a wide range of Bluetooth capabilities you probably wouldn’t expect on a mobile 
device. The BluetoothFacade provides access to all these functions, from the basic connection features to 
sending and receiving both ASCII and binary data. At the simplest level are bluetoothAccept, 
bluetoothConnect, bluetoothMakeDiscoverable, and bluetoothStop for controlling connectivity. You can 
also use checkBluetoothState and toggleBluetoothState to simply turn the Bluetooth radio on and off or 
just check to see what state it’s in. Although the toggleBluetoothState function sounds like it simply 
flips the current state of the Bluetooth radio, it will actually set it to the state you desire with an optional 
parameter. By default, this will cause a pop-up screen on the device asking for permission, as shown in 
Figure 5-5. 

 

 

Figure 5-5. Bluetooth API prompting for permission 

BluetoothFacade also provides support for transferring data both to and from the device. Options 
here include bluetoothRead and bluetoothWrite to send / receive ASCII characters. There’s also a 
bluetoothReadLine to read an entire line of text. For sending and receiving binary data there’s 
bluetoothWriteBinary and bluetoothReadBinary. These two functions make it possible to transfer binary 
files to/from your device using Bluetooth.  

CameraFacade 
You basically have two options when it comes to taking a picture from a script. Either you snap a picture 
of whatever the camera is currently looking at (cameraCapturePicture) or you launch the image-capture 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

124 

application (cameraInteractiveCapturePicture). This is strictly for using the lens on the rear of the 
device. For devices with a front-facing camera, there is WebCamFacade. It should be noted that both of 
these API calls require you to pass a path on the device to store the image. You should take some time to 
browse your device if you aren’t familiar with how to get to the different directories. On most devices, 
there will be a removable device typically named sdcard. The Android camera app stores pictures in 
/sdcard/DCIM/100Media. 

As a side note, you should be aware that Android has a media scanner application that looks for 
specific file types, such as .jpg for pictures, and adds those images to the browse list for the default 
application such as Gallery. If you don’t want that to happen, you can use a hidden directory with a 
leading period such as /sdcard/.donotscan. You can also add a file named .nomedia, and Android should 
ignore the media files in that directory. 

CommonIntentsFacade 
Version 2.x of the Android OS has a set of common intents available through CommonIntentsFacade. For 
scanning barcodes, there’s the scanBarcode function. The underlying code will attempt to interpret what 
you’re scanning and then present it as a result. To test this function, I used a few lines of Python code to 
launch the barcode scanner and then pointed it at the SL4A home page with its QR code for 
downloading the .apk file. Here’s what I got: 

>>> import android 
>>> droid = android.Android() 
>>> res = droid.scanBarcode() 
>>> res.result 
{u'extras': {u'SCAN_RESULT': u'http://android-scripting.googlecode.com/files/sl4a_r3.apk', 
 u'SCAN_RESULT_FORMAT': u'QR_CODE'}} 

Next up is the search API function. You can call this API function with a generic string, as follows: 

>>> search('pizza') 

What happens next depends on how many different applications on your device are capable of 
performing a search. Figure 5-6 shows just a few of the options on a typical Android phone. You could 
pick one app and make it the default, but it might not give you the results you want. Calling the pick 
function displays content to be picked based on the Uniform Resource Identifier (URI) passed as an 
argument. You could use this to display a list of contacts with this code: 

>>> import android 
>>> droid = android.Android() 
>>> droid.pick('u'content://contacts/people') 

The view API function starts a view action based on a URI passed as an argument. This function also 
takes two optional arguments: type is a string representing the MIME type of the URI, and extras is a 
JSON object containing a map of any extra information needed by the intent. Understanding how to use 
the API call requires some understanding of intents and URIs. The basics were covered in Chapter 2, 
although it wouldn’t hurt to revisit the Google Android developer site. 

If you simply want to launch the contacts app, then use viewContacts. This function uses the launch 
activity call to simply start the application and then return to the caller. If you happen to have any HTML 
content stored locally on your device, you can use the viewHtml function to display it. It requires a full 
path to the file as a single argument. To search for something on a map, use the viewMap function with a 
string argument containing what you’re looking for. This will launch the maps application with the 
search bar containing your search string. 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

125 

 

Figure 5-6. Results of the search API function 

ContactsFacade 
This facade gives you access to anything and everything having to do with contacts. If you just want to 
get one big list of all the contacts on your device, use contactsGet. You might want to use the 
contactsGetAttributes call first to figure out what information is available for each contact. This list 
could change over time as Google enhances their products. Another call you might want to use before 
retrieving the entire list is contactsGetCount. This simply returns the total number of contacts stored on 
the device. 

If you need to select a specific contact for use in some other action, use the pickContact function. 
This will launch the People application with the search box and keyboard displayed. Be aware that it 
returns an intent pointing to the contact chosen. If you just need a phone number for one of your 
contacts, you’ll want to use the pickPhone function. This will display the list of contacts as before, but 
only give you the associated phone numbers after you choose a name. This function returns the phone 
number chosen as a part of the result. The last two functions here are contactsGetById and 
contactsGetIds. These two go together and allow you to pick a specific contact using only the ID. Figure 
5-7 shows some of these functions in action. 

 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

126 

  

Figure 5-7. Results of different Contacts API functions 

SL4A r4 introduced a new queryContent function to the contacts facade. This function has a total of 
five parameters you need to pass it in order to fully define what you wish your query to return. The first 
parameter is the URI of the content provider you wish to query. For the contacts database this would be 
content://com.android.contacts/data/phones. The remaining parameters are optional but you must 
pass the keyword ‘None’ if you wish to use the default. Parameter two is a list of columns from the 
database you wish returned. Parameter three is a selection filter to choose specific rows to return from 
the database. The final two parameters are selectionArgs and order. 

Here’s a short snippet showing how you might use this function: 

import android 
droid = android.Android() 
contacts = droid.queryContent('content://com.android.contacts/data/phones',\ 
        ['display_name','data1'],None,None,None).result 
for c in contacts: 
  print c 

You’ll also need to have installed at least PythonForAndroid_r6.apk for this example to work. With 
that said, you should see an output from this snippet that looks something like the following: 

[{u'data1': u'321-555-1212', u'display_name': u'John Doe'}, 
 {u'data1': u'321-555-1212', u'display_name': u'Jane Doe'}, 
 {u'data1': u'321-555-1212', u'display_name': u'Jed Doe'}, 
 {u'data1': u'321-555-1234', u'display_name': u'John Smith'}, 
 {u'data1': u'321-555-1234', u'display_name': u'Jane Smith'}, 
 {u'data1': u'321-555-1234', u'display_name': u'Jill Smith'}, 
 {u'data1': u'800-555-1212', u'display_name': u'Toll Free'}] 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

127 

EventFacade 
The Android OS keeps an event queue for passing information between applications asynchronously. 
This facade gives you access to functions to manipulate Android events. If you simply want to clear the 
event buffer, just call eventClearBuffer. To add or remove an event to the queue, you should use 
eventPost or eventPoll. To wait for an event, use eventWaitFor with a parameter of eventName, but be 
aware that this will block further execution until the named event occurs. 

One example of events can be seen using example code from the SL4A API wiki. I updated the code 
to use the SL4A r4 functions as shown here: 

import android, time 
droid = android.Android() 
droid.startSensingTimed(1,1000) 
e = droid.eventPoll(1).result 
event_entry_number = 0 
x = e[event_entry_number]['data']['xforce'] 

The eventPost function is one way to implement a modal dialog box that I’ll demonstrate in a later 
chapter. It also works as a cross-thread communication medium if you’re building a multithreaded 
application. 

EyesFreeFacade 
This facade provides TTS services for API 3 or lower. The only function here is ttsSpeak, which outputs 
the passed string using the TTS capability. 

LocationFacade 
LocationFacade functions make it possible to know where you are at any point in time, either by GPS or 
by using information about the cell tower you’re currently using. If you use the getLastKnownLocation 
function, you’ll get information that may or may not be the most current available. To make sure you get 
relevant information, you must invoke the startLocating call. Follow that with a readLocation call, and 
you should see a result like the following: 

Result(id=6, result={u'network': {u'altitude': 0, u'provider': u'network', u'longitude': 
 -84.480000000000004, u'time': 1296595452577L, u'latitude': 31.392499999999998, u'speed': 
 0, u'accuracy': 1000}}, error=None) 

startLocating will only use currently enabled location resources. That means you won’t get a GPS 
fix unless you already have GPS enabled. Use the stopLocating call to stop collecting location data. The 
last function available in this facade is geocode, which you can use in conjunction with either 
readLocation or getLastKnownLocation to get a list of addresses for the given latitude and longitude. 

Feeding the previous location into geocode returns the following: 

Result(id=7, result=[{u'locality': u'Milford', u'sub_admin_area': u'Baker', u'admin_area': 
 u'Georgia', u'feature_name': u'Milford', u'country_code': u'US', u'country_name': 
 u'United States'}], error=None) 

Keep in mind that this feature requires an active Internet connection to do the actual lookup. 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

128 

MediaPlayerFacade 
This is the facade to use if you want to play music or video content. SL4A r4 made this function an 
official part of the API. The functions available provide a way to open, close, play, pause, and seek to a 
position in a media file. The functions mediaIsPlaying, mediaPlayInfo, and mediaPlayList provide 
information about the current state of the media player. Keep in mind that these functions do not 
actually manipulate the media player application; they launch a media player service. There is a way to 
launch the media player using startActivity if that’s what you want to do. 

Function names are pretty obvious: mediaPlay, mediaPlayClose, mediaPlayPause, mediaPlaySeek, and 
MediaPlayStart. You will need to use mediaPlay to actually load a media resource specified by a URL. The 
function mediaPlaySetLooping is the last function that you might find handy if you’re creating something 
like a background noise player. 

MediaRecorderFacade 
The MediaRecorder facade gives you access to both audio and video recording capabilities. You must 
provide a valid path for the output file or the call will fail. If you simply want to launch the video capture 
application, use the startInteractiveVideoRecording function. To start an audio recording, use the 
recorderStartMicrophone function. For a video recording, use recorderCaptureVideo function. If you use 
either of these, you must explicitly call recorderStop to end a previously started recording. 

PhoneFacade 
Every Android cell phone makes basic phone operations available programmatically. This facade also 
includes a number of network-specific capabilities. Some functions simply return with no information if 
it’s not available on the device. One example of this behavior is the getCellLocation call. If you try this 
call on a CDMA phone, you’ll get nothing in the result. If you want to monitor the state of the phone, you 
must first call the startTrackingPhoneState function. The readPhoneState function returns the current 
state along with the incoming phone number for any incoming call. 

There are two basic ways to place a phone call. First are the phoneCallNumber and phoneDialNumber 
functions. These take a phone number as a string as the only argument. The difference between the two 
is that the phoneCallNumber function will actually place the call; phoneDialNumber will open the phone 
dialer with the number you pass it, entered as if you typed it on the keypad. 

You can also use either the phoneCall or phoneDial functions to dial with a URI string. You could 
pass the intent returned by the pickContact function, and it will call the primary number for that 
contact. To do this in Python, you need to extract just the intent as returned by the pickContact function. 
In Python this would look like this: 

cont = droid.pickContact() 
droid.phoneDial(cont[1]['data']) 

PreferencesFacade 
If you’re looking to build an application with its own set of preferences, you’ll need this facade. There  
are three functions supported in the SL4A r4 release: prefGetAll, prefGetValue, and prefPutValue. By 
default, all three operate on the Shared Preferences store, which contains the usage tracking preference. 
Here’s what you will see from IDLE: 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

129 

>>> import android 
>>> droid = android.Android() 
>>> pref = droid.prefGetAll() 
>>> pref 
Result(id=0, result={u'usagetracking': False, u'present_usagetracking': False}, error=None) 

To create your own preferences file, you need to add a filename as an argument to pass to the Get 
and Put routines like this: 

>>> droid.prefPutValue('GPSTracking', True, 'myprefs') 
Result(id=7, result=None, error=None) 
>>> droid.prefGetValue('GPSTracking','myprefs') 
Result(id=9, result=True, error=None) 

SensorManagerFacade 
Every Android device has one or more sensors available to applications. At a minimum, there’s an 
accelerometer to determine the orientation of the screen. The SensorManager facade provides access to 
all the sensors currently supported by Android. It’s also another one of the facade types requiring you to 
start and stop the process of sensing because this happens in the background. To start and stop sensing, 
use the startSensing and stopSensing function calls. Data will be available once you have started 
sensing and waited some amount of time to allow sensor data to be collected. 

At the highest level is the readSensors function call. The following example shows the data returned 
by this function: 

>>> res = droid.readSensors() 
>>> import pprint 
>>> pprint.pprint(res.result) 
{u'accuracy': 3, 
 u'azimuth': -2.734636402130127, 
 u'pitch': -1.0204463958740235, 
 u'roll': 0.034272377938032152, 
 u'time': 1296683466.802, 
 u'xforce': -0.14982382999999999, 
 u'xmag': 13.75, 
 u'yforce': 8.6625409999999992, 
 u'ymag': -38.4375, 
 u'zforce': 5.3664170000000002, 
 u'zmag': 15.375} 

There are individual function calls to return specific information: sensorsGetAccuracy, 
sensorsGetLight, sensorsReadAccelerometer, sensorsReadMagnetometer, and sensorsReadOrientation. 
The results of calling these functions are shown here: 

>>> droid.sensorsGetAccuracy() 
Result(id=7, result=3, error=None) 
>>> droid.sensorsGetLight() 
Result(id=8, result=None, error=None) 
>>> droid.sensorsReadAccelerometer() 
Result(id=9, result=[-0.14982382999999999, 8.7306430000000006, 5.4345189999999999], 
 error=None) 
>>> droid.sensorsReadMagnetometer() 

x



CHAPTER 5 ■ EXPLORING THE ANDROID API 

130 

Result(id=10, result=[11.25, -37.6875, 13.3125], error=None) 
>>> droid.sensorsReadOrientation() 
Result(id=11, result=[-2.7596172332763671, -1.0129913330078124, 0.035179258137941358], 
error=None) 

The accelerometer and magnetometer functions return values as a list of X, Y, and Z. Orientation 
returns a list of azimuth, pitch, and roll. In SL4A r4 the startSensing function has been deprecated and 
replaced with startSensingThreshold and startSensingTimed. In many cases when you need to use the 
sensors you either want to detect motion based on time or when the device crosses some threshold of 
movement. The startSensingThreshold function allows you to record sensor events into the event queue 
when a specific threshold has been exceeded in orientation, movement (accelerometer), direction 
(magnetometer), or light. If you wish to use multiple sensors you must make multiple calls to 
startSensingThreshold to enable a specific threshold for each. The startSensingTimed function takes 
two parameters to determine which sensor to record (1 = all, 2 = accelerometer, 3 = magnetometer, and 4 
= light) along with a delayTime (specified in milliseconds) parameter to specify the amount of time 
between readings. 

SettingsFacade 
This façade gives you access to all the different settings on your phone: ringer volume, screen brightness, 
and more. It’s probably one of the more useful facades when you think about scripting your device. Later 
chapters will use these function calls to demonstrate the power of SL4A. For now, let’s just take a look at 
what’s available. 

There are three function calls that simply check the status of something. These include 
checkAirplaneMode, checkRingerSilentMode, and checkScreenOn. All three simply return a Boolean 
indicating whether the mode is on (True) or off (False). Be aware that checkScreenOn requires at least API 
level 7 or higher (Android 2.1). To change either AirplaneMode or RingerSilentMode, you can use 
toggleAirplaneMode or toggleRingerSilentMode. These functions are similar to other toggle functions in 
that you can explicitly set a mode by passing an optional parameter. The result returned will reflect the 
current state of the device. There’s also a toggleVibrateMode to set the device to vibrate only if the ringer 
is enabled and to vibrate on a new notification otherwise. 

The remaining functions either get a particular setting or set a value for a setting. For getting a value, 
you use getMaxMediaVolume, getMaxRingerVolume, getMediaVolume, getRingerVolume, 
getScreenBrightness, getScreenTimeout, and getVibrateMode. To set values, you should use 
setMediaVolume, setRingerVolume, setScreenBrightness, and setScreenTimeout. 

SignalStrengthFacade 
If you want to know or display how good your signal is, you should use this facade. First, you must call 
the startTrackingSignalStrengths function to start gathering data. Next, you should call 
readSignalStrengths to actually read the data. It will return something like this: 

>>> droid.readSignalStrengths().result 
{u'cdma_ecio': -70, u'evdo_dbm': -98, u'cdma_dbm': -97, u'evdo_ecio': -1515, 
 u'gsm_signal_strength': 99, u'gsm_bit_error_rate': -1} 

Once you’re done, you should issue stopTrackingSignalStrengths to shut the process down. 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

131 

SmsFacade 
This facade lets you manipulate the store of SMS messages stored on the phone. It has a number of 
functions for deleting, reading, marking, and sending SMS messages. SMS messages are another area 
where Google decided to make the attributes flexible. The smsGetAttributes function returns a list of 
available attributes as currently defined. Using Python and the pprint function will show the following: 

>>> pprint.pprint(droid.smsGetAttributes().result) 
[u'_id', 
 u'thread_id', 
 u'toa', 
 u'address', 
 u'person', 
 u'date', 
 u'protocol', 
 u'read', 
 u'status', 
 u'type', 
 u'reply_path_present', 
 u'subject', 
 u'body', 
 u'sc_toa', 
 u'report_date', 
 u'service_center', 
 u'locked', 
 u'index_on_sim', 
 u'callback_number', 
 u'priority', 
 u'htc_category', 
 u'cs_timestamp', 
 u'cs_id', 
 u'cs_synced', 
 u'error_code', 
 u'seen'] 

If you want to know how many SMS messages are currently stored on the device, use 
smsGetMessageCount. This function has a required Boolean argument to indicate whether you want a 
count of just the unread messages or everything. If you don’t pass it an argument, you’ll get an error 
message like this: 

>>> droid.smsGetMessageCount() 
com.googlecode.android_scripting.rpc.RpcError: Argument 1 is not present 
Result(id=24, result=None, error=u'com.googlecode.android_scripting.rpc.RpcError: Argument 1 
 is not present') 

Calling it with either True or False as the argument will return an integer count, as follows: 

>>> droid.smsGetMessageCount(True).result 
0 
>>> droid.smsGetMessageCount(False).result 
228 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

132 

Manipulating individual messages is done by ID. Calling smsGetMessageIds will return either a list of 
all message IDs or just unread messages, depending on the Boolean argument passed. This just returns a 
list of numbers so you’ll have to get all the messages if you really want to do anything with them. You can 
do this one of two ways. Either make a call to smsGetMessages and get everything, or iterate over the list of 
message IDs returned by smsGetMessageIds and then use smsGetMessageById to get each one individually. 

If you want to work with only unread messages, you can set the Boolean passed to any of the 
GetMessage calls. Then you could use either smsMarkMessageRead or smsDeleteMessage to deal with each 
message. Finally, there’s smsSend for actually sending an SMS message. This function has two 
parameters: a destination address, which is typically a phone number, and the actual text of the 
message. 

SpeechRecognitionFacade 
You can use this facade to add speech recognition to your script. It has only one function call named 
recognizeSpeech. There are three optional arguments including a prompt string, a language string to 
inform the recognizer to expect speech in a language different than the default, and a language Model 
string to tell the recognizer which speech model to prefer. It returns a string representing the best effort 
to convert the speech to text. If it can’t interpret it, you’ll get an empty string. Here’s what I get when I 
call this function and say, “The rain in Spain falls mainly on the plain”: 

>>> droid.recognizeSpeech() 
Result(id=2, result=u'the rain in spain falls mainly on the plane', error=None) 

TextToSpeechFacade 
These functions provide TTS services for API4 and later. To have the device “speak” a phrase you would 
use the ttsSpeak function, passing it a string containing the phrase. Control is immediately passed back 
to the calling script once you issue this call. You must use the function ttsIsSpeaking to determine 
whether the speech function has completed. 

ToneGeneratorFacade 
If you need to generate DTMF tones for a specific function, such as interacting with an interactive voice 
response application, this call is for you. To use it you must call generateDtmfTones, passing in a string 
representing the numbers you wish to have generated. An optional integer argument allows you to alter 
the duration of each tone, with the default being 100 milliseconds. 

UiFacade 
This facade provides all the functions you’ll need for creating user interface elements such as text boxes, 
check boxes, date pickers, and more. Some of these functions are single-action, meaning you need to call 
them only once to actually get a response. These functions also block or wait for the user to complete the 
action and close the dialog box. The two single-action, input–related dialog boxes are dialogGetInput 
and dialogGetPassword. Both have optional parameters to set the title, prompt message, and default 
input. Figure 5-8 shows the result of the following code: 

>>> droid.dialogGetInput(u'My Title', u'My Message') 

6



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

133 

 

Figure 5-8. Example of dialogGetInput 

There are a number of functions in this façade that require two calls to actually show the dialog box 
and a third to get the response. The process involves setting up the dialog box with one call and then 
presenting it with a call to dialogShow. Figure 5-9 shows an example of dialogCreateAlert. 

 

 

Figure 5-9. Example of dialogCreate Alert 

This particular dialog box is meant to present some type of alert information to the user, which 
requires an acknowledgment before doing anything else on the device. It does not return any 
information and does not block any further program execution. You can close the dialog box either by 
pressing one of the hardware buttons or programmatically with a call to dialogDismiss. 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

134 

For other UI elements with information to return, you’ll need to call dialogGetResponse to actually 
get the data. The sequencing here is important because dialogGetResponse actually blocks until the user 
closes the dialog box. You should check the result variable to determine whether the user actually 
entered data or pressed the Cancel button instead. To prompt for and actually get a time with the 
dialogCreateTimePicker, do the following: 

>>> droid.dialogCreateTimePicker() 
Result(id=22, result=None, error=None) 
>>> droid.dialogShow() 
Result(id=23, result=None, error=None) 
>>> droid.dialogGetResponse() 
Result(id=24, result={u'hour': 15, u'minute': 53, u'which': u'positive'}, error=None) 

You can see the result of the call to dialogGetResponse when using Python and IDLE because the 
prompt will go away until you close the dialog box. If the user clicks the Cancel button, you’ll get a 
positive return in the 'which' parameter, as follows: 

>>> droid.dialogGetResponse() 
Result(id=26, result={u'hour': 0, u'minute': 0, u'which': u'negative'}, error=None) 

There are three function calls that allow you to set the text of the buttons displayed in the alert box. 
Here’s a short Python routine to demonstrate the usage of dialogSetPositiveButtonText, 
dialogSetNegativeButtonText, and dialogSetNeutralButtonText. Figure 5-10 shows the actual dialog 
box. 

import android 
 
droid = android.Android() 
 
title = 'Alert' 
message = ('This alert box has 3 buttons ' 
           'and waits for you to press one.') 
droid.dialogCreateAlert(title, message) 
droid.dialogSetPositiveButtonText('Yes') 
droid.dialogSetNegativeButtonText('No') 
droid.dialogSetNeutralButtonText('Cancel') 
droid.dialogShow() 
response = droid.dialogGetResponse().result 
 
print ['which'] in ('positive', 'negative', 'neutral') 

 

 

Figure 5-10. Example of multibutton alert dialog box 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

135 

The next set of dialog box functions contain multiple elements that must be set before you present 
them. These elements include a list of items to choose from in either a single- or multiple choice fashion. 
Figure 5-11 shows the use of dialogSetItems to create the list. Here’s a short piece of Python code to set 
a list of items: 

droid.dialogCreateAlert(title) 
droid.dialogSetItems(['one', 'two', 'three']) 
droid.dialogShow() 
response = droid.dialogGetResponse().result 

 

 

Figure 5-11. Example of multioption alert dialog box 

A slight variation on this theme is to use dialogSetSingleChoiceItems or dialogSetMultiChoiceItems 
to create a list of items with either a radio button or a check box to select the items. The only real 
difference between using dialogSetItems and dialogSetSingleChoiceItems is the visual display with the 
radio buttons and the button to acknowledge the choice and return. Here’s the code for using 
dialogSetSingleChoiceItems: 

droid.dialogCreateAlert(title) 
droid.dialogSetSingleChoiceItems(['One', 'Two', 'Three']) 
droid.dialogSetPositiveButtonText('Done') 
droid.dialogShow() 

For the multiple choice option, you need one more function call to get the selected items: 
dialogGetSelectedItems. The order of operations does matter in this example as well. You have to wait 
for the user to actually choose the items and close the dialog box before you try to read them. As a result, 
you must insert the call to dialogGetSelectedItems after the call to dialogGetResponse. Figure 5-12 
shows what the dialog box will look like. Here’s the code snippet showing how you would use this call to 
create the dialog box and get the response: 

droid.dialogCreateAlert(title) 
droid.dialogSetMultiChoiceItems(['One', 'Two', 'Three']) 
droid.dialogSetPositiveButtonText('Done') 
droid.dialogShow() 
droid.dialogGetResponse() 
ans = droid.dialogGetSelectedItems() 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

136 

 

Figure 5-12. Example of multiple choice alert dialog box 

The result from picking options One and Three is the following: 

Result(id=5, result=[0, 2], error=None) 

In Python, the result is actually a list of values (zero-based) representing the choices selected. If you 
have any script code that will take some time to complete, you should use a progress dialog box to keep 
the user informed. The two options available are dialogCreateHorizontalProgress and 
dialogCreateSpinnerProgress. To update the progress settings, you must call dialogSetCurrentProgress. 
There’s also dialogSetMaxProgress to define the end point. Figure 5-13 shows a horizontal progress bar 
generated with the following code: 

import android 
import time 
 
droid = android.Android() 
 
title = 'Horizontal' 
message = 'This is simple horizontal progress.' 
droid.dialogCreateHorizontalProgress(title, message, 100) 
droid.dialogShow() 
for x in range(0, 99): 
  time.sleep(0.1) 
  droid.dialogSetCurrentProgress(x) 
droid.dialogDismiss() 

 

 

Figure 5-13. Example of horizontal progress dialog box 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

137 

Notice that you must make a call to dialogDismiss to actually make the progress dialog box go away. 
The spinner progress dialog box is created with dialogCreateSpinnerProgress and is intended for 
displaying something moving to let the user know that processing is happening. As with the horizontal 
progress dialog box, you must make a call to dialogDismiss to actually close the spinner dialog box. 

Android provides two types of menus for applications to use: context and options. A context menu is 
analogous to what you see when you right-click your mouse in a desktop operating system. The options 
menu is what you see when you press the device Menu button while a script is running. The user can 
then set preferences or even exit a script in a relatively standard Android way. You add items to either of 
these menus using addContextMenuItem or addOptionsMenuItem. To clear either menu, use 
clearContextMenu or clearOptionsMenu. 

The final UI dialog box element is webViewShow. This dialog box opens up the world of HTML forms 
to SL4A scripts and will be used in a later chapter to build a full-featured application. For now, let’s just 
say it will display a WebView using the URL passed to it. An optional wait Boolean parameter will cause 
the script to block until the user exits the WebView if set to True. Chapter 8 uses this facade to build a 
number of dialog box–based user interface examples. 

WakeLockFacade 
In the world of mobile device applications there is the concept of locking a device in the wake state to 
allow for some critical process to complete. This can be potentially dangerous to your battery life and 
should only be used for short periods of time. It could also be used in the case of an application like a 
video player to keep the normal screen shutdown from occurring. Function calls provided to create a 
wake lock include wakeLockAcquireBright, wakeLockAcquireDim, wakeLockAcquireFull, and 
wakeLockAcquirePartial. Each one affects the screen brightness and CPU state. When your application 
has no more need for the wake lock, it calls the wakeLockRelease function to turn it off. 

WebCamFacade 
The web cam on an Android device is the front-facing camera. To start or stop the web cam, you use 
webcamStart or webcamStop. When you start the web cam, you can either use the default settings for 
resolution, quality, and port number, or pass them in as options. There’s also a separate function, 
webcamAdjustQuality, used to adjust the quality while streaming video. 

WifiFacade 
With WifiFacade, you can completely control the WiFi radio on your device. Basic operations are 
checkWifiState and toggleWifiState. These operate in much the same way as other similarly named 
functions, meaning you can pass a Boolean value to toggleWifiState to implicitly enable or disable the 
WiFi radio. Calls to wifiDisconnect, wifiReconnect, and wifiReassociate do what their names imply. To 
retrieve information about the currently active access point, use wifiGetConnectionInfo.  

You could use the remaining function calls to build a WiFi scanning application. Available function 
calls include wifiStartScan, wifiGetScanResults, wifiLockAcquireFull, wifiLockAcquireScanOnly, and 
wifiLockRelease. If you want exclusive access to the WiFi radio, you should make a call to either 
wifiLockAcquireFull or wifiLockAcquireScanOnly. Make sure you call wifiLockRelease when you’re 
done, or else other applications won’t be able to get to the WiFi connection. 



CHAPTER 5 ■ EXPLORING THE ANDROID API 

 

138 

Summary 
This chapter focused on getting you acquainted with the Android APIs as presented by SL4A. Examples 
given all used Python and the IDLE application running on Windows. You should be able to repeat the 
examples on Linux or Mac OS X by using the same basic approach. In the next chapter, I’ll start actually 
creating real scripts you can put to use right away. 

Here’s a list of things you want to remember from this chapter. 

• Things change: The SL4A project is a dynamic one, and new releases often bring 
changes to the API. If a particular function has been replaced you’ll get a 
notification about it. 

• Know your facades: SL4A uses the concept of a facade to mimic the native 
Android API calls. It will help you to have some understanding of how the native 
calls work, especially for things such as startActivity and makeIntent. 

• Don’t be afraid to experiment: The emulator is a great place to try out many of 
the API calls. Unfortunately, not all the functionality will work in the emulator. 
Sensors, cameras, WiFi, and web cams work only on real devices. You can’t really 
hurt anything testing these features on a device. so go ahead and give it a shot. 

• Read the documentation: I know how hard it is sometimes to just read the 
documentation. In the case of working with Android and SL4A, it can save you 
time and frustration if you’ll just do a little reading. Google search can be your 
friend here as well. 



C H A P T E R  6 
 

 

    

 

   

 

  

 

 

  

 

139 

Background Scripting with Python 

This chapter will take a look at creating scripts that use Scripting Layer for Android (SL4A) with no user 
interface and are meant to be run in the background.   

Here are the main topics for this chapter: 

• Writing scripts that perform specific tasks in the background 

• Demonstrating different functional aspects of SL4A 

Python has a reputation as a language for developing scripts to do basic functional tasks quickly and 
efficiently. This chapter will show you how to build scripts that perform specific operations with 
essentially no intervention. So the scripts in this chapter will have no user interface to speak of. While 
there might be some status information if you launch the script in a terminal window, there won’t be 
anything for the user to do other than start the script. 

Background Tasks 
With the latest version of SL4A (r4 as of this writing) you can launch any script either in a terminal or in 
the background. To launch it in the background, choose the icon that looks like a little cog wheel, as 
shown in Figure 6-1. 
 

 

Figure 6-1. SL4A script launch options 

When the script runs, it places an entry on the Notifications page that identifies the application and 
gives you a way to shut it down, if necessary. There’s also an application specifically written with SL4A in 
mind if you want a script to launch when your device boots. The application is called Launch On Boot 
and does pretty much what it says. Figure 6-2 shows what the main screen looks like. 

 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

140 

Figure 6-2. Launch On Boot preferences screen 

This utility will launch a single SL4A script every time your device boots. If you want to launch 
multiple scripts, you’ll need to create a master script that will, in turn, launch other scripts. That brings 
up the obvious question: How do you launch another SL4A script from Python? To answer that question 
we need to take a look at the makeIntent function. Here’s what the documentation has for makeIntent: 

makeIntent( 
   String action, 
   String uri[optional], 
   String type[optional]: MIME type/subtype of the URI, 
   JSONObject extras[optional]: a Map of extras to add to the Intent, 
   JSONArray categories[optional]: a List of categories to add to the Intent, 
   String packagename[optional]: name of package. If used, requires classname to be useful, 
   String classname[optional]: name of class. If used, requires packagename to be useful, 
   Integer flags[optional]: Intent flags) 

The key is that this is an explicit intent, meaning you don't need a URI. For the purpose of launching 
another SL4A script you must fully qualify the packagename and the componentname. The resulting call 
would then look like this: 

intent=droid.makeIntent("com.googlecode.android_scripting.action.LAUNCH_BACKGROUND_SCRIPT",\ 
None, \ 
None, \ 
{"com.googlecode.android_scripting.extra.SCRIPT_PATH" : "/sdcard/sl4a/scripts/hello_world.py"}, \ 
None, \ 
"com.googlecode.android_scripting", \ 
"com.googlecode.android_scripting.activity.ScriptingLayerServiceLauncher").result 

We can make that much easier to read with a just a few extra lines of code as follows: 

import android  
droid = android.Android()  
action = "com.googlecode.android_scripting.action.LAUNCH_BACKGROUND_SCRIPT" 
clsname = "com.googlecode.android_scripting" 
pkgname = "com.googlecode.android_scripting.activity.ScriptingLayerServiceLauncher" 
extras = {"com.googlecode.android_scripting.extra.SCRIPT_PATH": 
         "/sdcard/sl4a/scripts/hello_world.py"} 
myintent = droid.makeIntent(action, None, None, extras, None, clsname, pkgname).result 
droid.startActivityIntent(myintent) 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

141 

Triggers 
SL4A has a provision for implementing triggers. I want to mention them here briefly, but be aware that 
as of this writing they are still somewhat buggy. The basic concept is to provide a mechanism to trigger 
some functionality based on some condition or event that happens on your device. Figure 6-3 shows the 
menu you will see if you press the Menu button when viewing the list of scripts and then select Triggers. 

 

 

Figure 6-3. Trigger menu 

Any existing triggers will be displayed in this screen. You can cancel all triggers with the Cancel All 
button or select individual triggers by long-pressing on the one you want to remove to bring up a 
Remove button (see Figure 6-4). To add a new trigger, press the Add button shown in Figure 6-3. This 
will display the contents of the /sdcard/sl4a/scripts directory and allow you to choose a script to run. 
Once you choose a script, you will see a popup menu like the one in Figure 6-5. This is where you choose 
what will trigger your script to run. The list of options includes battery, location, phone, sensors, and 
signal strength. 

The bad news is that triggers are not fully functional, so use them at your own risk. On the bright 
side, there is a way to achieve some of the same functionality using a slightly different approach. 

 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

142 

 

Figure 6-4. Remove Trigger Button 

Be warned that if you start an application that crashes, you can get into an infinite loop in which 
every time SL4A launches it tries to start your triggered script and then it just crashes again. If you can 
get to the notification screen and bring up the SL4A triggers, you should be able to press the Cancel All 
button and remove the offending script. The only other way to get around this is to uninstall and then 
reinstall SL4A. 

 

 

Figure 6-5. Trigger activation menu 

Orientation-based Actions 
Here’s a handy script that will place your phone in silent mode if you set it face down on a flat surface. 
The code uses the startSensingTimed API call to determine orientation and movement. If it determines 
that the device is still and essentially horizontal, it will set the ringer to be silent using the 
toggleRingerSilentMode call. Here’s what the code looks like: 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

143 

import android, time 
droid = android.Android()  
 
droid.startSensingTimed(1, 5) 
silent = False 
while True: 
    e = droid.eventPoll(1) 
     
    facedown = e.result and 'data' in e.result[0] and \ 
               e.result[0]['data']['zforce'] and e.result[0]['data']['zforce'] < -5 
    if facedown and not silent: 
        droid.vibrate(100) 
        droid.toggleRingerSilentMode(True) 
        silent = True 
    elif not facedown and silent: 
        droid.toggleRingerSilentMode(False) 
        silent = False 
 
    time.sleep(5) 

Another way to detect that the phone has been placed face down is to use the light sensor.  
Here’s a short snippet that will use the text-to-speech (TTS) function to let you know when the phone  
is face down: 

import android, time 
 
droid = android.Android() 
droid.startSensing() 
 
while True: 
    result = droid.sensorsGetLight().result 
    if result is not None and result <= 10: 
        droid.ttsSpeak('I can\'t see!') 
    time.sleep(5) 

This is probably a good place to talk about logging. One of the biggest challenges of writing a 
program with no user interface is debugging. There are a number of ways to debug “silent” code—from 
inserting print statements to using the DDMS tool from the Android SDK. Most Linux system 
applications generate a log of some type expressly for the purpose of monitoring execution and to record 
error information. The Android platform provides a logging tool called logcat. There’s an API function 
named log that will write any string message you’d like to the logcat file. Alternatively, you can write to 
your own log file. 

In Chapter 9, I’ll go over a complex application in detail that uses logging to record information. 
Here’s what some of the log entries look like: 

{"task":"loadconfig"} <type 'unicode'> 
ok... {u'task': u'loadconfig'} 
loadconfig 
{"sections": {"locale": [{"name": "prefix", "value": "+60", "description": "International 
prefix. Used to clean up phone numbers before sending.\nThis will only affect numbers that do 
not yet have an international code.\nExamples (assuming prefix is +60):\n0123456789 will 
become +60123456789\n60123456789 will become +60123456789\n+49332211225 remains unchanged"}], 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

144 

"merger": [{"name": "informeveryratio", "value": "10", "description": "Use TTS to inform you 
every total / n messages. Set to 1 if you do not wish to use this feature.\nExample\nIf you 
are sending 200 messages and set this value to 5, you will be informed by TTS of the status 
every 200 / 5 = 40 messages."}, {"name": "informevery", "value": "0", "description": "Use TTS 
to inform you every n messages. Set to 0 if you do not wish to use this feature."}], 
"application": [{"name": "showonlycsvfiles", "value": "0", "description": "While importing the 
CSV file, only files with the extension .csv will be shown if this is set to 1."}, {"name": 
"showonlytextfiles", "value": "1", "description": "While importing template text from a file, 
only files with the extension .txt will be shown if this is set to 1."}, {"name": 
"showhiddendirectories", "value": "0", "description": "While browsing, hidden directories 
(stating with '.') will not be shown if this is set to 1."}]}} 
Had to wait cause process was only 0.005585 second 
{"task":"listdir","path":"/sdcard","type":"csv"} <type 'unicode'> 
ok... {u'path': u'/sdcard', u'task': u'listdir', u'type': u'csv'} 
listdir 
Loading directory content 
{"files": ["._.Trashes", "handcent1.log"], "folders": ["accelerometervalues", "Aldiko", 
"amazonmp3", "Android", "astrid", "com.coupons.GroceryIQ", "com.foxnews.android", 
"com.googlecode.bshforandroid", "com.googlecode.pythonforandroid", "data", "DCIM", "Digital 
Editions", "documents", "download", "Downloads", "droidscript", "dropbox", "eBooks", 
"Evernote", "gameloft", "gReader", "Grooveshark", "handcent", "HTC Sync", "ItchingThumb", 
"jsword", "logs", "LOST.DIR", "Mail Attachments", "media", "mspot", "Music", "My Documents", 
"pulse", "rfsignaldata", "rosie_scroll", "rssreader", "Sample Photo", "skifta", "sl4a", 
"StudyDroid", "swiftkey", "tmp", "TunnyBrowser", "twc-cache"]} 
{"task":"listdir","path":"/sdcard/sl4a","type":"csv"} <type 'unicode'> 
ok... {u'path': u'/sdcard/sl4a', u'task': u'listdir', u'type': u'csv'} 
listdir 
Loading directory content 
{"files": ["battery.py.log", "BeanShell 2.0b4.log", "DockProfile.py.log", "downloader.py.log", 
"downloaderv2.py.log", "DroidTrack.py.log", "geostatus.py.log", "getIPaddr.py.log", 
"hello_world.bsh.log", "httpd.py.log", "netip.py.log", "null.log", "Python 2.6.2.log", 
"Shell.log", "simpleHTTP2.py.log", "smssender.py.log", "speak.py.log", "ssid2key.py.log", 
"test.py.log", "trackmylocation.py.log", "weather.py.log", "wifi.py.log", 
"wifi_scanner.py.log"], "folders": ["extras", "scripts"]} 
Had to wait cause process was only 0.025512 second 
{"task":"listdir","path":"/sdcard/sl4a/scripts","type":"csv"} <type 'unicode'> 
ok... {u'path': u'/sdcard/sl4a/scripts', u'task': u'listdir', u'type': u'csv'} 
listdir 

If you look closely, you’ll notice a number of different types of entries. There are informational 
entries to identify when a particular section of code has been executed, such as loadconfig. Other entries 
dump the contents of a Python variable such as this line: 

{u'path': u'/sdcard/sl4a/scripts', u'task': u'listdir', u'type': u'csv'} 

The curly braces identify this object as a Python dictionary containing a total of three key/value 
pairs. You have a lot of flexibility about what goes in a log file. Here’s the code from the Chapter 9 
SMSSender application to open a log file: 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

145 

# Prepare a log file 
# TODO: Would be better thing to use the python logger instead 
LOG = "../SMSSender.py.log" 
if os.path.exists(LOG) is False: 
        f = open(LOG, "w") 
        f.close() 
LOG = open(LOG, "a") 

To write entries, you can simply use LOG.write(message) to write the string message to the log file. 
The SMSSender app uses a function to write messages both to the terminal and to the log file. Here’s  
the code: 

def log(self, message): 
    """ Log and print messages 
     
    message -- Message to log 
    """ 
    LOG.write(message) 
    print message 

With the log function defined, you can then use a statement like this: 

self.log("Selected filename %s " % filename) 

Logging is an important tool to keep in your toolbox when creating any kind of service application. 
It will come in really handy later when your program stops working and you need to see what was going 
on at the time. Maybe you write perfect code that never breaks, but that’s not always the case for me. 

Location-based Actions 
There are probably some locations you frequent that you definitely want your phone silenced when 
you’re there. Church might be one of those locations or maybe a nursing home, hospital, or library. You 
can create a script much like the sensor-based actions that will detect your location and take specific 
action. What you’ll need to know will be the GPS coordinates of the location. 

To make this script work, we’ll need a few helper functions to calculate distance from present 
location to the “special” location. For this search, you might want to give the http://stackoverflow.com 
site a try. This site has a large number of coding questions asked and answered. Here’s a code snippet 
found on http://stackoverflow.com for using the Haversine formula to compute the distance between 
two GPS points: 

from math import * 
 
def haversine(lon1, lat1, lon2, lat2): 
    """ 
    Calculate the great circle distance between two points  
    on the earth (specified in decimal degrees) 
    """ 
    # convert decimal degrees to radians  
    lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2]) 
    # haversine formula  
    dlon = lon2 - lon1  
    dlat = lat2 - lat1  



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

146 

    a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2 
    c = 2 * atan2(sqrt(a), sqrt(1-a))  
    km = 6367 * c 
    return km  

With that in hand, we now just need to write a short script to grab our current location and then call 
the Haversine function using our fixed location. If we’re within a fixed distance (for example, less than 
1,000 feet), we’ll turn the phone’s silent mode on. 

import android, time 
droid = android.Android() 
 
lat1 = 33.111111 
lon1 = 90.000000 
 
droid.startLocating() 
 
time.sleep(15) 
while True: 
    loc = droid.readLocation().result 
    if loc = {}: 
        loc = getLastKnownLocation().result 
    if loc != {}: 
        try: 
            n = loc['gps'] 
        except KeyError: 
            n = loc['network']  
    la = n['latitude']  
    lo = n['longitude'] 
 
    if haversine(la, lo, lat1, lon1) < 1: 
        droid.toggleRingerSilentMode(True) 
    else: 
        droid.toggleRingerSilentMode(False) 

Time-based Actions 
Here’s a handy script to set your phone to silent at a specific time of day and then turn the ringer back on 
at another time. Think of it as your do-not-disturb-while-I’m-sleeping script.  

""" Silences the phone between set hours 
 
Meant for use on Android phones with the SL4A application 
""" 
 
# Created by Christian Blades (christian.blades@docblades.com) - Mon Mar 08, 2010 
 
import android 
import datetime 
from time import sleep 
 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

147 

# MIN_HOUR and MAX_HOUR take an integer value between 0 and 23 
# 12am == 0 and 1pm == 13 
MIN_HOUR = 23 
MAX_HOUR = 6 
 
if MIN_HOUR > 23 or MIN_HOUR < 0 or MAX_HOUR > 23 or MAX_HOUR < 0: 
    # If the min and max values are out of range, raise an error 
    raise ValueError("0 <= (MIN_HOUR|MAX_HOUR) <= 23") 
 
d_now = datetime.datetime.now 
 
d_min = d_now().replace(hour=MIN_HOUR, minute=0, second=0) 
d_max = d_now().replace(hour=MAX_HOUR, minute=0, second=0) 
 
a_day = datetime.timedelta(days=1) 
 
droid = android.Android() 
 
def td_to_seconds(td): 
    """ Convert a timedelta to seconds """ 
    return td.seconds + (td.days * 24 * 60 * 60) 
 
def advance_times(): 
    """ Advance for the following day """ 
    d_min = d_min + a_day 
    d_max = d_max + a_day 
    return 
 
def wait_for(dt): 
    """ Wait until dt """ 
    sleep(td_to_seconds(dt - d_now())) 
 
def main_loop(): 
    """ 
    Infinite loop that silences and unsilences the phone on schedule 
 
    1. Wait for silent time 
    2. Silence the phone 
    3. Wait for awake time 
    4. Turn on the ringer 
    5. Advance the min and max to the following day 
    6. Repeat 
 
    NOTE: Must start during a loud period 
    """ 
    while True: 
        wait_for(d_min) 
        droid.makeToast("Goodnight") 
        droid.setRingerSilent(True) 
        wait_for(d_max) 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

148 

        droid.makeToast("Good morning") 
        droid.setRingerSilent(False) 
        advance_times() 
 
t_now = d_now() 
 
if MAX_HOUR < MIN_HOUR: 
    # Do a little extra processing if we're going from 
    # a larger hour to a smaller (ie: 2300 to 0600) 
    if t_now.hour <= d_min.hour and t_now.hour < d_max.hour: 
        # If it's, say, 0200 currently and we're going from 2300 to 0600 
        # Make the 2300 minimum for the previous night 
        d_min = d_min - a_day 
    elif t_now.hour >= d_min.hour and t_now.hour > d_max.hour: 
        # In this case, it's 0900 and we're going from 2300 to 0600 
        # Make the maximum for the next morning 
        d_max = d_max + a_day 
 
print "Now: " + t_now.ctime() 
print "Min: " + d_min.ctime() 
print "Max: " + d_max.ctime() 
 
if t_now >= d_min and t_now < d_max: 
    # Is it silent time now? 
    # If so, do the silent stuff, then enter the loop 
    droid.makeToast("Goodnight") 
    droid.setRingerSilent(True) 
    wait_for(d_max) 
    droid.setRingerSilent(False) 
    advance_times() 
 
main_loop() 

Elapsed Time-based Triggers  
Creating scripts that trigger after an elapsed amount of time or at a specific time is pretty simple. Here’s 
a code snippet that simply prints a message every ten seconds: 

import android, time 
 
droid = android.Android() 
 
# make Toast every ten seconds. 
while True: 
    droid.makeToast('New Toast') 
    time.sleep(10) 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

149 

With that idea as a starting point, you can build all kinds of scripts. What if you want to build a few 
scripts that set a fixed timer to go off after an hour or maybe a chime to go off on the hour? There are a 
few things you need to do before you get too far here. First, you’ll need a sound to play for your alarm. A 
quick Google search for alarm sounds turns up all kinds of results. I found a good collection at the 
soundjax.com web site. Many of these were in the .wav format. Fortunately, your Android device will play 
.wav files with no problems. 

We’ll use the mediaPlay API function to actually play the sound. You can test this out on the 
emulator if you want. First, you need to create a directory to hold your sound files and then push the 
sound file to the device with the adb push command as follows: 

adb shell mkdir /sdcard/sounds 
adb push alarm.wav /sdcard/sounds/ 

From there, the script is pretty simple as it just uses the Python Standard Library time.sleep routine 
to go to sleep for an hour and then play the sound. Here’s the script: 

import android 
from time import sleep 
 
droid = android.Android() 
 
# This script will simply sleep for an hour and then play an alarm 
droid.makeToast('Alarm set for 1 hour from now') 
time.sleep(3600) 
droid.mediaPlay('file:///sdcard/sounds/alarm.wav') 

A slight variation on the elapsed time theme is to perform an action at fixed intervals, such as send 
an SMS containing current location information at the top and bottom of every hour. This could be 
useful for tracking someone’s whereabouts without the need for an expensive service. Sending an SMS 
requires a single line of code, as in the following: 

droid.smsSend('8005551234','Test from Android') 

To add code to get the present location, you first have to call the startLocating function to begin 
gathering location information. Next, you call readLocation to actually read in your present position, 
and finally call stopLocating to turn the location function off. We’ll add in a 15-second delay to give the 
GPS a little time to settle if it’s turned on. If we don’t have GPS signal, we’ll use the current position 
based on information from the network. Here’s what the code looks like: 

droid = android.Android() 
droid.startLocating() 
time.sleep(15) 
loc = droid.readLocation() 
droid.stopLocating() 
 
if 'gps' in loc.result: 
    lat = str(loc.result['gps']['latitude']) 
    lon = str(loc.result['gps']['longitude']) 
else: 
    lat = str(loc.result['network']['latitude']) 
    lon = str(loc.result['network']['longitude']) 
 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

150 

now = str(datetime.datetime.now()) 
outString = 'I am here: ' + now + ' ' + lat + ' ' + lon 
 
droid.smsSend('8005551234', outstring) 

FTP File Sync Tool 
Keeping files or directories in sync between two or more machines is one of those tasks that you can’t do 
without once you start using it. There are many ways to accomplish this task using any number of 
commercial programs. One way to sync files using SL4A is to use an FTP server. Getting an FTP server 
installed and configured on Linux, Mac OS X, and Windows is pretty straightforward. I’ll outline the 
steps for you here. 

On Mac OS X, you’ll need to open the System Preferences utility by clicking the Apple symbol in the 
upper-right corner of the screen and selecting Preferences. You should see a window like the one in 
Figure 6-6. 
 

Figure 6-6. Mac OS X System Preferences screen 

FTP services are a part of the Sharing preferences, so open up that folder by clicking the icon. You 
will see another window, as shown in Figure 6-7. 
 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

151 

 

Figure 6-7. Mac OS X file sharing preferences 

Next, find the File Sharing entry in the Service list and make sure that the On check box is selected 
(refer to Figure 6-7). Finally, click the Options button above the list of users to bring up the File Sharing 
Options window, as shown in Figure 6-8. 
 

 

Figure 6-8. Mac OS X file sharing preferences 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

152 

Clicking Share Files and Folders Using FTP will actually start the FTP server. You’ll need a user 
account on the Mac machine in order to access the FTP server remotely. On Linux, I use a program 
called vsftpd. It’s a freely available FTP server that installs easily and works great with the latest version 
of Ubuntu. To install it, you use a single apt-get command, as shown in Figure 6-9. 
 

 

Figure 6-9. Installation of vsftpd from Terminal window in Ubuntu 10.11 

The program will start automatically once the download finishes. You shouldn’t have to change 
anything with the configuration because things like anonymous connections are disabled by default. If 
you should want to examine the configuration file, it’s located in the /etc directory and named 
vsftpd.conf. Figure 6-10 shows connecting to the Linux machine using the Windows FTP client from a 
command prompt. 
 

 

Figure 6-10. Connecting to vsftp from a Windows command prompt 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

153 

On Windows, enable the FTP server from the Windows Features screen. The easiest way to get to 
that screen is to press the Windows icon key on your keyboard and type the words windows features into 
the search box. The first entry you should see under Control Panel is the line Turn Windows Features On 
Or Off. Clicking on this line will open the Windows Features panel, as seen in Figure 6-11. 
 

 

Figure 6-11. Enabling the Windows FTP server from the Windows Features Control Panel tool 

With the Windows Feature screen open, you need to check two things to get your FTP server 
running: the FTP Service must be enabled, and you’ll need the IIS Management Console in order to 
manage the FTP Service. When the install finishes, you should be able to launch the IIS Management 
Console and configure your FTP service. 

For this, we’ll use the same technique of pressing the Windows icon key on the keyboard and typing 
Internet into the search box. This will display several options, including Internet Explorer and Internet 
Information Services (IIS) Manager (see Figure 6-12). Next, you want to launch IIS Manger and to 
examine the current settings of the FTP service. 
 

 

Figure 6-12. Internet Information Services (IIS) Manager from Quick Launch menu 

Windows 7 has all the default settings set similar to vsftpd on Linux with anonymous logins 
disabled. There are a number of other configuration settings that you can adjust from the IIS Manager 
console, as shown in Figure 6-13. 

 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

154 

 

Figure 6-13. Internet Information Services (IIS) Manager screen 

Once you have the server software enabled, you’ll need to actually create a site for the FTP service to 
use. This is done by either right-clicking on the Sites folder in the left pane or by selecting the Sites folder 
and clicking on the Add Ftp Site line in the Actions pane. You’ll see several dialog boxes to guide you 
through setting up a new FTP site. The first dialog box prompts for a name and physical location for the 
files (see Figure 6-14). 
 

 

Figure 6-14. FTP Site Information dialog box 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

155 

When you click Next, you’ll see a dialog box like the one in Figure 6-15. This is where you assign the 
FTP server to a specific IP address (in this case, the IP address of the machine) and set the SSL settings. 
We won’t need SSL encryption because this will run only on a local network. 

 

 

Figure 6-15. FTP Site Bindings and SSL Settings 

Clicking Next again will take you to a final dialog box, in which you must configure the 
authentication rules. Because you will require a login, give full access to any authenticated user, as 
shown in Figure 6-16. 

 

 

Figure 6-16. FTP Site authentication settings 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

156 

The last thing you’ll need to do in Windows 7 is change your firewall settings to allow FTP 
connections. This can be done in a command window with administrator privileges, as shown in  
Figure 6-17. 
 

 

Figure 6-17. Command to modify firewall settings on Windows 7 

Getting an FTP server configured on Windows is obviously a little more tedious than with Linux or 
Mac OS X. There are other third-party FTP server programs you can use, but I wanted to show you how 
to get it working with the basic OS. If you’ve done everything right, you should see your FTP site in the 
IIS Manager screen with a status of Started, as shown in Figure 6-18. 
 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

157 

 

Figure 6-18. IIS Manager showing sync FTP site started 

Now that we have the server portion out of the way, we can proceed with building a little client tool 
using SL4A. The good news is that the Python Standard Library provides an ftplib module for building 
client-side code, so you don’t have to go looking for anything. Using the ftplib module is very 
straightforward, consisting mainly of identifying a target system (HOST) and the user credentials needed 
to log in. The meat of the code keeps two directories in sync by comparing the listings of files in each. As 
written, the sync is one way from the device to the remote server, but you could modify that without a lot 
of extra coding. 

Here’s the script: 

import ftplib 
import time 
import os 
 
import android 
droid = android.Android() 
 
HOST = '192.168.1.81' 
USER = 'user' 
PASS = 'pass' 
REMOTE = 'phone-sync' 
LOCAL = '/sdcard/sl4a/scripts/ftp-sync' 
 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

158 

if not os.path.exists(LOCAL): 
    os.makedirs(LOCAL) 
 
while True: 
    srv = ftplib.FTP(HOST) 
    srv.login(USER, PASS) 
    srv.cwd(REMOTE) 
     
    os.chdir(LOCAL) 
     
    remote = srv.nlst() 
    local = os.listdir(os.curdir) 
    for file in remote: 
        if file not in local: 
            srv.storlines('RETR ' + file, 
                          open(file, 'w').write) 
     
    srv.close() 
    time.sleep(1) 

Syncing Photos with Flickr  
Flickr is a great service for sharing photos. On many Android devices with a camera, there’s an option 
from the Gallery application to share an individual photo. Wouldn’t it be nice if you could just run a 
script and have all your photos synced to Flickr? That’s where SL4A comes into the picture. 

Finding code to do the hard work is another simple Google search away. While there are a number 
of options out there, I settled on one named uploader.py. It’s been around for awhile and was referenced 
by several blog posts. If you choose to use this code, you’ll also need a file named xmltramp.py. This code 
provides a number of XML functions used by uploader.py. It’s not a bad idea to test out the code on your 
desktop before you try to use it on your Android device. This is a good idea mainly for going through the 
process of authorizing your application with Flickr. 

The first time you actually run the code, you’ll be presented with a Yahoo login screen, as shown in 
Figure 6-19. 

 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

159 

 

Figure 6-19. Yahoo Flickr login screen 

Next, you’ll be presented with a page asking you to authorize the uploader.py program to 
communicate with your Flickr account. That screen will look something like Figure 6-20. 

 

 

Figure 6-20. Flickr authorization screen 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

160 

You’ll have at least one more screen after clicking NEXT before you should see something like Figure 
6-21, letting you know that your application has been authorized to connect with Flickr. 

Figure 6-21. Successful authorization screen 

The code that actually uploads the image is pretty simple. Here’s what the uploadImage function 
looks like: 

def uploadImage( self, image ): 
    if ( not self.uploaded.has_key( image ) ): 
        print "Uploading ", image , "...", 
        try: 
            photo = ('photo', image, open(image,'rb').read()) 
            d = { 
                api.token   : str(self.token), 
                api.perms   : str(self.perms), 
                "tags"      : str( FLICKR["tags"] ), 
                "is_public" : str( FLICKR["is_public"] ), 
                "is_friend" : str( FLICKR["is_friend"] ), 
                "is_family" : str( FLICKR["is_family"] ) 
            } 
            sig = self.signCall( d ) 
            d[ api.sig ] = sig 
            d[ api.key ] = FLICKR[ api.key ] 
            url = self.build_request(api.upload, d, (photo,)) 
            xml = urllib2.urlopen( url ).read() 
            res = xmltramp.parse(xml) 
            if ( self.isGood( res ) ): 
                print "successful." 
                self.logUpload( res.photoid, image ) 
            else : 
                print "problem.." 
                self.reportError( res ) 
        except: 
            print str(sys.exc_info()) 

Syncing with Google Docs  
Google Docs is a great way to create spreadsheets or word processing documents from virtually 
anywhere you have Internet access and a web browser. One idea for a background task involving Google 
Docs and Python is an automatic call log sync tool. This tool would run once a day and update a 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

161 

spreadsheet in Google Docs with your activity of the day. We’ll use a few new techniques here to access 
an account on Google Docs and do the spreadsheet append by first downloading the current month’s 
spreadsheet and then appending the entries for the current day. Finally, the new spreadsheet will be 
uploaded back to Google Docs. 

To start, we’ll use the script from Chapter 5 to get a copy of today’s calls. Here’s what that snippet 
looks like: 

myconst = droid.getConstants("android.provider.CallLog$Calls").result 
calls=droid.queryContent(myconst["CONTENT_URI"],["name","number","duration"]).result 
for call in calls: 

This code snippet will insert a new line into your Google Docs spreadsheet: 

import time 
import gdata.spreadsheet.service 
email = 'youraccount@gmail.com' 
password = 'yourpassword' 
weight = '180' 
spreadsheet_key = 'pRoiw3us3wh1FyEip46wYtW' 
# All spreadsheets have worksheets. I think worksheet #1 by default always 
# has a value of 'od6' 
worksheet_id = 'od6' 
spr_client = gdata.spreadsheet.service.SpreadsheetsService() 
spr_client.email = email 
spr_client.password = password 
spr_client.source = 'Example Spreadsheet Writing Application' 
spr_client.ProgrammaticLogin() 
# Prepare the dictionary to write 
dict = {} 
dict['date'] = time.strftime('%m/%d/%Y') 
dict['time'] = time.strftime('%H:%M:%S') 
dict['weight'] = weight 
print dict 
entry = spr_client.InsertRow(dict, spreadsheet_key, worksheet_id) 
if isinstance(entry, gdata.spreadsheet.SpreadsheetsList): 
  print "Insert row succeeded." 
else: 
  print "Insert row failed." 
 
>>> millis = int(msgs.result[0]['date'])/1000 
>>> strtime = datetime.datetime.fromtimestamp(millis) 
>>> strtime 

Figure 6-22 shows what our document looks like in Google docs. 
 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

162 

 

Figure 6-22. Google Docs spreadsheet with call log data 

A Startup Launcher 
Now that I’ve given you plenty of ideas for little service scripts, let’s finish up the chapter with a launcher 
app that will combine some of the ideas such as logging and launching background scripts to bring it all 
together. You could use this script to launch other non-SL4A applications as well if you know the intent 
or activity name.  

Here’s the final script: 

import android 
 
STARTUP_SCRIPTS = ( 
    'facedown.py', 
    'logGPS.py', 
    'silentnight.py' 
) 
 
droid = android.Android() 
 
LOG = "../logtest.py.log" 
if os.path.exists(LOG) is False: 
        f = open(LOG, "w") 
        f.close() 
LOG = open(LOG, "a") 
 



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

163 

for script in STARTUP_SCRIPTS: 
    extras = {"com.googlecode.android_scripting.extra.SCRIPT_PATH": 
             "/sdcard/sl4a/scripts/%s" % script} 
    myintent = droid.makeIntent( 
          "com.googlecode.android_scripting.action.LAUNCH_BACKGROUND_SCRIPT", 
          None, None, extras, None, 
          "com.googlecode.android_scripting", 
          "com.googlecode.android_scripting.activity.ScriptingLayerServiceLauncher").result 
    droid.startActivityIntent(myintent) 
    LOG.write("Starting %s\n" % script) 

The last thing we’ll add to the script launcher will be an additional script that will open a text file 
and read from a list of events that need to be alarmed. It’s pretty simple and will be one of the scripts 
that our startup launcher will load. 

Here’s the code: 

import time 
 
import android 
 
droid = android.Android() 
 
SCHEDULE = '/sdcard/sl4a/scripts/schedule.txt' 
 
# Parse the schedule into a dict. 
alerts = dict() 
for line in open(SCHEDULE, 'r').readlines(): 
    line = line.strip() 
    if not line: continue 
    t, msg = line.split(' ', 1) 
     
    alerts[t] = msg 
 
# Check the time periodically and handle alarms. 
while True: 
    t = time.strftime('%H:%M') 
    if t in alerts: 
        droid.vibrate() 
        droid.makeToast(alerts[t]) 
        del alerts[t] 
     
    time.sleep(5) 

The schedule.txt text file will contain any number of lines with a time and a message string. Here’s 
a sample of what that might look like: 

17:00 Time to head home! 
21:00 Put the trash out 
22:00 Set the alarm 

Notice that all times must use the 24-hour format. Now we have a way to launch any number of 
different scripts at startup to turn your Android device into a powerful notification tool.  



CHAPTER 6 ■ BACKGROUND SCRIPTING WITH PYTHON 

 

164 

Summary 
This chapter walks you through a number of examples demonstrating how to automate tasks that run in 
the background using SL4A and Python.  

Here’s a list of takeaways for this chapter: 

• Launching scripts on boot: With the new OnBoot application, you can set any 
SL4A script to start every time your device boots. Use this function only after 
you’ve thoroughly tested your script. 

• Taking action based on sensors: Any running script has access to the full sensory 
capability of the Android device, and you can take actions based on any sensor 
input. 

• Time-based actions: You can use the standard Python timer functions to create 
time-based scripts. This one’s really a no-brainer as long as you don’t set up an 
infinite timer. Remember that you can kill any SL4A script from the notifications 
screen if you do create an “infinite looping” application. 



C H A P T E R  7 
 

 

   

 

  

 

 

   

 

165 

Python Scripting Utilities 

This chapter will take a look at how to use Python to accomplish different utility tasks with SL4A. On a 
typical PC, these would fall into the command-line utility class of programs. 

■ Note The version of SL4A used when writing this chapter was based on Python 2.6.2. All examples in this 
chapter were tested with Python 2.6.4 on a Windows 7 64-bit machine and on an Android 2.2–based emulator.   

Time to dive in. Here’s a list of what this chapter will examine: 

• Python libraries and how to use them 

• E-mail–based applications 

• Location-based applications 

• Web servers for transferring files 

Python Libraries 
There are an enormous number of libraries available for the Python language to accomplish everything 
from manipulating MP3 ID3 tags to reading and writing EXIF data inside JPEG images. The trick to using 
these on your SL4A project is to get them installed on your target device. If the library is written entirely 
in Python, you should be able to use it without any issues. Things become a little more difficult if the 
library is actually a wrapper around a binary module, as is the case with any MP3 tool based on the open 
source Lame project. While there is a way to get a binary module recompiled and targeted for the ARM 
architecture, it’s not a trivial task. 

Other challenges to using existing libraries come from the way they are typically distributed. There 
may be additional dependencies needed as well. For most, you’ll find a setup.py file that you run from a 
terminal window with a command like this one: 

python setup.py install 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

166 

This command will typically install the library into the Python site-packages directory. The only 
problem with this approach on an Android device is that the site-packages directory is read-only on a 
nonrooted device. There are a fair number of libraries that are self-contained in a single .py file. If that’s 
the case, then all you have to do is copy the file to the device and into the correct directory. 

This is probably a good point to talk about what’s in the .zip files that are downloaded when you 
install Python on your device. If you paid attention when the Python interpreter was installing, you 
would have seen three files go by. If you missed that, you can still see the files with an adb command like 
the one shown in Figure 7-1. 

 

 

Figure 7-1. Contents of Python directory on device 

The python_r7.zip file contains the basic Python files needed to execute the interpreter. You’ll find 
ten sample programs in the python_scripts_r8.zip file that you can use for your learning. The test.py 
file is a good place to start because it comprises a test suite for the different dialog calls. Finally, the 
python_extras_r8.zip file contains a number of helper functions and libraries the project maintainers 
felt would be helpful to Python developers. 

You can download a copy of the python_extras_r8.zip file to your development workstation with 
this command: 

adb pull /sdcard/com.googlecode.pythonforandroid/python_extras_r8.zip 

This file holds the contents of what you would expect to find in the site-packages directory of a 
typical Python installation. If you open up the zip file, you’ll see a list of files and directories similar to 
Figure 7-2. 

 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

167 

 

Figure 7-2. Contents of Python extras .zip file 

If you’re using Windows for your development machine, you will find the equivalent directory in 
C:\Python26\Lib\site-packages. There is a way, when using Python on an Android device, to add a local 
path to the PYTHONPATH variable. This requires two lines of code, thus: 

import sys 
sys.path.append('/sdcard/sl4a/mylib') 

In this example, the directory /sdcard/sl4a/mylib contains the files you wish to make available to 
Python on your device. The absolute easiest way to use a Python library comes in the form of an egg. 
Python supports a zip-compressed file format for libraries using .egg as the file extension. It’s similar in 
concept to .jar files in Java. All you have to do to use a Python .egg file is copy it to the appropriate 
directory on the device. This can be accomplished with the adb push command like this: 

adb push library.egg /sdcard/com.googlecode.pythonforandroid/extras/python 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

168 

E-mail–Based Applications  
Sending an e-mail message is something most of us just take for granted. In the world of mobile e-mail, 
we probably have the Blackberry device to thank for bringing it to you wherever you may be. Android 
devices have e-mail by default and tight integration with Google’s Gmail. This makes the idea of writing 
utility scripts that send e-mail messages very appealing. 

There is a sendEmail API call available through the SL4A Android facade. This function takes three 
parameters: to_address, which is a comma-separated list of recipients, title, and message. From there it 
passes the information off to the default e-mail application. You must then use that application to 
actually send the message. If you happen to have more than one application registered on your device as 
handling e-mail, you’ll also be prompted to choose which one to use. While that method certainly works, 
it really doesn’t accomplish the task at hand. By that I mean you could use the built-in e-mail program 
but it would be tedious and what I really want is an automated way to send an e-mail. That’s where 
Python comes to our rescue. 

The library we’ll use for this task is smtplib. It’s part of the Python standard library so you don’t have 
to do anything special to use it. We’ll also take advantage of Gmail’s SMTP service to send our messages 
through. In addition, we’ll use the email library, which contains a number of helper functions allowing 
us to construct our message in the correct form. Last, we’ll use the mimetypes library to help with the 
encoding of our message. The email library provides something called MIMEMultipart, which lets us 
define the different parts of an e-mail message. Here’s how you would create a message in Python: 

# Create an SMTP formatted message 
msg = MIMEMultipart() 
msg['Subject'] = 'Our Subject' 
msg['To'] = 'receiver@host.net' 
msg['From'] = 'sender@gmail.com' 
msg.attach(MIMEText(body, 'plain')) 

Most of the data used in the msg structure is of type string so it’s a simple matter to create the main 
body of our message. Since Google requires authentication in order to send messages through its SMTP 
server, you will need to have a Gmail account in order to use this script.  

Here’s what communicating with the Google SMTP server looks like from the command line. To 
launch Python, you need to have a terminal window open on Linux or Mac OS X or a command prompt 
in Windows. From there you should be able to just type Python: 

>>> smtpObj = smtplib.SMTP(smtp_server,smtp_port) 
>>> smtpObj.starttls() 
(220, '2.0.0 Ready to start TLS') 
>>> smtpObj.ehlo() 
(250, 'mx.google.com at your service, [72.148.19.136]\nSIZE 35651584\n8BITMIME\nAUTH 
 LOGIN PLAIN XOAUTH\nENHANCEDSTATUSCODES') 
>>> smtpObj.login(username,password) 
(235, '2.7.0 Accepted') 
>>> smtpObj.sendmail(username,to_addr,msg.as_string()) 
>>> smtpObj.close() 

If you count the lines of code, you only need five to set up the message and six to send it. That’s not 
bad in terms of code efficiency. You’ll want to add some error-checking to the final script, but it 
shouldn’t take many more lines to write a useful e-mail–sending tool. Now that we have the basis of 
creating a generic e-mail sender, what would be really useful to send? Why not all your SMS messages? 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

169 

The SMS facade provides easy access to SMS messages either in bulk or one at a time. If you want to 
get everything, you should use smsGetMessages. Before we get too deep here, we should investigate what 
information is available for each SMS message. The first thing you can do is use the smsGetAttributes 
function to see what data you can retrieve. Here’s what that looks like running on the emulator: 

>>> pprint.pprint(droid.smsGetAttributes().result) 
[u'_id', 
 u'thread_id', 
 u'address', 
 u'person', 
 u'date', 
 u'protocol', 
 u'read', 
 u'status', 
 u'type', 
 u'reply_path_present', 
 u'subject', 
 u'body', 
 u'service_center', 
 u'locked', 
 u'error_code', 
 u'seen'] 

Now that we know what’s available we can use the smsGetMessages function to create a list and then 
iterate over that list, extracting only the information we’re interested in. First, we need to create a few 
messages on the emulator for our use. This requires a little command-line magic using the ADB tool 
covered in Chapter 3. On Windows you must open a command window and type telnet localhost 
5554. Figure 7-3 shows the telnet screen and the commands required to generate a few SMS messages. 

 

 

Figure 7-3. Using telnet to send SMS messages to the emulator 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

170 

Now we can use the smsGetMessages function to read all the messages by passing in a False 
parameter to indicate we don’t want just the unread messages. In reality, it doesn’t matter in this case 
since all these messages were just received, and we’ll get the same result either way. 

>>> msgs = droid.smsGetMessages(False) 
>>> pprint.pprint(msgs.result) 
[{u'_id': u'3', 
  u'address': u'3035551212', 
  u'body': u'"This is a another test message from Telnet"', 
  u'date': u'1297814134176', 
  u'read': u'0'}, 
 {u'_id': u'2', 
  u'address': u'3025551212', 
  u'body': u'"This is test message 2 from Telnet"', 
  u'date': u'1297814117225', 
  u'read': u'0'}, 
 {u'_id': u'1', 
  u'address': u'3015551212', 
  u'body': u'"This is test message 1 from Telnet"', 
  u'date': u'1297814100976', 
  u'read': u'0'}] 

It’s worth noting at this point that the messages are exported in reverse chronological order. 
Another item worth noticing is the content of the messages. Even though the smsGetAttributes function 
showed us more possible fields, we only get _id, address, body, date, and read here. For SMS messages, 
the address is actually a phone number. The date field may look a little strange unless you know what 
you’re looking at. 

Here’s where the Python datetime library comes to our aid. As it turns out, the date field is actually 
milliseconds since January 1. So, all we have to do is divide the date field by 1000 and pass that number 
to datetime like thus: 

>>> millis = int(msgs.result[0]['date'])/1000 
>>> strtime = datetime.datetime.fromtimestamp(millis) 
>>> strtime 
datetime.datetime(2011, 2, 15, 17, 55, 34) 

The cool thing here is that strtime is an object, and we can easily grab the contents with this: 

>>> print('Message time = %d:%d:%d') % (strtime.hour, strtime.minute, strtime.second) 
Message time = 17:55:34 

Even easier is the strftime method to format the time, as in the following: 

>>> strtime.strftime("%m/%d/%y %H:%M:%S") 
'02/15/11 17:55:34' 

Now we should have all the pieces we need to build a script to send all SMS messages on the device 
to an e-mail address. Here’s what the final code looks like: 

import android, datetime, smtplib 
from email.mime.multipart import MIMEMultipart 
from email.mime.text import MIMEText 
 
droid = android.Android() 
 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

171 

smtp_server = 'smtp.gmail.com' 
smtp_port = 587 
mailto = 'paul' 
mailfrom = 'paul' 
password = 'password' 
 
# Build our SMTP compatible message 
msg = MIMEMultipart() 
msg['Subject'] = 'SMS Message Export' 
msg['To'] = mailto 
msg['From'] = mailfrom 
 
# Walk throu the SMS messages and add them to the message body 
SMSmsgs = droid.smsGetMessages(False).result 
 
body = '' 
for message in SMSmsgs: 
  millis = int(message['date'])/1000 
  strtime = datetime.datetime.fromtimestamp(millis) 
  body += strtime.strftime("%m/%d/%y %H:%M:%S") + ',' + message['address'] + ',' + 
 message['body'] + '\n' 
 
msg.attach(MIMEText(body, 'plain')) 
smtpObj = smtplib.SMTP(smtp_server,smtp_port) 
smtpObj.starttls() 
smtpObj.login(mailfrom,password) 
smtpObj.sendmail(mailfrom,mailto,msg.as_string()) 
smtpObj.close() 

Figure 7-4 shows what the received message looks like in the Gmail web interface. 

 

 

Figure 7-4. E-mail message with SMS messages 

There are lots of other uses for a generic e-mail tool. The example shows you how to build up a 
message and then send it using smtpObj. The last thing we really should do for our sample script is add 
the option to delete all SMS messages once the e-mail has been sent. Here’s a five-line script that will 
delete all SMS messages. Use it with care as it won’t ask for any confirmation before it deletes them all: 

import android 
droid = android.Android() 
msgids = droid.smsGetMessageIds(False).result 
for id in msgids: 
    droid.smsDeleteMessage(id) 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

172 

Location-Aware Applications  
One of the distinct advantages of mobile devices is the ability to know where you are. SL4A provides a 
location facade with a number of functions that work with or without a functioning GPS. This opens up a 
number of possibilities for applications that take advantage of this information. I’ll take a look at several 
of these that you might find interesting, including a tweet of my location to track my travel. 

Tweet My Location 
This application will require a few external libraries to get the job done. We’ll discuss the Twitter library 
later. The first thing we need to do is examine the data structure returned by the readLocation API call. 
Figure 7-5 shows an example of calling readLocation after a call to startLocating. 

A few things need to be pointed out about the location information available from this call. The first 
thing you notice when you look at Figure 7-5 is that there are two types of location information available. 
readLocation returns a result object that uses a dictionary to encapsulate the position information. This 
dictionary object has two keys whose values are, in turn, dictionaries that have multiple key/value pairs 
containing the position information. To access the GPS-based latitude and longitude, therefore, you 
would use something like this: 

lat = result.result['gps']['latitude'] 
lon = result.result['gps']['longitude'] 

 

 

Figure 7-5. Example of readLocation API call 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

173 

The other key point here is that your device may not return a GPS location if GPS isn’t currently 
enabled. In fact, if you try this code on the emulator, the result object will be empty. So, if you tried to 
read the GPS location with the preceding code and GPS was off, you’d get an error that would look 
something like this: 

>>> lat = droid.readLocation().result['gps'] 
Traceback (most recent call last): 
  File "<stdin>", line 1, in <module> 
KeyError: 'gps' 

In Python, you can check to see what keys are available in a dictionary using the keys method. The 
readLocation result with GPS off would look like the following: 

>>> droid.readLocation().result.keys() 
[u'network'] 

You can also use the keys method in a conditional, like so: 

>>> if 'gps' in droid.readLocation().result: 
        print 'gps' 
    else: 
        print 'network' 

The next thing we need to investigate is communicating with Twitter. When you install the Python 
interpreter in SL4A, you get a number of libraries installed for you, including twitter.py. The bad news 
is that Twitter has started requiring a stronger authentication method for connecting to its API. 

If you don’t know what OAuth is, then you should probably find out. OAuth is an open protocol for 
secure API authorization. It basically involves multiple keys and a multistep authentication process. 
There’s a community web site at oauth.net where you’ll find a copy of the OAuth specification, 
documentation, and lots of sample code. Many public services, including Google, have begun to adopt 
and use OAuth as either the primary method of authentication, or at least an alternative.  

If you’ve ever used a third-party Twitter application, you’ve probably already experienced the steps 
you must go through when authorizing that application. For this reason, we’re going to use another 
library, tweepy, which is available from http://code.google.com/p/tweepy.  

I’ll assume at this point you already have a Twitter account and won’t take you through the process 
of signing up. If you don’t, just head on over to twitter.com and follow the instructions there. Once you 
have an account you’ll be able to register a new application (http://twitter.com/apps/new). Figure 7-6 
shows a screenshot of the registration page. 

 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

174 

 

Figure 7-6. Twitter application registration 

At the bottom of the page there’s a CAPTCHA box that you must enter correctly to get your app 
registered. There are a few caveats you should know about. First, you can’t use Twitter in the name of 
your application. Second, you must enter a valid URL in the Application Website box. It doesn’t have to 
be a real URL, but it does have to be in the proper format. With the form properly filled out and the 
CAPTCHA phrase entered, you’re ready to click the Save button. 

Once that’s done, you’ll get a page that looks something like Figure 7-7. You will need to copy and 
paste the codes you receive in the examples to follow.  

 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

175 

 

Figure 7-7. Twitter application details 

The two things you will need in your application are the Consumer key and the Consumer secret. 
You can copy these fields and then paste them into another document for future reference. I just open 
Notepad on Windows and create a text file for saving this information. Now that we have the Consumer 
key and secret, we’re ready to get connected to Twitter. 

Our next step is to use the Consumer key and secret to obtain a corresponding Application key and 
secret. We’ll use a little Python code and the IDLE console to obtain the needed Application information 
as follows: 

>>> import tweepy 
>>> CONSUMER_KEY = 'insert your Consumer key here' 
>>> CONSUMER_SECRET = 'insert your Consumer secret here' 
>>> auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) 
>>> auth_url = auth.get_authorization_url() 
>>> print 'Please authorize: ' + auth_url 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

176 

This will display a URL you must copy and paste into a web browser in order to obtain the needed 
keys. The web page will look something like Figure 7-8. 

 

 

Figure 7-8. Twitter Application Authorization 

When you click Allow, you’ll be taken to the next page, as shown in Figure 7-9. 

 

 

Figure 7-9. Twitter PIN authorization code 

Now that we have a PIN code, we have just a few more lines of code to execute. Here’s what the next 
steps would look like in IDLE: 

>>> auth.get_access_token('type your PIN here') 
<tweepy.oauth.OAuthToken object at 0x02C0CE90> 
>>> print "ACCESS_KEY = '%s'" % auth.access_token.key 
ACCESS_KEY = 'access key code' 
>>> print "ACCESS_SECRET = '%s'" % auth.access_token.secret 
ACCESS_SECRET = 'access secret code' 

Copy the two Application codes and save them in the same text file you created for the Consumer 
codes. You’ll need all four codes for authenticating and communicating with Twitter from here out. It’s 
pretty simple to take these new codes and post an update to Twitter. In fact, you can do it with about six 
additional lines of code as follows: 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

177 

>>> ACCESS_KEY = 'your just-obtained access key' 
>>> ACCESS_SECRET = 'your just-obtained access secret' 
>>> auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) 
>>> auth.set_access_token(ACCESS_KEY, ACCESS_SECRET) 
>>> api = tweepy.API(auth) 
>>> api.update_status("Hello from the Apress Book Sample") 

Figure 7-10 shows what this would look like if you went to twitter.com and looked at the timeline. 

 

 

Figure 7-10. Twitter timeline of Python message 

Now we have everything we need to write the tweetmylocation script. Putting together all of the 
pieces gives us this: 

import android, datetime, time, tweepy 
 
CONSUMER_KEY = 'my consumer key' 
CONSUMER_SECRET = 'my consumer secret' 
 
ACCESS_KEY = 'my access key' 
ACCESS_SECRET = 'my access secret' 
 
auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) 
auth.set_access_token(ACCESS_KEY, ACCESS_SECRET) 
api = tweepy.API(auth) 
 
droid = android.Android() 
droid.startLocating() 
time.sleep(15) 
loc = droid.readLocation() 
droid.stopLocating() 
 
if 'gps' in loc.result: 
    lat = str(loc.result['gps']['latitude']) 
    lon = str(loc.result['gps']['longitude']) 
else: 
    lat = str(loc.result['network']['latitude']) 
    lon = str(loc.result['network']['longitude']) 
 
now = str(datetime.datetime.now()) 
outString = 'I am here: ' + now + ' ' + lat + ' ' + lon 
 
api.update_status(outString) 

Figure 7-11 shows what the result of running the tweetmylocation script would look like if you went 
to twitter.com and looked at the timeline (with the exception of the fake GPS locations). 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

178 

 

Figure 7-11. Twitter timeline of location messages 

Track My Travel 
Now that we know how to use the location functions, it’s a pretty simple task to query every so often and 
save that information to a file. This could be useful for such things as tracking how long and how far you 
travel in one day on your cross-country trip. To make this application work we’re going to have to make 
a few basic assumptions. First, since this script will need the GPS and will be taking periodic location 
readings, it’s probably going to need the device to be plugged into a charger, or else the battery will run 
dry in short order. Second, we’re going to rely on a Python timer to schedule our measurements, which 
means that the script will be running continuously. While that’s not a big deal, it’s just another reason to 
have your device connected to a power source and not rely on the battery. 

With those little details out of the way, let’s talk about a few housekeeping items. It’s a good 
programming practice to make as few assumptions about your environment as possible, so we’ll try to 
follow that and configure everything we need in the script. First of all, we want to have GPS available for 
the most accurate location information. At present, you must manually turn GPS on, so we need to 
prompt the user to do that. Here’s a little snippet that will issue a call to the startLocating API function 
and wait for the GPS to show up in the return from readLocation:  

droid = android.Android() 
droid.startLocating() 
  
while not droid.readLocation()[1].has_key('gps') : 
    print "Waiting on gps to turn on" 
    time.sleep(1) 

Next, we need the ability to write out a log containing time and location for later retrieval. The 
biggest thing here is picking a known directory on the device’s sdcard or creating our own. Python’s OS 
module makes these tasks easy. The simplest thing to do is to create our own directory for storing files. 
Choosing a name is probably the biggest decision at this point. To actually create the directory, we’ll use 
os.mkdir. Here’s what that might look like: 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

179 

import os 
os.mkdir('/sdcard/logs') 

You could use the os.path.exists function to check for the directory before you make the call to 
os.mkdir. From a programming perspective, this makes more sense. Adding this in would give us the 
following: 

if not os.path.exists('/sdcard/logs'): 
    os.mkdir('/sdcard/logs') 

Python does file I/O in much the same way as other programming languages. First, open a file for 
writing to obtain a file object. Make sure you pass the 'a' parameter to implicitly open the file for 
appending. If you don’t, you’ll just create a new file each time. Then write to the file using the write 
method on that file object. Here’s a short snippet of what that might look like: 

f = open('/sdcard/logs/logfile.txt','a') 
f.write('First header line in file\n') 
f.close() 

Reading files with Python is even easier. If you want to open a file and read each line, you can use 
something like the following: 

f = open('/sdcard/logs/logfile.txt') 
for line in f: 
    print line 
f.close() 

Python file objects are iterable, meaning you can read a file line by line with the for line if f: 
syntax. You could use this approach to read the log file and create an e-mail with all the entries. I’ll leave 
that option up to the reader. That should be all we need to put this script together. Here’s what the final 
version looks like: 

import android, os, time, datetime 
 
droid = android.Android() 
droid.startLocating() 
  
while not droid.readLocation()[1].has_key('gps') : 
    print "Waiting on gps to turn on" 
    time.sleep(1) 
 
if not os.path.exists('/sdcard/logs'): 
    os.mkdir('/sdcard/logs') 
 
# Now we'll loop until the user closes the application 
 
while True: 
    loc = droid.readLocation() 
 
    lat = str(loc.result['gps']['latitude']) 
    lon = str(loc.result['gps']['longitude']) 
    alt = str(loc.result['gps']['altitude']) 
 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

180 

    now = str(datetime.datetime.now()) 
    f = open('/sdcard/logs/logfile.txt','a') 
    outString = now + ',' + lat + ',' + lon + ',' + alt + '\n' 
    f.write(outString) 
    print outString 
    f.close() 
 
    time.sleep(1) 

Because we explicitly wait for the GPS in this script, there’s no need to check for a gps entry to be in 
the results from readLocation. It’s also not a bad practice to give the user some feedback when a 
program is running. In this case, we just print the same line out to the console that we write to the file. 
For testing purposes, we can use the telnet command as we did earlier to send simulated GPS 
information to the emulator. Figure 7-12 shows an example along with the help for the geo fix 
command.  

Figure 7-12. Android console used to simulate GPS 

Here’s a sample of a log file run using the emulator and the simulated GPS data using the Android 
console geo fix command: 

2011-02-16 11:32:35.178488,30,-85,0 
2011-02-16 11:32:36.287759,30,-85,0 
2011-02-16 11:32:37.331069,30.1234,-85.1234,0 
2011-02-16 11:32:38.449301,30.1234,-85.1234,0 
2011-02-16 11:32:39.555303,30.1234,-85.1234,0 
2011-02-16 11:32:40.639048,0,0,0 
2011-02-16 11:32:41.749413,0,0,0 
2011-02-16 11:32:42.849682,0,0,0 
2011-02-16 11:32:43.936020,0,0,0 
2011-02-16 11:32:45.041614,0,0,0 
2011-02-16 11:32:46.106619,0,0,0 
2011-02-16 11:32:47.181367,0,0,0 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

181 

2011-02-16 11:32:48.297515,0,0,0 
2011-02-16 11:32:49.374033,0,0,0 
2011-02-16 11:32:50.509526,30.1,-85.0999983333,0 
2011-02-16 11:32:51.612404,30.1,-85.0999983333,0 
2011-02-16 11:32:52.727394,30.1,-85.0999983333,0 
2011-02-16 11:32:53.838587,30.1,-85.0999983333,0 
2011-02-16 11:32:54.977258,30.1,-85.0999983333,0 

You can easily switch to the SL4A console screen from the notifications drop-down screen.  
You can also terminate the script from there by pressing the Menu button and choosing Stop All (see 
Figure 7-13). 

 

 

Figure 7-13. Script Monitor showing the trackmylocation.py application running 

WiFi Scanner 
Knowing what WiFi access points are available from your current location can be a good thing to know. 
It would take about three steps if you were to use your phone to search for available networks. An SL4A 
script could do it with one click. The steps are actually pretty simple. The first thing you have to do is 
turn the WiFi on with: 

>>> droid.toggleWifiState(True) 

The toggleWifiState function will actually turn the WiFi on if you pass it the True parameter. Once 
you have the WiFi turned on, you can start scanning with: 

>>> droid.wifiStartScan() 
Result(id=0, result=False, error=None) 

You want to give it some time to do the scanning and then read the results with: 

>>> scan = droid.wifiGetScanResults()[1] 

Here’s the output of a scan from a hotel room, which is actually just a Python dictionary: 

>>> pprint.pprint(scan) 
[{u'bssid': u'00:1d:7e:33:ba:a4', 
  u'capabilities': u'[WEP]', 
  u'frequency': 2462, 
  u'level': -83, 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

182 

  u'ssid': u'moes'}, 
 {u'bssid': u'00:23:33:a4:08:80', 
  u'capabilities': u'', 
  u'frequency': 2412, 
  u'level': -70, 
  u'ssid': u'hhonors'}, 
 {u'bssid': u'00:23:5e:d4:e8:90', 
  u'capabilities': u'', 
  u'frequency': 2462, 
  u'level': -76, 
  u'ssid': u'hhonors'}, 
 {u'bssid': u'00:23:5e:1e:e8:40', 
  u'capabilities': u'', 
  u'frequency': 2462, 
  u'level': -85, 
  u'ssid': u'hhonors'}, 
 {u'bssid': u'00:23:5e:d4:e3:f0', 
  u'capabilities': u'', 
  u'frequency': 2412, 
  u'level': -89, 
  u'ssid': u'hhonors'}, 
 {u'bssid': u'00:02:6f:77:e8:c4', 
  u'capabilities': u'', 
  u'frequency': 2447, 
  u'level': -92, 
  u'ssid': u'Comfort'}, 
 {u'bssid': u'00:02:6f:88:2b:52', 
  u'capabilities': u'', 
  u'frequency': 2412, 
  u'level': -93, 
  u'ssid': u'Comfort'}, 
 {u'bssid': u'00:02:6f:85:b3:cf', 
  u'capabilities': u'', 
  u'frequency': 2462, 
  u'level': -94, 
  u'ssid': u'Comfort'}] 

It’s easy to take the output from wifiGetScanResults and populate an alert dialog box. This would 
give you a quick and easy way to scan for a WiFi access point with a single click. Here’s the code to do 
that: 

import android 
import time 
 
def main(): 
    global droid 
    droid = android.Android() 
 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

183 

    # Wait until the scan finishes. 
    while not droid.wifiStartScan().result: time.sleep(0.25) 
     
    # Build a dictionary of available networks. 
    networks = {} 
    while not networks: 
        for ap in droid.wifiGetScanResults().result: 
            networks[ap['bssid']] = ap.copy() 
     
    droid.dialogCreateAlert('Access Points') 
    droid.dialogSetItems(['%(ssid)s, %(level)s, %(capabilities)s' % ap 
                          for ap in networks.values()]) 
    droid.dialogSetPositiveButtonText('OK') 
    droid.dialogShow() 
 
if __name__ == '__main__': 
    main() 

Figure 7-14 shows what you’ll get when you run this script on your device. You’ll probably see only 
access points that broadcast their ssid or that you’re attached to. 

 

 

Figure 7-14. Output of WifiScanner script 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

184 

HTTP Server 
Python knows how to do HTTP and provides a number of library functions to make creating an HTTP 
server drop-dead simple. The library you’ll want to use is SimpleHTTPServer. If you were to run the 
following code from your desktop, it would launch a web server from the current directory on port 8000: 

import SimpleHTTPServer 
SimpleHTTPServer.test() 

We can expand on this theme a bit for an Android device by setting the working directory to where 
the camera app saves pictures and then launching the HTTP server. This will, in effect, make a way to 
retrieve your pictures from the camera over a local network. Here’s the code: 

import SimpleHTTPServer 
from os import chdir 
chdir('/sdcard/DCIM/100MEDIA') 
SimpleHTTPServer.test() 

Figure 7-15 is a screenshot of what you would see running this script in the emulator. It also shows 
the result of pressing the hardware Back button. SL4A will prompt you before it actually exits your 
application as shown. 

 

 

Figure 7-15. SimpleHTTPserver Script running in the emulator 

Now all you need to know is the IP address of your device. The WiFi facade contains a function, 
wifiGetConnectionInfo, which will return the current IP address associated with the WiFi radio. The only 
problem is that it returns the value as a long integer. Not to fear, there’s a Python library that will help 
with that. You’ll actually have to import two libraries to get what we need. Here’s a short script that will 
get the current IP address and display it using a makeToast popup. 

import android, socket, struct 
 
droid = android.Android() 
 
ipdec = droid.wifiGetConnectionInfo().result['ip_address'] 
 
ipstr = socket.inet_ntoa(struct.pack('L',ipdec)) 
 
droid.makeToast(ipstr) 

6



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

185 

Now we’re going to take this code and add it to our four-line web server to display the IP address of 
the device. Here’s what the updated code looks like: 

import android, socket, SimpleHTTPServer, struct 
from os import chdir 
 
droid = android.Android() 
 
ipdec = droid.wifiGetConnectionInfo().result['ip_address'] 
ipstr = socket.inet_ntoa(struct.pack('L',ipdec)) 
 
chdir('/sdcard/DCIM/100MEDIA') 
 
print "connect to %s" % ipstr 
SimpleHTTPServer.test() 

Figure 7-16 shows what the screen will look like with the server running. Notice that you’ll also get a 
log of all activity in the main window. 

 

 

Figure 7-16. Status screen from httpd2.py Script 

Figure 7-17 shows a screenshot of what I see in a browser when I run the SimpleHTTPServer2 code: 

 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

186 

 

Figure 7-17. Example of the SimpleHTTPServer app 

All you have to do to transfer one of the pictures from your device to a local machine is right-click 
with your mouse and choose Save As. 

Killing a Running App 
There are several ways to kill a running application. The brute force way is to use the Settings menu on 
your device and choose Applications and then Manage Applications. This will display a list of currently 
running applications and should contain entries for SL4A and Python For Android. If you choose Python 
For Android, you should then see a screen like Figure 7-18. 

 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

187 

 

Figure 7-18. Application info for Python for Android 

If you press the Force Stop button, it will cause the application to exit. A second option is to switch 
to the notifications page on the device and select the SL4A Service, as shown in Figure 7-19. 

 

 

Figure 7-19. Example of SimpleHTTPServer app 

 

Figure 7-20. SL4A Script Monitor screen 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

188 

This screen provides a control page allowing you to see all active SL4A scripts, including how long 
they have been running. Pressing the Stop All button will force the currently running script to exit.  
If you select the httpd2.py line, as shown in Figure 7-20, you’ll be switched to the screen displayed by 
that script. Once there, you can press the hardware Back button and exit the script that way (refer to 
Figure 7-15).  

URL File Retriever 
There are times when downloading files from the Internet to a specific location on your Android device 
is not something you can easily accomplish. You may actually launch a program like your music player, 
depending on how your device handles embedded links on a web page, when what you really wanted 
was to download a copy. It can get very frustrating; that is, unless you write a script in Python to do it  
for you. 

This simple script relies on one of Python’s standard library modules, urllib, to do the bulk of the 
work. It also uses the Android clipboard to pull the link from which to download. By default, all files are 
downloaded into the download directory on the sdcard. You are given the opportunity to rename the file 
before the download is initiated. Figure 7-21 shows the Filename dialog box. If you choose the Cancel 
button instead of Ok, you will simply exit the script. 

 

 

Figure 7-21. Filename dialog box 

The other piece of code in this little script that really works well is the progress bar. The urlretrieve 
function accepts one mandatory and three optional parameters. You must pass in a URL to be retrieved, 
so that’s the only required parameter. The second parameter is a filename that specifies where to store 
the downloaded file. The third parameter is actually a function reference, which the Python 
documentation calls a reporthook. This will be called once the network connection is established and 
after each block read completes. The reporthook will have passed to it three parameters containing the 
count of blocks transferred so far, individual block size, and the total size of the file to be transferred. 
This is perfect for the progress bar and will make it simple to implement: 

import android 
import urllib 
import os 
 
downloads = '/sdcard/download/' 
 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

189 

def _reporthook(numblocks, blocksize, filesize, url=None): 
    base = os.path.basename(url) 
    try: 
        percent = min((numblocks*blocksize*100)/filesize, 100) 
    except: 
        percent = 100 
    if numblocks != 0: 
        droid.dialogSetMaxProgress(filesize) 
        droid.dialogSetCurrentProgress(numblocks * blocksize) 
 
def main(): 
    global droid 
    droid = android.Android() 
     
    url = droid.getClipboard().result 
    if url is None: return 
     
    dst = droid.dialogGetInput('Filename', 'Save file as:', os.path.basename(url)).result 
    droid.dialogCreateHorizontalProgress('Downloading...', 'Saving %s from web.' % dst) 
    droid.dialogShow() 
    urllib.urlretrieve(url, downloads + dst, 
        lambda nb, bs, fs, url=url: _reporthook(nb,bs,fs,url)) 
    droid.dialogDismiss() 
     
    droid.dialogCreateAlert('Operation Finished',  
                            '%s has been saved to %s.' % (url, downloads + dst)) 
    droid.dialogSetPositiveButtonText('OK') 
    droid.dialogShow() 
 
if __name__ == '__main__': 
    main() 

When the progress bar is first initialized, it has a max value of 100. If you look closely when the 
program is starting up, you might see that. Once it has started the actual download, it will have the 
information needed to populate the progress bar with the right numbers. Figure 7-22 shows what the 
progress bar will look like in the middle of downloading a file. 

 

 

Figure 7-22. Progress dialog box for URL downloader script 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

190 

Python FTP Server 
The converse of downloading files to your Android device is obviously uploading to it. The same 
reasoning applies here as well as for the upload utility. There are times when you don’t have a cable but 
you’d like to be able to upload a file from a laptop or other computer to your device. While there are a 
number of options for this problem, the most obvious solution is to implement an FTP server. This 
would give you the ability to both upload and download files should you so choose. 

Implementing an FTP server is not quite as easy as HTTP, at least not using the Python Standard 
Library. A quick Google search for Python FTP server turns up pyftpdlib as the first result. This is a pure 
Python library that implements a full-fledged FTP server. If you browse the source code of the project, 
you’ll see one large file named ftpserver.py. That’s the only file you’ll need from this project. Download 
it to your host machine and then push it to your device with the ADB command as follows: 

adb push ftpserver.py /sdcard/sl4a/scripts/ 

That will place the server code in the same directory as the rest of the SL4A Python scripts. It will 
allow the Python import command to load the library without any path issues: 

import android, socket, struct 
import ftpserver 
 
droid = android.Android() 
 
authorizer = ftpserver.DummyAuthorizer() 
authorizer.add_anonymous('/sdcard/downloads') 
authorizer.add_user('user', 'password', '/sdcard/sl4a/scripts', perm='elradfmw') 
handler = ftpserver.FTPHandler 
handler.authorizer = authorizer 
ipdec = droid.wifiGetConnectionInfo().result['ip_address'] 
ipstr = socket.inet_ntoa(struct.pack('L',ipdec)) 
droid.makeToast(ipstr) 
server = ftpserver.FTPServer((ipstr, 8080), handler) 
server.serve_forever() 

Once the FTP server is running, you can connect to it with any FTP client. FireFTP is a really nice 
Firefox add-on that gives you a two-pane display (see Figure 7-23) for easy drag-and-drop file operations 
between host (on the left) and client (on the right). 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

191 

 

Figure 7-23. FireFTP connected to Android phone 

FTP uses IP port 21 by default, but for this example I chose to use port 8080. You’ll need to configure 
your FTP client to use an alternate port if you use this example as is. In the Firefox FireFTP add-on, this 
is done using the Edit Connection tool. Figure 7-24 shows the first tab of this dialog box. 

 

 

Figure 7-24. FireFTP Account Manager main page 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

192 

To change the port, you need to click the Connection tab. This will bring up a dialog box like the one 
in Figure 7-25. To use a new port you simply change the value in the Port: text box. 

 

 

Figure 7-25. FireFTP Connection configuration page 

The great thing about the FireFTP add-on is that it is cross-platform, meaning it will work on Linux, 
Mac OS X, and Windows. Couple this with our FTP server app, and you have a great way to move files to 
and from your Android device without a cable. The FTP server app outputs log messages to the Python 
standard output screen. If you want to see those you’ll need to launch the app from SL4A using the 
Terminal icon (see Figure 7-26). 

 

 

Figure 7-26. Log screen for Python FTP server 

Figure 7-27 shows the FTP logs you’ll see in the Python terminal window. 

 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

193 

 

Figure 7-27. Log screen for Python FTP server 



CHAPTER 7 ■ PYTHON SCRIPTING UTILITIES 

 

194 

Summary 
This chapter showed you the basics of writing short scripts using the Python language and some actual 
usable scripts you can take and modify to meet your needs. Python is a great language for this and 
provides a wealth of libraries to accomplish virtually any computing task you might have. 

Here’s a list of take-aways for this chapter: 

• Python libraries: A quick Google search will turn up tons of them, but you need to 
know whether they are written in pure Python or not (pure Python means that all 
the code is written in the Python language). Some libraries are just wrappers 
around some C-based library and they deliver a compiled binary of the real 
library. They won’t work unless they’ve been cross-compiled to run on the Arm 
architecture. 

• Use e-mail to send stuff: Sending an e-mail message with SL4A is a piece of cake. 
This chapter showed you how to build a message and send it through Gmail. 
You’re bound to think of any number of other uses for this kind of utility. Now you 
have the building blocks to put one together to meet a specific need. 

• Location, location, location: That’s what they say in real estate, anyway. Every 
Android device has the capability to provide location information from multiple 
sources. Some are more accurate than others, but you don’t always need extreme 
accuracy. You also need to keep in mind trivial things (for example, GPS doesn’t 
work when you’re indoors).  

• The Web is a big deal: Turning your little Android device into a web server takes a 
total of two lines of code in Python. This chapter only barely scratched the surface 
of what you could do here. Just make sure you don’t totally ignore security when 
you launch your file browser out in public. 



C H A P T E R  8 
 

 

    

 

   

 

  

 

 

  

 

195 

Python Dialog Box–based GUIs 

This chapter will take a look at the options available for building dialog box–based graphical user 
interfaces (GUIs) with SL4A.  

■ Note This chapter will discuss the use of the Android dialog box API functions to build applications that present 
real-world user interfaces. Some background in these areas would be helpful but not absolutely required. 

There are two basic approaches to user interaction with SL4A. First, there are the Android API calls 
for using the stock dialog boxes such as alerts. This is the easiest and most straightforward way to 
present information to the user and receive input back. We’ll cover this method here. The second 
approach uses HTML and JavaScript to build the user interface (UI) and then Python behind the scenes 
to handle any additional processing. I’ll show you how to do a UI with HTML in the next chapter. 

UI Basics 
SL4A includes a UI facade to access the basic dialog box elements available through the Android API. It’s 
pretty simple to build a script using these elements. Essentially, all you have to do is set the text you want 
displayed for the buttons, items, and title and then make a call to showDialog. You can obtain the results 
of a user’s action using the dialogGetResponse call. 

When coding a user interface, it’s important to expect the unexpected. Your script needs to be able 
to handle every action a user might perform including doing nothing. I’ll start with a little refresher on 
setting up a few of the dialog boxes and then work into an example application. If all you need to do is 
show the user a brief message, you can use the makeToast API function. The SL4A help page gives a 
simple example that also showcases the getInput API function. Here’s what the code looks like: 

import android 
 
droid = android.Android() 
name = droid.getInput("Hello!", "What is your name?") 
print name  # name is a named tuple 
droid.makeToast("Hello, %s" % name.result) 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

196 

This will first display an input dialog box like Figure 8-1. It has a title (Hello!) and a prompt (What is 
your name?). By default, the getInput function displays a single line text box for the user input and the 
Ok button. It should be noted that the most recent versions of SL4A have deprecated the getInput 
function and replaced it with dialogGetInput. 

 

 

Figure 8-1. Input dialog box with title, prompt, input box, and Ok button 

When the user presses the Ok button, the getInput will return a result object as a named tuple. If 
you use the Python IDLE tool to run your code remotely on either the emulator or a real device, you’ll be 
able to see the result of the print name code. I’ll be using IDLE a good bit in this chapter because it 
makes things easier when you need to step through code or just see the results of different API calls. In 
this case, the result will look something like this: 

Result(id=0, result=u'Kentucky Rose', error=None) 

Each result is assigned a unique ID for tracking purposes, and here we get id=0. The second element 
of the tuple is result and contains the text string the user typed into the text box. Every result also 
includes an error element to provide feedback to the caller on any error condition that might have been 
encountered. In this instance, we see that error=None, meaning there were no errors. When Ok is 
pressed, you should see a popup message like Figure 8-2 displayed for a short period of time. 

 

 

Figure 8-2. makeToast dialog box showing user input 

The main API call we’ll be using to create our dialog boxes is dialogCreateAlert. It accepts two 
optional arguments to set the dialog box title and a message string to display inside the dialog box. The 
message string is a good place to describe to your user what you want them to do in the dialog box. 
Figure 8-3 shows the result of the following code: 

droid.dialogCreateAlert('Settings Dialog','Chose any number of items and then press OK') 
droid.dialogShow() 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

197 

 

Figure 8-3. Basic alert dialog box with a title and message 

The alert dialog box can be compared to a popup dialog box on a desktop machine. It allows you to 
create up to three buttons providing three different return values. To create a button, you must use any 
of dialogSetNegativeButtonText, dialogSetNeutralButtonText, and dialogSetPositiveButtonText API 
calls to enable the button and set the text to be displayed. Here’s the code to add two buttons for a 
positive and negative result: 

droid.dialogSetPositiveButtonText('Done') 
droid.dialogSetNegativeButtonText('Cancel') 

Figure 8-4 shows what our dialog box looks like now that we’ve added buttons to the text. The  
basic alert dialog box simply displays text and returns nothing. This can be useful to communicate 
information, but once you show an alert dialog box you must either dismiss it with a call to 
dialogDismiss, or the user must press the return hardware button. 

 

 

Figure 8-4. Alert dialog box with two buttons 

To find out which button the user pushed, you must call dialogGetResponse like this: 

>>> response = droid.dialogGetResponse() 
>>> response 
Result(id=10, result={u'canceled': True}, error=None) 

If you need the user to give you some type of text input, you’ll want to use the dialogGetInput 
function. Here’s what the code would look like to prompt for a message and set the result equal to the 
variable ans: 

ans = droid.dialogGetInput("Message Title","Message Text","Default").result 

 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

198 

 

Figure 8-5. getInput dialog box 

If the user presses the Cancel button, you’ll see an empty return that looks like this: 

Result(id=0, result=None, error=None) 

When you make a call to dialogGetResponse, it will return the last action the user accomplished. So 
if you have a multichoice dialog box up for display and the user simply presses Cancel, your result will be 
the output of the button labeled Cancel. For example, here’s the result of several passes at the Settings 
dialog box from the Python IDLE console: 

>>> droid.dialogSetItems(['one','two','three','four','five','six','seven','eight','nine']) 
Result(id=16, result=None, error=None) 
>>> droid.dialogShow() 
Result(id=17, result=None, error=None) 
>>> droid.dialogGetResponse() 
Result(id=18, result={u'canceled': True, u'which': u'positive'}, error=None) 
>>> droid.dialogShow() 
Result(id=19, result=None, error=None) 
>>> droid.dialogGetResponse() 
Result(id=20, result={u'item': 2}, error=None) 
>>> droid.dialogShow() 
Result(id=21, result=None, error=None) 

The first line creates an alert dialog box with nine elements added to the two buttons defined from 
the previous example. Figure 8-6 shows the resulting dialog box. 

 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

199 

 

Figure 8-6. Alert dialog box with list of items and two buttons 

Let’s look at all of these by using the Result id to identify each one. The first response, id=18, 
returns a Python dictionary with two elements named 'canceled' and ‘which'. Their values are 'True' 
and 'positive', respectively. This tells us that the user canceled the operation without selecting any of 
the items by pressing the positive button, which in our case is labeled 'Done'.  

The next result, id=20, is an example of the user selecting one of the items in the list. Notice that the 
result is simply {u'item': 2}. Once again, we have a dictionary returned as the result, but this time it has 
only one element: 'item'. The value of 'item' is 2, which translates to the text line 'three'. That’s 
because Python uses zero-based indexing. You don’t see any values for the buttons because the dialog 
box will close when the user selects one of the items in the list. For this type of user interaction, you 
really only need one button for the user to cancel everything. 

One last example of what you would see using the Python IDLE console to examine dialog box 
button responses is here: 

>>> droid.dialogGetResponse() 
Result(id=22, result={u'canceled': True, u'which': u'neutral'}, error=None) 

Result id=22 is what you would expect to see if a user pressed the Cancel button. In our example, 
we defined the positive and neutral buttons, hence the dictionary values. The last UI dialog box we need 
for our settings script is dialogCreateInput. In the next section, we’ll use it to prompt the user when we 
need input.  

Book Title Search 
Now let’s take the previous example showing how to display a list of items and use the 
dialogCreateInput function call to prompt for a book title and then do a Google Book Search before 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

200 

displaying the results. Figure 8-7 shows our dialog box prompting for a search term. Once we have our 
term, we fire it off to the Google search API and then fill the alert dialog box with a list of returned titles. 

Figure 8-7. Input dialog box for Google Book Search 

The code to do the search looks like this: 

service = gdata.books.service.BookService() 
service.ClientLogin(email, pw) 
 
titles = [] 
for bookname in service.get_library(): 
    titles.append(bookname.dc_title[0].text) 
 
droid.dialogCreateAlert() 
droid.dialogSetItems(list) 
droid.dialogShow() 

This code will display a dialog box like the one shown in Figure 8-8. 

Figure 8-8. Alert dialog box with list of results 

Now that we have that out of the way, we’ll take a quick look at a few other UI elements that you 
might want to use at some point. 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

201 

Convenience Dialog Boxes 
The dialog box facade includes a number of convenience functions like the date picker. Figure 8-9 shows 
what you should see as a result of the following code: 

droid.dialogCreateDatePicker(2011) 
droid.dialogShow() 

Arguments to this function are optional, but if used, should be integers representing year, month, 
and day, in that order. If no inputs are provided, the dialog box will default to an initial date of January 1, 
1970. 

 

 

Figure 8-9. Date picker dialog box initialized with Jan 01, 2011 

To read the user’s response, you’ll need to call dialogGetResponse as follows: 

>>> droid.dialogGetResponse() 
Result(id=27, result={u'year': 2011, u'day': 6, u'which': u'positive', u'month': 3}, 
 error=None) 

If you use Python’s IDLE utility, you can easily examine the results returned from these functions. 
Assigning the result to the variable date lets you easily address the different named values: 

>>> date = droid.dialogGetResponse().result 
>>> date 
{u'year': 2011, u'day': 7, u'which': u'positive', u'month': 3} 
>>> date["year"] 
2011 
>>> date["month"] 
3 
>>> date["day"] 
7 

The other helper dialog box is the createTimePicker function. Just like createDatePicker, you can 
provide inputs to set the initial time to display. The following code will produce the dialog box shown in 
Figure 8-10. 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

202 

>>> droid.dialogCreateTimePicker() 
Result(id=9, result=None, error=None) 
>>> droid.dialogShow() 
Result(id=10, result=None, error=None) 

Notice that you get a result object back from the dialogCreateTimePicker immediately because it’s 
letting you know that you successfully set up a time picker. Now you can proceed to using the 
dialogShow call to actually display the dialog box. Here I chose to not use a preset time, so the dialog box 
displays 12:00 AM or midnight. 

 

 

Figure 8-10. Time picker dialog box with default time displayed 

Both the date and time picker dialog boxes accept a starting value if you know what you want to 
display. For the time picker, the first input should be an integer representing the hour, and the second 
input should be an integer representing the minute to display. A third optional input parameter is a 
Boolean to set 24-hour mode and is set to false by default. If this parameter is passed in as true, you will 
see values for hours up to 24. 

Often you will want to echo an asterisk after each character of a password is typed. This dialog box 
will display immediately without the need to call showDialog. It will echo each character typed so that the 
user will have some feedback as to what characters have been pressed. Typing a new character will cover 
the previous one with an asterisk. Figure 8-11 shows what this dialog box looks like with the last 
character still showing. 

 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

203 

 

Figure 8-11. Get Password dialog box with last character typed displayed 

You will have to make a call to dialogGetResponse to return the password entered or to determine 
which button was pressed. Here’s what that would look like using IDLE: 

>>> droid.dialogGetPassword() 
Result(id=5, result=u'Password', error=None) 
>>> droid.dialogGetResponse() 
Result(id=6, result={u'which': u'positive', u'value': u'Password'}, error=None) 
>>> droid.dialogGetPassword() 
Result(id=7, result=None, error=None) 
>>> droid.dialogGetResponse() 
Result(id=8, result={u'which': u'negative', u'value': u''}, error=None) 

In the first line (id=5), a password was entered and the Ok button pressed. You can see it returns the 
result 'Password'. Using a call to dialogGetResponse shows that the positive button was pressed and a 
value of 'Password' was returned. For the next call to dialogGetPassword, the user simply pressed the 
Cancel button. The result here (id=7) shows 'None'. Using another call to dialogGetResponse shows that 
the negative button was pressed, in this case Cancel, and that an empty value was returned. 

Progress Dialog Boxes 
Keeping the user informed of what your application is doing is always a good idea. If you need to do 
some type of processing that will take more than a few seconds, you should think about using a progress 
dialog box. SL4A provides an API facade for both a horizontal progress bar and a spinner dialog box. The 
biggest challenge in using a progress dialog box is determining how to measure progress and then 
display it. 

In a previous chapter I used a horizontal progress bar to show file download progress. In this case, 
the size of the file is used to determine how much progress has been made. You don’t have to specify 
anything when you call dialogCreateHorizontalProgress. This will just display a progress dialog box 
with a scale of 0 to 100. Figure 8-12 shows what you’ll get with the code: 

droid.dialogCreateHorizontalProgress() 
droid.dialogShow() 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

204 

 

Figure 8-12. Horizontal progress bar with default options 

Once the dialog box is displayed you can use dialogSetMaxProgress to change the value displayed 
for the maximum value. You must use dialogSetCurrentProgress to update the progress of your 
application. The following code would update the progress bar to 50%, assuming the max progress has 
been set to 4096: 

droid.dialogSetCurrentProgress(2048) 

Figure 8-13 shows what this code will produce. 

 

 

Figure 8-13. Horizontal progress bar at 50% 

There are other times when you just need to let the user know that the application is doing  
some type of processing. This calls for the spinner progress dialog box. Here’s all you need to do to  
start one up: 

droid.dialogCreateSpinnerProgress("Spinner Test","Spinner Message") 

Figure 8-14 shows what you’ll get. 

 

 

Figure 8-14. Spinner dialog box 

Both progress dialog boxes require a call to dialogDismiss to close. 
 
 
 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

205 

Modal versus Non–Modal Dialog Boxes 
There are really only two options for dialog box behavior when you build a user interface. A modal dialog 
box or window is typically a child of another process or window, meaning it has a parent process or 
higher-level window to return to. Processing will wait or block until the user interacts with the new 
dialog box. In the case of an alert dialog box, it is essentially modal, meaning it will not close until you do 
something.  

Here’s some code to demonstrate what I’m talking about: 

# Demonstrate use of modal dialog. Process location events while 
# waiting for user input. 
import android 
droid=android.Android() 
droid.dialogCreateAlert("I like swords.","Do you like swords?") 
droid.dialogSetPositiveButtonText("Yes") 
droid.dialogSetNegativeButtonText("No") 
droid.dialogShow() 
droid.startLocating() 
while True: # Wait for events for up to 10 seconds. 
  response=droid.eventWait(10000).result 
  if response==None: # No events to process. exit. 
    break 
  if response["name"]=="dialog": # When you get a dialog event, exit loop 
    break 
  print response # Probably a location event. 
 
# Have fallen out of loop. Close the dialog  
droid.dialogDismiss() 
if response==None: 
  print "Timed out." 
else: 
  rdialog=response["data"] # dialog response is stored in data. 
  if  rdialog.has_key("which"): 
    result=rdialog["which"] 
    if result=="positive": 
      print "Yay! I like swords too!" 
    elif result=="negative": 
      print "Oh. How sad." 
  elif rdialog.has_key("canceled"): # Yes, I know it's mispelled. 
    print "You can't even make up your mind?" 
  else: 
    print "Unknown response=",response 
print droid.stopLocating() 
print "Done" 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

206 

This code will present a dialog box like the one shown in Figure 8-15. 

 

 

Figure 8-15. An alert dialog box used to demonstrate a modal display 

If the user does nothing, the dialog box will time out and be dismissed. Using IDLE, you can see the 
results: 

Timed out. 
Result(id=7, result=None, error=None) 
Done 

If the user presses the Yes button, you should see this result: 

Yay! I like swords too! 
Result(id=7, result=None, error=None) 
Done 

Pressing the No button will show this: 

Oh. How sad. 
Result(id=7, result=None, error=None) 
Done 

If the user happens to press the hardware return button to cancel the app, you’ll see the following in 
the IDLE main window: 

You can't even make up your mind? 
Result(id=7, result=None, error=None) 
Done 

The important thing is the use of events to implement a timeout feature. Normal modal dialog 
boxes don’t time out unless the user cancels the entire application. Here the eventWait function call is 
used to wait either for one of the buttons to be pressed or 1000 ms, or 1 sec, and then resume processing. 
Events don’t work unless an activity has been initiated such as startLocating. This will generate position 
events that must be filtered to look for just the events of interest. This is done using the line of code 
shown here: 

  if response["name"]=="dialog": # When you get a dialog event, exit loop 

This line allows the script to key off the 'dialog' event and continue processing while ignoring the 
location-based events. 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

207 

Options Menu 
Many Android applications make use of an options menu to allow the user to set preferences or any 
option for how the application behaves. SL4A provides a way to create options menu items using the 
addOptionsMenuItem call.  

import android 
droid=android.Android() 
 
droid.addOptionsMenuItem("Silly","silly",None,"star_on") 
droid.addOptionsMenuItem("Sensible","sensible","I bet.","star_off") 
droid.addOptionsMenuItem("Off","off",None,"ic_menu_revert") 
  
print "Hit menu to see extra options." 
print "Will timeout in 10 seconds if you hit nothing." 
 
droid.webViewShow('file://sdcard/sl4a/scripts/blank.html') 
  
while True: # Wait for events from the menu. 
    response=droid.eventWait(10000).result 
    if response==None: 
        break 
    print response 
    if response["name"]=="off": 
        break 
print "And done." 

The webViewShow call is necessary to present something other than a system screen to add in the 
options menu to. You are not allowed to alter the normal system options, so you need an application of 
some kind running that you can use to modify the options menu. Figure 8-16 shows what the results of 
running the previous script should look like if you press the hardware menu button. 

 

 

Figure 8-16. Example options menu 

Here’s what you’ll get if the user presses the Sensible button:  

{u'data': u'I bet.', u'name': u'sensible', u'time': 1301074971174000L} 

Notice that this result is actually the output of an event and includes the named items data, name, 
and time. You would then need to perform additional processing based on which menu option the user 
pressed. 

File Listing with dialogCreateAlert 
There are times when you need to get a list of files and display them in a dialog box like the one in Figure 
8-17. Here’s a short script that will do just that: 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

208 

import android, os 
 
droid=android.Android() 
 
list = [] 
for dirname, dirnames, filenames in os.walk('/sdcard/sl4a/scripts'): 
    for filename in filenames: 
        list.append(filename) 
 
droid.dialogCreateAlert('/sdcard/sl4a/scripts') 
droid.dialogSetItems(list) 
droid.dialogShow() 
file = droid.dialogGetResponse().result 
print(list[file]) 

 

 

Figure 8-17. Simple file chooser dialog box 

A slightly different take on this code would be to add the ability to drill down into subdirectories. 
This is pretty easy if you simply test to see whether the item selected by the user is actually a directory. If 
it is, you just clear the items and fill it up with the contents of the new subdirectory. The new dialog box 
would look something like Figure 8-18. 

 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

209 

 

Figure 8-18. Simple file chooser dialog box showing directories 

Notice that directories have an * in front and that the current path is displayed in the title string of 
the dialog box. Now we have a fully functional file chooser dialog box that we can use in some of the later 
examples. Here’s the line of code I added to check to determine whether the selected item is a directory 
or not: 

if os.path.isdir(start + '\\' + list[file['item']][1:]): 

Here we use the isdir function to check against the full path name of the file, and we use Python’s 
slicing notation to get everything after the asterisk. 

Dialog Boxes as Python Objects 
One way you can handle the processing or decision making from a user interface is to define a function 
in Python to help clean up the code and provide a more modular logic flow. Here’s what the code for our 
UI list test code looks like: 

# Test of Lists 
import android,sys 
droid=android.Android() 
 
#Choose which list type you want. 
def getlist(): 
  droid.dialogCreateAlert("List Types") 
  droid.dialogSetItems(["Items","Single","Multi"]) 
  droid.dialogShow() 
  result=droid.dialogGetResponse().result 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

210 

  if result.has_key("item"): 
    return result["item"] 
  else: 
    return -1 
 
#Choose List 
listtype=getlist() 
if listtype<0: 
  print "No item chosen" 
  sys.exit() 
 
options=["Red","White","Blue","Charcoal"] 
droid.dialogCreateAlert("Colors") 
if listtype==0: 
  droid.dialogSetItems(options) 
elif listtype==1: 
  droid.dialogSetSingleChoiceItems(options) 
elif listtype==2: 
  droid.dialogSetMultiChoiceItems(options) 
droid.dialogSetPositiveButtonText("OK") 
droid.dialogSetNegativeButtonText("Cancel") 
droid.dialogShow() 
result=droid.dialogGetResponse().result 
# droid.dialogDismiss() # In most modes this is not needed. 
if result==None: 
  print "Time out" 
elif result.has_key("item"): 
  item=result["item"]; 
  print "Chosen item=",item,"=",options[item] 
else: 
  print "Result=",result 
  print "Selected=",droid.dialogGetSelectedItems().result 
print "Done" 

Figure 8-19. Initial dialog box with list of choices 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

211 

The next dialog box presented depends on which choice the user makes. If the user chooses Items, 
they’ll see a dialog box like Figure 8-20. This dialog box offers four items to choose from and two buttons. 
If the user chooses one of the items such as White, the code returns the following: 

Chosen item= 1 = White 
Done 

 

 

Figure 8-20. Dialog box displayed from choosing Items 

Choosing Single from the initial dialog box will display a dialog box like the one shown in Figure 8-
21. This dialog box demonstrates a slightly different way of prompting a user for a single input using 
radio buttons. In this dialog box, you need an Ok button to actually close the dialog box after picking a 
specific item. Selecting the Cancel button would give the user the option of exiting the dialog box 
without choosing anything. The result of choosing White from this dialog box would be the following: 

Result= {u'which': u'positive'} 
Selected= [1] 
Done 

■ Tip If you run any application remotely that needs to reference the file system, you need to know that it will 
be looking on your local file system, not on the device or emulator. You can mirror the same structure you would 
find on either a device or emulator by creating a directory on your main drive named /sdcard and then adding a 
subdirectory named sl4a and then another named scripts below sl4a. 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

212 

 

Figure 8-21. Dialog box displayed from choosing Single 

The final option is the Multi option allowing a user to select multiple items from the list. Assuming 
the user chooses the options as shown in Figure 8-22, you would get the following result: 

Result= {u'which': u'positive'} 
Selected= [0, 1, 2] 
Done 

 

 

Figure 8-22. Dialog box displayed from choosing Multi 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

213 

If the user were to select the Cancel button, you would see a result indicating that the negative 
response button was chosen, as in: 

Result= {u'which': u'negative'} 
Selected= [] 
Done 

Podplayer App 
One of the things I find annoying about my Android phone is the music player. If you have a large 
number of music files and you just want to listen to something like a podcast, it can be a problem. Part of 
the issue stems from the fact that the media player uses ID3 tags inside your MP3 files to sort your music 
by album, artist, or even individual songs. If the file you want to play happens to not have the ID3 tags 
set properly, you might not be able to find it using the media player interface unless it shows up under 
an Unknown tag.  

SL4A has everything we need to build a simple little app to display the contents of a directory and 
then send a selected file to the media player. The first thing we’ll use is the directory browser code we 
used earlier. Figure 8-23 shows what you’ll see if you run the code starting in the /sdcard/sl4a directory. 

 

 

Figure 8-23. File chooser dialog box 

All the work to populate the alert dialog box is done with a function named show_dir. The very first 
thing the code does is use the Python os.path.exists() function to determine whether the path 
specified in base_dir exists or not. If not, it will create the subdirectory using os.makedirs(base_dir). 
After this check, the code will use the Python os.listdir() function to retrieve a list of all directories and 
files in the base_dir directory. Here’s what that code looks like: 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

214 

    nodes = os.listdir(path) 
     
    # Make a way to go up a level. 
    if path != base_dir: nodes.insert(0, '..') 
     
    droid.dialogCreateAlert(os.path.basename(path).title()) 
    droid.dialogSetItems(nodes) 
    droid.dialogShow() 
     
    # Get the selected file or directory. 
    result = droid.dialogGetResponse().result 

A couple of things need pointing out at this juncture. The 'if path != base_dir:' test is needed 
since we’re going to use the programming construct of recursion to repeatedly display a new alert dialog 
box as the user moves around in the file system. This ensures that the user doesn’t go anywhere outside 
the base_path directory and any subdirectories. It also makes a way to go up one directory using 
'nodes.insert(0,'..')' if the user is not currently at the top level (see the first entry in Figure 8-23). The 
call to droid.dialogGetResponse() will block or wait until the user either selects a directory or file or exits 
the program using a hardware button. 

When the user does something, there should be data in result to determine what the app does next. 
If the user selects a directory, the app will load the contents of that directory and create a new alert 
dialog box. If the user selects a file, it will check to make sure it’s an mp3 file and then launch the media 
player using this line of code: 

droid.startActivity('android.intent.action.VIEW', 'file://' + target_path, 'audio/mp3') 

If you happen to have more than one app installed on your device that will play media, you’ll get 
another dialog box prompt to choose which one to use. You’ll also have the option to make that 
selection the default for the file type mp3. When the user chooses a directory, the app uses recursion to 
reload the next directory with the following line of code: 

if os.path.isdir(target_path): show_dir(target_path) 

The other option, if the user has opened a subdirectory, is to go up one level. The line of code that 
tests for this is as follows: 

if target == '..': target_path = os.path.dirname(path) 

So, if the user selects the line with '..', the code will set target_path to the string path. The initial 
value for path is set to the string base_dir when the show_dir function is called, as seen here: 

def show_dir(path=base_dir): 

■ Note Recursion is a great way to create a captive UI–meaning the same code will get executed multiple times 
until the user exits in a way that you desire. 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

215 

 

Figure 8-24. List of .mp3 files from podplayer.py 

The final UI for our Podplayer app is shown in Figure 8-24. Here’s what the complete code  
looks like: 

import android, os, time 
 
droid = android.Android() 
 
# Specify our root podcasts directory and make sure it exists. 
base_dir = '/sdcard/sl4a/scripts/podcasts' 
if not os.path.exists(base_dir): os.makedirs(base_dir) 
 
def show_dir(path=base_dir): 
    """Shows the contents of a directory in a list view.""" 
     
    # The files & directories under "path". 
    nodes = os.listdir(path) 
     
    # Make a way to go up a level. 
    if path != base_dir: nodes.insert(0, '..') 
     
    droid.dialogCreateAlert(os.path.basename(path).title()) 
    droid.dialogSetItems(nodes) 
    droid.dialogShow() 
     



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

216 

    # Get the selected file or directory. 
    result = droid.dialogGetResponse().result 
    droid.dialogDismiss() 
    if 'item' not in result: 
        return 
    target = nodes[result['item']] 
    target_path = os.path.join(path, target) 
     
    if target == '..': target_path = os.path.dirname(path) 
     
    # If a directory, show its contents. 
    if os.path.isdir(target_path): show_dir(target_path) 
 
    # If an MP3, play it. 
    elif os.path.splitext(target)[1].lower() == '.mp3': 
        droid.startActivity('android.intent.action.VIEW',  
                            'file://' + target_path, 'audio/mp3') 
     
    # If not, inform the user. 
    else: 
        droid.dialogCreateAlert('Invalid File', 
                                'Only .mp3 files are currently supported!') 
        droid.dialogSetPositiveButtonText('Ok') 
        droid.dialogShow() 
        droid.dialogGetResponse() 
        show_dir(path) 
 
if __name__ == '__main__': 
    show_dir() 

There are a few more things worth discussing in this example that Python makes really easy. Testing 
for a specific file extension takes just one line of code, like this: 

os.path.splitext(target)[1].lower() 

In addition, you should notice two other os.path methods used in this script, os.path.join and 
os.path.isdir. The os.path library module has quite a few methods available to make dealing with file 
systems and files a piece of cake. 

Building the mysettings App 
The basic idea behind the settings script is to build a little utility program that will create scripts tailored 
to a specific combination of phone settings. We’ll present a dialog box with different settings to choose 
from and then let the user choose a filename in which to save them. All the user will need to do is create 
a link to the settings folder and will then have a way to configure the phone with two touches. We’ll use 
multiple choice items so the user will be able to select the different features to enable. 

We’ll use standard Python code to write out our final script and save it to our directory. For this 
example we’ll simply use a hard-coded directory, but you could give the user an option without too 
much extra coding. The biggest issue is making sure the directory chosen is on the sdcard and the user 
has permission to write to it. We’ll use /sdcard/sl4a/mysettings as our target directory. The first thing 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

217 

the script will do when it runs is check to see whether that directory exists, and if not, it will create it. 
That requires a total of three lines of Python code: 

import os 
if not os.path.exists('/sdcard/sl4a/settings'): 
        os.mkdir('/sdcard/sl4a/settings') 

After executing this code, we know for sure we have a directory available in which to save our 
settings script. The user can create a shortcut to that directory for single-click access to the different 
settings scripts. Another thing our script doesn’t do is check for any inconsistencies. It really doesn’t 
make sense to turn Airplane mode on and set Wifi or Bluetooth to On. The intent behind the Airplane 
mode setting is to allow the script to turn Airplane mode off and set the others on. Most phones have a 
fairly easy way to turn Airplane mode on, so we’ll not try to reproduce that. Figure 8-25 shows what our 
final settings dialog box will look like. 

 

  

Figure 8-25. Alert dialog box with list of items and two buttons 

When you click the Done button, you’ll be presented with a new dialog box allowing you to name 
your script. To exit this dialog box, you must press either Done or Cancel. You could also use the 
hardware back button to exit the application if you so choose.  

Figure 8-26 shows what the final dialog box prompting the user for a filename will look like. 

 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

218 

 

Figure 8-26. Alert dialog box prompting for a name to save the settings script 

The last piece of code we need to look at handles the return from the multiple selection dialog box. 
First, you have to check to see which button the user pressed. If the Cancel button was pressed, we want 
to exit the script and not do anything. That requires the call to dialogGetResponse to determine which 
button was pressed. To actually read the response requires a call to dialogGetSelectedItems. This 
returns a list of the items selected. Here’s the section of code that gets the user’s response: 

response = droid.dialogGetResponse().result 
 
if 'canceled' in response: 
    droid.exit() 
else: 
    response = droid.dialogGetSelectedItems().result 

Once we have the selected values we can choose what to write out to our final script. To do this, 
we’ll use some Python trickery to pull a specific line from a list containing entries corresponding to the 
positive and negative action we need to accomplish. The toggles list is made up of tuples containing two 
strings each so that the list has a total of five elements. Here’s what our toggles list looks like: 

toggles = [ 
    ('droid.toggleAirplaneMode(True)', 'droid.toggleAirplaneMode(False)'), 
    ('droid.toggleBluetoothState(True)', 'droid.toggleBluetoothState(False)'), 
    ('droid.toggleRingerSilentMode(True)', 'droid.toggleRingerSilentMode(False)'), 
    ('droid.setScreenBrightness(0)', 'droid.setScreenBrightness(255)'), 
    ('droid.toggleWifiState(True)', 'droid.toggleWifiState(False)'), 
] 

Now we can use the enumerate function, which takes an iterable; in this case, the list toggles and get 
a list of tuples containing the index of each item and the item itself as i and toggle, respectively. 

for i, toggle in enumerate(toggles): 
    if i in response: 
        script += toggles[i][0] 
    else: 
        script += toggles[i][1] 
    script += '\n' 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

 

219 

Here’s a sample of what the file looks like when the user selects Ok: 

import android 
 
droid = android.Android() 
droid.toggleAirplaneMode(False) 
droid.toggleBluetoothState(True) 
droid.toggleRingerSilentMode(False) 
droid.setScreenBrightness(255) 
droid.toggleWifiState(True) 
 
droid.dialogCreateAlert('Profile Enabled', 'The "default" profile has been activated.') 
droid.dialogSetPositiveButtonText('OK') 
droid.dialogShow() 

That’s pretty much it. The first two lines in the script are required to import the android module and 
to instantiate our droid object. 

import android, os 
 
script_dir = '/sdcard/sl4a/scripts/settings/' 
 
if not os.path.exists(script_dir): 
    os.makedir(script_dir) 
 
droid = android.Android() 
 
toggles = [ 
    ('droid.toggleAirplaneMode(True)', 'droid.toggleAirplaneMode(False)'), 
    ('droid.toggleBluetoothState(True)', 'droid.toggleBluetoothState(False)'), 
    ('droid.toggleRingerSilentMode(True)', 'droid.toggleRingerSilentMode(False)'), 
    ('droid.setScreenBrightness(0)', 'droid.setScreenBrightness(255)'), 
    ('droid.toggleWifiState(True)', 'droid.toggleWifiState(False)'), 
] 
 
droid.dialogCreateAlert('Settings Dialog', 'Chose any number of items and then press OK') 
droid.dialogSetPositiveButtonText('Done') 
droid.dialogSetNegativeButtonText('Cancel') 
 
droid.dialogSetMultiChoiceItems(['Airplane Mode', 
                                 'Bluetooth On', 
                                 'Ringer Silent', 
                                 'Screen Off', 
                                 'Wifi On']) 
 
droid.dialogShow() 
response = droid.dialogGetResponse().result 
 
if 'canceled' in response: 
    droid.exit() 
else: 
    response = droid.dialogGetSelectedItems().result 
 



CHAPTER 8 ■ PYTHON DIALOG BOX–BASED GUIs 

220 

droid.dialogDismiss() 
res = droid.dialogGetInput('Script Name',  
                           'Enter a name for the profile script.',  
                           'default').result 
 
script = '''import android 
 
droid = android.Android() 
''' 
 
for i, toggle in enumerate(toggles): 
    if i in response: 
        script += toggles[i][0] 
    else: 
        script += toggles[i][1] 
    script += '\n' 
 
script += ''' 
droid.dialogCreateAlert('Profile Enabled', 'The "%s" profile has been activated.') 
droid.dialogSetPositiveButtonText('OK') 
droid.dialogShow()''' % res 
 
f = open(script_dir + res + '.py', 'w') 
f.write(script) 
f.close() 

Summary 
This chapter shows you the basics of interacting with a user via the available dialog boxes.  

Here’s a list of takeaways for this chapter: 

• Dialog box basics: The SL4A dialog box facade provides a number of standard 
ways to present information and get user input. Understanding how and when to 
use each one will help you build scripts that will be both useful and easy to use. 

• Understanding results: It’s important to understand what results to expect from 
the different input dialog boxes and how to handle each button a user could 
choose. 

• Modal and non-modal dialog boxes: Use a modal dialog box when you need 
input from the user before you continue execution. 

• Using modules from the Python Standard Library: These are great for handling 
routine file system chores. 

• Good programming practices: There’s no substitute for using good 
programming practices, including handling all possible actions a user can take. 

• Using multiple dialog boxes: You can chain multiple dialog box types together to 
build a more complex UI with prompting through createAlertDialog and output 
with a list box recursively using the dialogSetItems function call. 



C H A P T E R  9 
 

 

    

 

   

 

  

 

 

  

 

221 

Python GUIs with HTML 

This chapter will take a look at the options available for building graphical user interfaces (GUIs) with 
SL4A based on CSS, HTML, JavaScript, and Python. 

■ Note This chapter will discuss the use of CSS, HTML, and JavaScript to build applications that present real-
world user interfaces. Some background in these areas would be helpful if you have it, but it’s not essential. 

Here are the main topics for this chapter: 

• HTML GUI basics 

• Using cascading style sheets (CSS) to add some formatting to the HTML 

• Creating commercial-quality user interfaces with CSS, HTML, JavaScript, and 
Python 

The basic approach here uses HTML and JavaScript to build the user interface (UI) and then Python 
behind the scenes to handle any additional processing. CSS can be used to make the HTML fields and 
fonts cleaner in terms of appearance and consistency. Python can also be used to build an HTML file for 
displaying information without any user interface.  

HTML and Basic Information Display 
It’s not uncommon when building applications to need a way to simply display a chunk of information 
to the user. This might be in the form of a list or even just a single continuous text box. Both are easily 
supported using HTML as the display mechanism. The HTML file could be generated programmatically 
or created using any text editor and then launched using the webViewShow API call. 

We’ll look at option number one first. In this sample code, we’ll query the status of the battery and 
display everything you ever wanted to know in a simple HTML file. We’ll then launch the file with a call 
to webViewShow and we’re done. Here’s the code to make it happen: 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

222 

import time 
 
import android 
 
# Simple HTML template using python's format string syntax. 
template = '''<html><body> 
<h1>Battery Status</h1> 
<ul> 
<li><strong>Status: %(status)s</li> 
<li><strong>Temperature: %(temperature)s</li> 
<li><strong>Level: %(level)s</li> 
<li><strong>Plugged In: %(plugged)s</li> 
</ul> 
</body></html>''' 
 
if __name__ == '__main__': 
    droid = android.Android() 
     
    # Wait until we have readings from the battery. 
    droid.batteryStartMonitoring() 
    result = None 
    while result is None: 
        result = droid.readBatteryData().result 
        time.sleep(0.5) 
         
    # Write out the HTML with the values from our battery reading. 
    f = open('/sdcard/sl4a/scripts/battstats.html', 'w') 
    f.write(template % result) 
    f.close() 
 
    # Show the resulting HTML page. 
    droid.webViewShow('file:///sdcard/sl4a/scripts/battstats.html') 

This creates a file in the scripts directory with the name battstats.html. If you wanted to keep a 
collection of these files, you could merely add the current time to the filename to generate a unique file 
each time. Figure 9-1 shows what you should see when the code displays the file: 

 

 

Figure 9-1. Use of a simple HTML file to display battery status 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

223 

A second example of this call is to take our WiFi scanner example from Chapter 7 and display the 
information using the HTML file method. In this case, you might want to add something such as a time 
and date stamp in the file and then append to the end each time. This way, you’ll have a running log of 
the WiFi access points your device has seen. Here’s the code to generate the file: 

import time 
import android 
 
if __name__ == '__main__': 
    droid = android.Android() 
     
    # Show the HTML page immediately. 
    droid.webViewShow('file:///sdcard/sl4a/scripts/wifi.html') 
 
    # Mainloop 
    while True: 
 
        # Wait until the scan finishes. 
        while not droid.wifiStartScan().result: time.sleep(0.25) 
         
        # Send results to HTML page. 
        droid.postEvent('show_networks', droid.wifiGetScanResults().result) 
         
        time.sleep(1) 

While this code will simply show the current WiFi access points in range, you could create a log file 
and append your results to it. This file would grow over time until you delete it. The nice thing about 
saving it to a file and then displaying it as an HTML file is that you can scroll through it using the same 
finger motions as you would to view a web page. Figure 9-2 shows the results. 

 

 

Figure 9-2. Results of WiFi scan 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

224 

HTML and JavaScript 
The next step beyond basic information display is to add some type of interactivity. This is where we 
have to bring JavaScript into the discussion. SL4A provides a mechanism for communication between a 
web page and Python. This is accomplished using events and some JavaScript code in the web page. The 
only real requirement for the JavaScript code is that you must instantiate the Android object with the 
code var droid = new Android() before you make any API calls. Once that’s done you have access to the 
same set of API facades as you do from Python. 

Here’s an example that uses JavaScript to get a list of contacts and dynamically build a web page 
from the data. This technique can be used with any API call that returns data you’d like to display. Here’s 
what the HTML file looks like: 

<html> 
    <head> 
    </head> 
    <body> 
        <h1>Contacts</h1> 
        <ul id="contacts"></ul> 
        <script type="text/javascript"> 
            var droid = new Android(); 
            var contacts = droid.contactsGet(['display_name']); 
            var container = document.getElementById('contacts'); 
            for (var i=0;i<=contacts.result.length;i++){ 
                var data = contacts.result[i]; 
                contact = '<li>'; 
                contact = contact + data[0]; 
                contact = contact + '</li>'; 
                container.innerHTML = container.innerHTML + contact; 
            } 
        </script> 
    </body> 
</html> 

Notice that all I’m doing here is calling the contactsGet routine and passing in the display_name 
qualifier. Here’s what the Python code would look like to actually display the HTML file (the only thing 
this code does is load up the HTML file and then exit): 

import android 
 
droid = android.Android() 
droid.webViewShow('file:///sdcard/sl4a/scripts/contacts.html') 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

225 

Figure 9-3 shows the result of our efforts. 

 

 

Figure 9-3. Basic HTML display of contacts as a list 

This version is nice for simply displaying information but what if you wanted the user to be able to 
do something with what you present? We can make a slight modification to the HTML file and add a 
touch of interaction using a basic table and a hyperlink. Here’s the HTML and JavaScript code: 

<html> 
    <head> 
    </head> 
    <body> 
        <h1>Contacts</h1> 
        <table id="contacts"></table> 
        <script type="text/javascript"> 
            var droid = new Android(); 
            function call(number){ 
                droid.phoneDialNumber(number); 
            } 
            var contacts = droid.contactsGet(['display_name', 'primary_phone']); 
            var container = document.getElementById('contacts'); 
            for (var i=0;i<=contacts.result.length;i++){ 
                var data = contacts.result[i]; 
                contact = '<tr>'; 
                contact += '<th>' + data[0] + '</th>'; 
                contact += '<td><a href="#" onclick="call(' + data[1] +  
                           ');return false;">' + data[1] + '</a></td>'; 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

226 

                contact += '</tr>'; 
                container.innerHTML = container.innerHTML + contact; 
            } 
        </script> 
    </body> 
</html> 

There are two slight modifications to the JavaScript code. First, we add the following to create a 
hyperlink to open the call dialog box: 

function call(number){ 
                droid.phoneDialNumber(number); 
            } 

The other change is to create a table using the HTML <tr> and <td> tags in lieu of the simple list 
element tags. While the change is pretty simple, it creates a nice user interaction without writing a lot of 
code. Figure 9-4 shows the result. 

 

 

Figure 9-4. HTML display of contacts as a table 

HTML GUI Form Basics 
Now we’ll take a look at the basics of building GUIs with SL4A using CSS, HTML, and JavaScript. In 
general, the idea is to create an HTML form that uses Python to handle events generated by the form. So, 
for example, you could have a button on a form that causes something to happen when you press it. The 
SL4A wiki gives a simple example I’ve included here in Listing 9-1: 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

227 

Listing 9-1. text_to_speech.html  

<html> 
  <head> 
    <title>Text to Speech</title> 
    <script> 
      var droid = new Android(); 
      var speak = function() { 
        droid.postEvent("say", document.getElementById("say").value); 
      } 
    </script> 
  </head> 
  <body> 
    <form onsubmit="speak(); return false;"> 
      <label for="say">What would you like to say?</label> 
      <input type="text" id="say" /> 
      <input type="submit" value="Speak" /> 
    </form> 
  </body> 
</html> 

Listing 9-2. speakit.py 

import android 
 
droid = android.Android() 
droid.webViewShow('file:///sdcard/sl4a/scripts/text_to_speech.html') 
while True: 
  result = droid.waitForEvent('say').result 
  droid.ttsSpeak(result['data']) 

Two files are needed to make up this program: the HTML file named text_to_speech.html and the 
Python launcher we’ll call speakit.py (see Listing 9-2). Both must reside in the /sdcard/sl4a/scripts 
directory on the device. To launch the program, run the speakit.py file from the SL4A list of files. The 
Python code first launches the text_to_speech.html file using the webViewShow API call and then waits for 
an event to fire from the HTML page. The event is generated when the user touches the “speak” button. 

Figure 9-5 shows what the screen will look like. 

 

 

Figure 9-5. Simple HTML page for text-to-speech demo 

The JavaScript code is enclosed by the <script> </script> tags and provides the connection to the 
calling Python script using the postEvent API call. To launch this HTML form requires a call to the 
webViewShow API as follows: 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

228 

import android 
 
droid = android.Android() 
droid.webViewShow('file:///sdcard/sl4a/scripts/text_to_speech.html') 
while True: 
  result = droid.waitForEvent('say').result 
  droid.ttsSpeak(result['data']) 

Once the form is displayed, the Python code will block and wait for the 'say' event to fire. This 
event will return the text to pass to the ttsSpeak API function in the data field of the result object. The 
web page will actually close when the user clicks the speak button, and the Python code will exit once 
control returns from the ttsSpeak function. 

Simple HTML Forms 
Now we’re ready to tackle a little more complex problem with multiple input boxes and input types. This 
script will display a screen allowing the user to set a number of device preference settings including 
screen brightness and timeout, media volume, ringer volume, and the WiFi mode. The HTML for 
creating this type of form is pretty straightforward. Here’s all you need: 

<body> 
<div id="body"> 
<h1>My Settings</h1> 
<form> 
    <div class="container"> 
        <div> 
            <label for="brightness">Brightness Level</label> 
            <input size="5" id="brightness" type="text" /> 
        </div> 
        <div> 
            <label for="timeout">Timeout Secs</label> 
            <select> 
                <option value="0">0</option> 
                <option value="1">1</option> 
                <option value="2">2</option> 
                <option value="3">3</option> 
                <option value="4">4</option> 
                <option value="5">5</option> 
            </select> 
        </div> 
        <div> 
            <label for="screen">Screen Off</label> 
            <input id="screen" type="checkbox" /> 
        </div> 
    </div> 
    <hr /> 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

229 

    <div class="container"> 
        <div> 
            <label for="media_vol">Media Volume</label> 
            <input size="5" id="media_vol" type="text" /> 
        </div> 
        <div> 
            <label for="ringer_vol">Ringer Volume</label> 
            <input size="5" id="ringer_vol" type="text" /> 
        </div> 
    </div> 
    <hr /> 
    <div class="container"> 
        <div> 
            <label for="airplane_mode">Airplane Mode</label> 
            <input id="airplane_mode" name="radio" type="radio" /> 
        </div> 
        <div> 
            <label for="wifi_on">Wifi On</label> 
            <input id="wifi_on" name="radio" type="radio" /> 
        </div> 
    </div> 
    <div class="container buttons"> 
        <div> 
            <input size="5" id="save" name="save" type="button" value="Save Settings" /> 
            <input size="5" id="cancel" name="cancel" type="button" value="Cancel" /> 
        </div> 
    </div> 
</form> 
</div> 
</body> 
 
</html> 

This will produce a page that looks like Figure 9-6. As you can see there are a few issues with how 
this renders on the small screen. The title is chopped off, the buttons don’t completely fit on the page, 
and the horizontal rule lines seem to go off the page. While you could do some tweaking of the HTML to 
make it look pretty, the better way is to use CSS. 

 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

230 

Figure 9-6. Basic HTML form with no CSS 

Cascading Style Sheets 
Formatting HTML with cascading style sheets (CSS) goes a long way toward creating and presenting a 
clean user interface. With CSS you can determine alignment, font, text flow, and size for all HTML 
elements on the page. This comes in really handy with small screens where you want to dictate exactly 
how each element on the page appears. 

Here’s a small snippet of CSS that I’ll use to help spruce up our user settings page: 

<html> 
<head> 
    <style> 
        #body {width:100%;} 
        .container {text-align:center;margin:auto;} 
        .container div {text-align:left;width:75%;} 
        h1 {text-align:center;margin:auto;} 
        hr {width:75%;margin:0px auto;} 
        label {display:block;float:left;width:60%;} 
        .buttons div {text-align:center;margin:auto;} 
    </style> 
</head> 

The body portion of the web form contains a number of standard elements like <div> tags, input 
boxes using the <label> and <input> tags, and a list of options to choose from in a drop-down box using 
the <label> and <select> tags. The preceding CSS code controls the width and appearance of the labels 
and alignment of the text. It also controls how the buttons, h1 and hr HTML tags are formatted. You can 
do a lot more with CSS, but we’ll stop here for this example. The remaining HTML looks the same as 
before. 

x



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

231 

Figure 9-7 shows what the HTML page will look like with the CSS added. While there’s not a lot of 
difference, notice the width of the text boxes and the overall spacing of the elements. Feel free to go with 
the look you prefer. 

 

 

Figure 9-7. HTML form with CSS added 

From the speakit.py example, we saw the use of the droid.postEvent() JavaScript code to send data 
back to the Python application using an event. This sent a single string value representing a phrase to be 
spoken. This form contains a number of elements with information that must be extracted and sent back 
to the Python code. There are a number of ways this can be accomplished, but we’ll simply use a 
key/value string pair. 

This can be done by adding a few more lines of code to our JavaScript to pass more information 
from the HTML form. Here’s what it looks like: 

   <script type="text/javascript"> 
        var droid = new Android(); 
 
        function post_data(){ 
            var values = [ 
                ['airplane', document.getElementById('airplane_mode').value], 
                ['wifi', document.getElementById('wifi_on').value], 
                ['brightness', document.getElementById('brightness').value], 
                ['volume', document.getElementById('volume').value], 
            ]; 
             



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

232 

            var q = '?'; 
            for (i=0;i<values.length;i++){ 
                var k = values[i][0]; 
                var v = values[i][1]; 
                if (q != '?'){ 
                    q = q + '&'; 
                } 
                q = q + k + '=' + v; 
            } 
             
            droid.postEvent('save', q); 
        } 
    </script> 

And here’s the HTML that goes with this code: 

<body> 
<div id="body"> 
<h1>My Settings</h1> 
<form onsubmit="post_data();return false;"> 
    <div class="container"> 
        <div> 
            <label for="airplane_mode">Airplane Mode</label> 
            <input id="airplane_mode" name="radio" type="radio" /> 
        </div> 
        <div> 
            <label for="wifi_on">WiFi On</label> 
            <input id="wifi_on" name="radio" type="radio" /> 
        </div> 
    </div> 
    <div class="container"> 
        <div> 
            <label for="brightness">Brightness Level</label> 
            <input size="5" id="brightness" type="text" /> 
        </div> 
        <div> 
            <label for="volume">Media Volume</label> 
            <input size="5" id="volume" type="text" /> 
        </div> 
    </div> 
    <div class="container buttons"> 
        <div> 
            <input size="5" id="save" name="save" type="submit" value="Save Settings" /> 
            <input size="5" id="cancel" name="cancel" type="button" value="Cancel" /> 
        </div> 
    </div> 
</form> 
</div> 
</body> 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

233 

The key to extracting the value from a specific HTML form element is the 
document.getElementById() line. On the Python side, the values are then used to set specific settings on 
the phone. The Python code looks like this: 

import android 
import urlparse 
 
droid = android.Android() 
droid.webViewShow('file:///sdcard/sl4a/scripts/settings.html') 
while True: 
    result = droid.waitForEvent('save').result 
    data = urlparse.parse_qs(result['data'][1:]) 
     
    droid.toggleAirplaneMode('airplane' in data) 
    droid.toggleWifiState('wifi' in data) 
    droid.setScreenBrightness('screen' in data and 255 or 0) 

This example introduces another Python Standard Library tool named urlparse. This function will 
parse through the returned elements into a list of data items as key/value pairs. All that’s left to do at that 
point is make the calls to the appropriate API functions to set the values.  

SMS Merger 
The SL4A home page includes links to a good number of example programs, including a few that 
demonstrate how to use the webViewShow API function. SMS Merger is definitely the most complete 
example of what can be done using a combination of Python, JavaScript, HTML, and CSS. This sample 
also gives us the opportunity to use Eclipse and its file management features to demonstrate how to 
build a complex application and eventually distribute it as an Android package (.apk file). That portion 
will actually be covered in Chapter 10. 

To understand this sample program, it’s important to break it down into the different components 
to see what each function does. Keep in mind that this program is a sample, not an actual fully tested 
and working application. It does have some quirks and even exposes a few bugs in the early versions of 
SL4A. The intent here is to examine the code to see what each function does and give you an idea of what 
you can build using the same techniques. I’ll give you a summary of what to watch out for at the end of 
this section if you choose to run the code yourself. If you open up the SMSMerge.zip file, you should see 
something like Figure 9-8. 

 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

234 

 

Figure 9-8. Contents of SMSMerge.zip file 

Each of these directories contains information based on the name. The /etc directory contains a 
single file named SMSSender.conf, which stores all configuration information for the application. If you 
open the file with a text editor, you’ll see something like this: 

[locale] 
prefix = +60 
 
[merger] 
informeveryratio = 10 
informevery = 0 
 
[application] 
showonlycsvfiles = 0 
showonlytextfiles = 1 
showhiddendirectories = 0 
 
[package] 
version = 1.01 

This is a great example of using standard Python coding practices that you would find in a typical 
open source application written for the desktop. It’s based upon the Python Standard Library 
ConfigParser module. To use it, simply import ConfigParser and then instantiate it with parser = 
ConfigParser() to get access to the different methods. The section names are totally up to the 
programmer and should reflect a meaningful title. In this case, there are four named sections. When 
parsed, they turn into a Python dictionary of key/value pairs associated with the section name. Here’s 
the code to load the config file section by section: 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

235 

def load( self ): 
    # Go through all the sections 
    sections = {} 
    # Some sections are meant to be ignored 
    for section in self.sections(): 
        if section not in self.ignore: 
            items = self.items(section) 
            options = [] 
            for item in items: 
                options.append( {"name":item[0], 
                                 "value":item[1], 
                                 "description": self.descriptions[section][item[0]]}) 
                sections[section] = options 
        return sections 

In Figure 9-9, you can see the available options on the setup page and get an idea of how they 
correlate to the values in the config file. 

 

 

Figure 9-9. Setup configuration page 

If you click on the label for any of the options, you’ll get a pop up dialog box with a description of 
what the option does and what values are acceptable. Figure 9-10 shows what you would see if you click 
the showonlycsvfiles line. It uses a popup alert dialog box to give the user feedback about the 
consequences of setting this particular option. 

 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

236 

 

Figure 9-10. Popup dialog box for showonlycsvfiles option 

Let’s back up at this point and talk about the CSS file. In the earlier HTML example I used a pretty 
simplistic CSS file to define how the form would appear on the small screen. This application takes the 
CSS file to a whole new level. If you open the zest.css file in a text editor, you’ll see the different sections 
and the techniques used to define the HTML element formatting. At the top of the file, you’ll see two 
sections labeled body and button. Here’s what the code looks like: 

body { 
        width:100%; 
        padding: 0; 
        font-size: 14px; 
        background: black; 
        color:white; 
        font-family: Arial; 
} 
button{ 
        color:white; 
        background: transparent; 
        border: solid 1px #2986a5; 
} 

The body section defines the defaults for the entire body of the HTML page while the button section 
defines the defaults for buttons. For this application, there is a menu made up of four icons across the 
top of the page. These change depending on user interaction. Each button has a base color of white, a 
transparent background, and a one-pixel border around it with the hex color code of #2986a5. 

Instead of plain buttons, the SMS Merger app uses a fairly common approach using image files. 
Each button uses two image versions for selected and not selected. When a user presses a button, the 
image is swapped, creating a highlighting effect. Figure 9-11 shows a view of the directory containing the 
different button images. 

 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

237 

 

Figure 9-11. Icons used for UI elements 

Here’s a section of CSS code that defines what the menu will look like at the top of the page: 

div#menu { 
        background-image: url("../images/tab-bg.png"); 
        background-repeat: repeat-x; 
        color: white; 
        font-weight: bold; 
        height: 96px; 
} 
div#menu div.current { 
        background-image: url("../images/tab-bg-current.png"); 
        background-repeat: repeat-x; 
} 
div.icon { 
        height: 67px; 
        width: 100%; 
        background-repeat: no-repeat; 
        background-position: top center; 
} 

And here’s the corresponding chunk of HTML: 

<div class="col width-100" id="menu"> 
        <div class="col tabs width-25" id="bSetup"> 
                <div class="icon"></div>Setup 
        </div> 
        <div class="col tabs width-25" id="bFile"> 
                <div class="icon"></div>File 
        </div> 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

238 

        <div class="col tabs width-25" id="bText"> 
        <div class="icon"></div>Text 
        </div> 
        <div class="col tabs width-25" id="bMerge"> 
        <div class="icon"></div>Merge 
        </div> 
</div> 

Figure 9-12 shows what the menu looks like in the emulator. 

 

 

Figure 9-12. Menu built from CSS, HTML, images, and JavaScript 

When you touch one of the buttons, such as the File button, you’ll be presented with a new display 
as shown in Figure 9-13. The HTML code for this page looks like this: 

<div id="dFile" class="nodisplay col width-100"> 
        <h1>File - <button id="bCSV">Load</button></h1> 
        <p class="col width-100" id="csvfile"></p> 
        <div class="col width-100 nodisplay" id="dFields"> 
                <h1>Fields (select phone number column):</h1> 
                <div></div> 
        </div> 
        <div class="col width-100"> 
                <h1>File dialect:</h1> 
                <p>End of line character: <span id="dialectLineterminator"></span></p> 
                <p>Quote character: <span id="dialectQuotechar"></span></p> 
                <p>Field delimiter: <span id="dialectDelimiter"></span></p> 
        </div> 
        <div class="col width-100"> 
                <h1>File preview:</h1> 
                <div id="dPreview"></div> 
        </div> 
</div> 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

239 

 

Figure 9-13. File Load screen  

The File Preview section is built from the loaded CSV file and uses data provided by the Python 
code. Here’s the code that actually reads the file and returns it to the JavaScript: 

def loadfile(self, data): 
    self.log("Loading file") 
    merger = self.merger 
    filename = data["path"] 
    if filename != "": 
        self.log("Selected filename %s " % filename) 
        try: 
            reader = CSVReader( filename ) 
        except csv.Error, e: 
            return { "error": "Unable to open CSV: %s" % e } 
        fields = reader.getFields() 
        self.log("Found fields: %s" % ''.join(fields)) 
        merger.setFields(fields) 
        rows = reader.getRows() 
        merger.setItems(rows) 
        # Rows are now dicts, for preview, want them as list of values only 
        values = [] 
        for row in rows: 
            values.append( row.values() ) 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

240 

    else: 
        self.log("No file name") 
        return {"filename":"","fields":[], "error": ""} 
    # Success and new file, return all info 
    return {"filename":filename, "fields":fields,  
            "delimiter":reader.dialect.delimiter,  
            "quotechar":reader.dialect.quotechar,  
            "lineterminator": reader.dialect.lineterminator,  
            "error": "", "rows":values } 

The merge tab is where the real action takes place.  It takes the CSV file with phone number and 
message text and merges it with either a message you type in manually or load from a file, and ultimately 
broadcasts the SMS messages. Figure 9-14 shows what this screen looks like. 

Figure 9-14. Merge and Send SMS screen  

The Python code to perform the merge is not difficult to read at all. Here’s what that looks like: 

def merge(self, data): 
    droid = self.droid 
    merger = self.merger 
    merger.prefix = parser.get( "locale", "prefix" ) 
    merger.setNumberColumn(int(data["phone"])) 
    merger.setTemplate(data["text"]) 
    ret = {"success":False, "error":"", "messages":[]} 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

241 

    # Valid template returns a list of merge fields that are not used by the given template 
    missing = merger.validTemplate() 
    if missing.__len__() == 0: 
        ret["messages"] = merger.merge() 
        ret["success"] = True 
    else: 
        droid.dialogCreateAlert("Incomplete text",  
"The following merge fields are not being used by the template: %s.\r\n Would you like 
 to edit the template text?" % ",".join(missing)) 
        droid.dialogSetPositiveButtonText("Yes") 
        droid.dialogSetNegativeButtonText("No") 
        droid.dialogShow() 
        resp = droid.dialogGetResponse() 
        # User wishes to load now 
        if resp.result["which"] == "positive" : 
            return {"task":"edittext"} 
        else: 
            ret["messages"] = merger.merge() 
            ret["success"] = True 
    return ret 

There’s also some JavaScript code behind this page as well: 

/*  
* Merge tab button event 
* On Click, checks that CSV is loaded, checks that template text is loaded. 
* Then fires an event to request Python to merge all SMS 
* Receives sms as object {number,message} and displays them in a table 
*/ 
buttons.merge.addEvent("click",function(){ 
    if(!csvLoaded()){ 
        if(loadCsv()){ 
            buttons.file.fireEvent("click"); 
            buttons.importCSV.fireEvent("click"); 
        } 
    } else { 
        var text=dta.getValue(); 
        if(text == ""){ 
            textNeeded(); 
            buttons.textTab.fireEvent("click"); 
        } else { 
            handler.startLoad("Processing", "Merging") 
            showOne(tabs,divs.mergeTab); 
            phone = getMergeFields().phone; 
            var resp = handler.postAndWait( {"task":"merge", "text":text.replace 
("\n","\\u000A"), "phone":phone }); 
            if(resp.task=="edittext"){ 
                buttons.textTab.fireEvent("click"); 
                dta.fireEvent("click"); 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

242 

            }else{ 
                clearMergedSamples(); 
                var table = divs.mergeTab.getElement("table"); 
                resp.messages.each(function(m){ 
                    var clone = templateRow.clone(); 
                    clone.getElement("td.phone").setText(m.number); 
                    clone.getElement("td.message").setText(m.message); 
                    table.adopt(clone); 
                }); 
            } 
            handler.stopLoad(); 
        } 
    } 
}); 

Dependencies 
Every software project has dependencies of some kind. When you choose a language in which to code, 
you have made a dependency choice. If your application will run on a specific operating system, you 
have made an OS dependency decision. External libraries often provide extra functionality that would be 
difficult to code otherwise. The price you pay is the pain involved in packaging the libraries and 
managing any updates that might break your code. All the sample scripts in this book depend on SL4A 
and Python.  

The first version of SMS Merger used an external dependency for browsing and choosing files in the 
form of Open Intents (OI) File Manager. Here’s a snippet of code from that version that launches the OI 
File Manager using the startActivityForResult API call and then extracts the filename from the 
returned map value: 

def requestTemplateFromFile( self ): 
    droid = self.droid 
    map = droid.startActivityForResult( "org.openintents.action.PICK_FILE", 
                         None, None,  
                         {"org.openintents.extra.TITLE":"Choose file containing message", 
                          "org.openintents.extra.BUTTON_TEXT":"Choose"}) 
    if map.result is None: 
        self.requestMessage() 
    else: 
        filename = map.result["data"].replace( "file://", "" ) 
        text = open( filename, "r" ) 
        smscontent = text.readline().replace( "\n", "" ) 
        if self.validTemplate( smscontent ) is True: 
            return smscontent 
        else: 
            self.warnInvalidTemplate( smscontent ) 
        # Loop 
        return self.requestTemplateFromFile() 

OI File Manager is a nice tool with a clean UI. It provides a simple way to choose a file and then 
return it to the caller. Figure 9-15 shows what it looks like. 

 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

243 

 

Figure 9-15. Open Intents File Manager 

One downside of using an external application like OI File Manager is the need for an additional 
install that a user must accomplish. While this isn’t a big deal for a programmer, it definitely isn’t 
something you would want a typical user to do. A better solution would be to use HTML, JavaScript, and 
Python. Here’s a Python function to create a list of files: 

    def listdir(self, data): 
        """ Creates two lists of files and folders in the path found in data 
         
        data -- dict containing path and type (for filtering) 
         
        """ 
        self.log("Loading directory content") 
        base = data["path"] 
        type = data["type"] 
        # Check in the config whether we want to show only a certain type of content 
        showHiddenDirectories = self.parser.getboolean( "application", 
                                                        "showhiddendirectories" ) 
         
        if type == "txt": 
            if self.parser.getboolean( "application", "showonlytextfiles" ) is True: 
                filter = ".{0}".format( type ) 
            else: 
                filter = None 
        elif type == "csv": 
            if self.parser.getboolean( "application", "showonlycsvfiles" ) is True: 
                filter = ".{0}".format( type ) 
            else: 
                filter = None 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

244 

        else: 
            filter = None 
 
        # List all directories and files, then filter 
        all = os.listdir(base) 
        files = [] 
        folders = [] 
        for file in all: 
            # Separate files and folders 
            abs = "{0}/{1}".format( base, file ) 
            if os.path.isdir( abs ): 
                # Are we filtering hidden directories? 
                if showHiddenDirectories is True or file[0] != ".": 
                    folders.append( str( file ) ) 
            elif os.path.isfile( abs ): 
                # Are we filtering by type? 
                if filter is None or os.path.splitext( file )[1] == filter: 
                    files.append( str( file ) ) 
                     
        # Sort alphabetically 
        files.sort( key=str.lower ) 
        folders.sort( key=str.lower ) 
        return {"files":files,"folders":folders} 

Figure 9-16 shows an HTML and JavaScript version independent of any external application. 

 

 

Figure 9-16. HTML and JavaScript file browser 

The JavaScript code to create this window is lengthy but readable. It basically adds an event handler 
to the importCSV button to first call the Python code to do the actual loading of the CSV file and then 
build a table to display the results. It passes the path of the CSV file to the Python code as a return from 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

245 

the filebrowser function. The user chooses the CSV file to read by scrolling through the filebrowser 
window and touching the file, which closes the filebrowser window. 

buttons.importCSV.addEvent("click",function(){ 
   // Override the onClose function to use the path of the CSV file 
   filebrowser.onClose = function(a) { 
      if(a){ 
         handler.startLoad("Loading","Loading CSV file"); 
         var resp = handler.postAndWait({"task":"loadfile","path":a}); 
         if(resp.error==""){ 
            // resp.filename will definitely be same as a? 
            if(resp.filename!=""){ 
               clearMergedSamples(); 
               divs.csvFilename.setText( resp.filename ); 
               divs.fields.removeClass("nodisplay").getElement("div").remove(); 
               var newdiv = new Element("div").addClass("col").addClass("width-100"); 
               resp.fields.each(function(r, k){ 
                  newdiv.adopt(new Element("div").addClass("col") 
                        .adopt(new Element("input",{"type":"radio","name":"iField"}) 
                        .addEvent("click",function(){hideAll(valid);})) 
                        .adopt(new Element("span").setText(r)) 
                  ); 
                }); 
                divs.fields.adopt(newdiv); 
                // Select the first item 
                divs.fields.getElement("input").setProperty("checked",true); 
                // More information about the loaded file 
                $("dialectQuotechar").setText(resp.quotechar); 
                $("dialectDelimiter").setText(resp.delimiter); 
                $("dialectLineterminator").setText(resp.lineterminator); 
                // Preview 
                var t=new Element("table", 
                                 {"cellpadding":"0","border":"0"}),th=new Element("tr"); 
                resp.fields.each(function(v){ 
                    th.adopt(new Element("th").setText(v)); 
                }); 
                t.adopt(th); 
                resp.rows.each(function(v){ 
                    var tr=new Element("tr"); 
                    v.each(function(w){ 
                        tr.adopt(new Element("td").setText(w)); 
                    }); 
                    t.adopt(tr); 
                 }); 
                 divs.preview.empty().adopt(t); 
            } 
         }else{ 
            handler.alert("CSV import error",resp.error); 
         } 
         handler.stopLoad(); 
      } 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

246 

      filebrowser.close(); 
   } 
   filebrowser.setType("csv").setTitle("Load CSV file" ).show(); 
}); 

It’s always a good idea to keep the user of your application informed of what’s going on. When the 
SMS Merger app first starts, it needs to load the configuration file if one exists. The spinner dialog box is 
perfect to tell the user that the application is actually loading a configuration file instead of just leaving a 
blank screen visible. Figure 9-17 shows how the SMS Sender application uses the spinner to let the user 
know something is happening. 

 

 

Figure 9-17. Setup configuration page 

When you use the webViewShow API function to pass data between the HTML/JavaScript and the 
Python code, you must write an event handler on either side to receive the data. The SMS Sender 
example utilizes both JavaScript and Python event handlers to get the job done. Here’s a chunk of code 
that sets up the different event handlers on the JavaScript side: 

handler = new UIHandler(); 
window.addEvent("domready",function(){ 
    var buttons = {"saveconfig":$("bSaveConfig"),"file":$("bFile"), 
                   "setup": $("bSetup"),"importText":$("bChooseText"), 
                   "textTab":$("bText"),"merge":$("bMerge"), 
                   "validate":$("bValidate"),"process":$("bProcess"),  
                   "importCSV":$("bCSV"),"closebrowser":$("closeButton")}, 
        divs = {"preview":$("dPreview"),"filebrowser":$("filebrowser"), 
                "browsercontent":$("browserContent"),"fileTab":$("dFile"), 
                "fields":$("dFields"),"csvFilename":$("csvfile"), 
                "setupTab":$("dSetup"),"textTab":$("dText"),"mergeTab":$("dCSVMerged")}, 
    dta=divs.textTab.getElement("textarea"),browserTitle=$("browserTitle"), 
    tabs=[divs.setupTab,divs.mergeTab,divs.textTab,divs.fileTab], 
    tabButtons=[buttons.setup,buttons.merge,buttons.textTab,buttons.file], 
    validSpan=$("wValid"),invalidSpan=$("wInvalid"),valid=[validSpan,invalidSpan], 
    templateRow=$("templateTable").getElement("tr"); 
    tabButtons.each(function(button,k){ 
        var current = "current"; 
        button.addEvent("click",function(){ 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

247 

            if(!button.hasClass(current)){ 
                removeClassFromAll(tabButtons,current); 
                button.addClass(current); 
                showOne(tabs,tabs[k]); 
            } 
        }); 
    }); 

On the Python side, you must have corresponding event handlers. Here’s how SMS Sender handles 
that: 

class SMSSenderHandler(UIHandler): 
    """ Handler class for this particular application. Extends UIHandler """ 
    def __init__(self): 
        UIHandler.__init__(self) 
        # Create the dispatch dictionnary which maps tasks to methods 
        self.dispatch = {  
            "loadfile": self.loadfile, 
            "validate": self.validate, 
            "loadfilecontent": self.loadfilecontent, 
            "loadconfig": self.loadconfig, 
            "send": self.send, 
            "merge": self.merge, 
            "listdir":self.listdir, 
            "saveconfig":self.saveconfig 
        } 

Quirks and Gotchas with SMS Sender 
Be aware that the SMS Sender example may not run depending on what version of SL4A you have 
installed. I ran into some issues with SLA4 r3 and the emulator not handling the passing of events 
correctly. This was a known bug at the time and was reported as such. There also is an issue with the 
HTML file chooser in that it doesn’t seem to allow you to open up a subdirectory after you have opened 
either the text or CSV file. With that said, it does show off some of the ways you can communicate 
between Python and the HTML code in both directions. 

Summary 
This chapter has attempted to show you both the basics of writing scripts that use HTML to display 
information and interact with the user via the webViewShow API call.  

Here’s a list of take-aways for this chapter: 

• HTML basics: Everything you ever learned about good HTML applies here. You 
can build simple output using an HTML file with just a few lines of code. 

• Learn some JavaScript: The primary theme of this book is coding in Python, but 
to get the interaction in an HTML page you will have to write some JavaScript. It’s 
not a difficult language to pick up, especially if you’re at all familiar with C++ or 
Java. There are a multitude of resources on the Web to help get you started. 



CHAPTER 9 ■ PYTHON GUIs WITH HTML 

 

248 

• Don’t forget design: One of the biggest complaints about web pages created by 
programmers is that they don’t look very appealing. The SMS Sender example 
uses a number of good design principles to separate actions and to keep similar 
functionality grouped together. Because the webViewShow API function uses HTML 
to create the user interface, it’s a good idea to learn a little about good HTML page 
design. 

• CSS can help: Using CSS is actually a good programming practice as well. It helps 
separate some of the design aspect from coding into one file. CSS helps to bring a 
consistent look and feel to HTML and works really well for the small screen. 



C H A P T E R  10 
 

 

    

 

   

 

  

 

 

  

 

249 

Packaging and Distributing 

This chapter will take a look at ways to package and distribute scripts using Eclipse and QR codes.   
This chapter will cover these topics: 

• Using QR codes to distribute scripts 

• Building a distributable application 

• Using Eclipse to create an .apk file 

While much of this book has been about creating scripts for personal consumption, it is quite 
possible to build a commercial Android application using SL4A. Once that’s done, you need a way to 
distribute your app so others can enjoy it. This chapter will look at several ways you can do just that. 

QR Codes 
The Quick Response (QR) code is a great way to publish your work if you have a relatively short script 
that you’d like to share. Most Android devices include a native barcode scanner app (ZXing), and SL4A 
even supports importing QR codes directly into the editor. It’s also available from the Android Market. 
When you launch SL4A you should see a listing of files in the scripts directory on your device. If you 
press the hardware menu button, you’ll see an Add button on the top left side (see Figure 10-1). 
 

 

Figure 10-1. Menu button popup dialog box 

If you press Add, you’ll get a menu with options including files for any of the installed interpreters, 
Shell, and Scan Barcode (see Figure 10-2). 
 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

250 

 

Figure 10-2. Add menu  

If you do a quick Google search for SL4A QR codes, you’ll find a number of entries in which people 
have shared their scripts on a blog or personal web site using a QR code. A QR code can only encode 
4,296 characters of content, so your scripts will have to be short. There are several web sites where you 
can paste text and have a QR code created for you. The SL4A wiki references http://zxing.appspot.com/ 
generator. Here are the instructions that go with it: 

1. Open the Contents drop-down and choose Text. 

2. On the first line of the Text Content, enter the name of the script (for example, 
hello_world.py). 

3. Below that, paste the script content. 

4. Open the Size drop-down and choose L. 

5. Click Generate. 

6. Embed the resulting barcode image or share it with your friends. 

Figure 10-3 shows the result of generating a QR code from http://zxing.appspot.com/generator 
using the makeToast.py code shown here: 

import android 
 
droid = android.Android() 
name = droid.getInput("Hello!", "What is your name?") 
droid.makeToast("Hello, %s" % name.result) 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

251 

 

Figure 10-3. QR code generation using http://zxing.appspot.com 

QR codes give you a nice option if you have a short script to share and a place to share it from, such 
as a blog or a web site. 

Application Packages 
Android applications are typically distributed in a single file or package with an .apk extension. An 
Android package is essentially an archive file similar to a .jar or .zip file. Each .apk contains a number 
of mandatory files that must be present, or the application will not install. The most important file is 
AndroidManifest.xml. This file describes the application in the context of resources and permissions 
that it needs. According to the Android docs, the manifest does a number of things in addition to 
declaring the application's components: 

• Identifies any user permissions the application requires, such as Internet access or 
read-access to the user's contacts 

• Declares the minimum API level required by the application, based on which APIs 
the application uses 

• Declares hardware and software features used or required by the application, such 
as a camera, Bluetooth services, or a multitouch screen 

• Specifies API libraries the application needs to be linked against (other than the 
Android framework APIs), such as the Google Maps library 

You have a number of options for creating an Android project. One way is to manually create a new 
project from the command line. It involves using the android command along with a few parameters. 
Figure 10-4 shows the results of running this command from a Windows command prompt. 

 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

252 

 

Figure 10-4. Command-line project creation 

When you use the command-line android tool to build your project, it will set things properly  
in the AndroidManifest.xml file. Here’s what that file looks like as a result of the command line from 
Figure 10-4: 

<?xml version="1.0" encoding="utf-8"?> 
<manifest xmlns:android="http://schemas.android.com/apk/res/android" 
      package="com.example.myfirstapp" 
      android:versionCode="1" 
      android:versionName="1.0"> 
    <application android:label="@string/app_name" android:icon="@drawable/icon"> 
        <activity android:name="MyFirstApp" 
                  android:label="@string/app_name"> 
            <intent-filter> 
                <action android:name="android.intent.action.MAIN" /> 
                <category android:name="android.intent.category.LAUNCHER" /> 
            </intent-filter> 
        </activity> 
    </application> 
</manifest> 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

253 

The command-line method creates a bare-bones project skeleton that would take quite a bit of 
tweaking to make it work as an SL4A project. Fortunately for us, the SL4A folks have done most of the 
work already. The first thing you need to do is download the script template file from the SL4A project 
site (http://android-scripting.googlecode.com/hg/android/script_for_android_template.zip). Figure 
10-5 shows what’s inside the script_for_android_template.zip file. 

 

 

Figure 10-5. Contents of the script_for_android_template.zip file 

The AndroidManifest.xml file provided contains a list of items or properties to which you explicitly 
grant access. The template file available from the SL4A site has a complete list included, but with most of 
the entries commented out. It will look like the following: 

<!-- <uses-permission 
    android:name="android.permission.VIBRATE" /> --> 

Each valid permission line should look like this: 

<uses-permission android:name="android.permission.VIBRATE"></uses-permission> 
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"></uses-permission> 

Once you have the template downloaded, you’re ready to get started building your distributable 
project, also known as an .apk file. The easiest way by far is to use Eclipse. I’ll walk you through the steps 
using the dummy script template. Step number one is to import the template into Eclipse. Figures 10-6 
and 10-7 show the two dialog boxes you’ll need to navigate through. 

 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

254 

 

Figure 10-6. Eclipse project import dialog box 

When you click the Next button, you should see a dialog box like the one in Figure 10-7. If you click 
the Browse button on the same line as the Select Archive File option, you’ll be able to navigate to the 
directory and choose the script_for_android_template.zip file. 

 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

255 

 

Figure 10-7. Eclipse project import dialog box: archive file selection 

Before you build the project, you must make one change on the properties page. To do this, open 
the Preferences dialog box from the Window menu. Expand the Java menu item followed by Build Path. 
Your dialog box should look like the one in Figure 10-8 at this point. Select the Classpath Variables item 
and then click the New button. This will bring up another dialog box like the one in Figure 10-9. 

■ Note You may need to add a directory under ScriptForAndroidTemplate named gen. I got an error the first 
time I tried to build the project because this directory was missing. Later versions of the 
script_for_android_template.zip file may have this corrected. 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

256 

 

Figure 10-8. Eclipse project preference dialog box 

The ANDROID_SDK variable must point to the installation path of your Android SDK. In my case, 
this is under my Downloads directory. If you used the installer executable for the SDK on Windows, your 
path will probably be something like C:/Program Files/Android/android-sdk/. The best thing to do is 
click the Folder button and navigate to the directory. 

 

 

Figure 10-9. New classpath variable entry dialog box 

If you expand the newly imported ScriptForAndroidTemplate, you should see something like Figure 
10-10 in the Eclipse Pydev Package Explorer window. 

 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

257 

 

Figure 10-10. Explorer view of imported template project 

At this point, you should be ready to build the project. It’s not a bad idea to run the Clean tool from 
the Project menu first to make sure you don’t have any issues from old projects or previous builds. I 
make it a habit to do this every time, just for good measure. If the project builds successfully, you 
shouldn’t see any entries on the Problems tab (see Figure 10-11). 

 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

258 

 

Figure 10-11. Problems and console tabs should be empty 

At this point we have an Android application ready to be packaged. This is where Eclipse really 
shines. On the File menu, choose Export. You should see a dialog box like Figure 10-12. 

 

 

Figure 10-12. Eclipse Android package export dialog box 

Clicking the Next button will bring up a dialog box like the one in Figure 10-13. This dialog box lets 
you know that you’re about to export a project currently set as debuggable. That’s not a problem while 
you’re still developing, but you’ll want to change it before you publish the application for anyone else to 
use. 

 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

259 

 

Figure 10-13. Eclipse export project checks 

The next three dialog boxes deal with signing your application. Every Android application must be 
digitally signed before it can be installed. If this is the first time you’ve been through the process, you’ll 
have to generate a new keystore and a key to use. Clicking the Next button of the dialog box in Figure 10-
13 will present the dialog box shown in Figure 10-14. 

 

 

Figure 10-14. Project keystore selection dialog box 

This is where you select a file to hold your keystore and a password to protect it. The password must 
be a minimum of six characters and should be something you will remember. Clicking the Next button 
will take you to another dialog box in which you will enter information to generate your new key. Figure 
10-15 shows the Key Creation dialog box. 

 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

260 

Figure 10-15. Key creation dialog box 

Notice the Validity field. You could create a key valid for any number of years, from 1 up to some 
large number such as 99. The final dialog box allows you to specify where you want the .apk file to reside. 

Figure 10-16. Destination directory for .apk file 

Now that we have an .apk file generated, we can test it out in the emulator. There are two ways to do 
that: directly from Eclipse or using the ADB tool from the command line. I personally prefer the 
command line, but I’m pretty old school. To install using ADB, open a terminal window, change your 
current directory to the one you selected as the destination for the .apk file, and type the following : 

adb install ScriptForAndroidTemplate.apk 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

261 

If the installation completes successfully, you should see an entry in the emulator named Dummy 
Script, as in Figure 10-17. 

 

 

Figure 10-17. Emulator screen with dummy script installed 

If you install the ScriptForAndroidTemplate.apk file to a device that does not have SL4A installed, 
you’ll see a popup dialog box like the one in Figure 10-18. 

 

 

Figure 10-18. Missing Python interpreter prompt 

Clicking the Yes button will take you through the process of installing the Python interpreter for 
SL4A. Once that process has completed, you should be able to run the Dummy Script app by clicking it. 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

262 

If, by chance, you happened to not get all the permissions set correctly in the AndroidManifest.xml file, 
you’ll get a notification like the one in Figure 10-19. 

 

 

Figure 10-19. Missing permission notification 

To fix this issue, you must either edit the AndroidManifest.xml file by hand or open the file in Eclipse 
and make the change there. The Eclipse method is much safer and quicker, so we’ll look at that here. To 
open the file simply double-click AndroidManifest.xml in the Package Explorer window. You should see a 
dialog box like the one in Figure 10-20. 

 

 

Figure 10-20. Eclipse Android Manifest permissions tab 

You can see from Figure 10-20 that the only permission in this AndroidManifest.xml file is to allow 
access to the Internet. If you click the Add button, you’ll be presented with a dialog box like Figure 10-21. 

 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

263 

 

Figure 10-21. Create a new Android Manifest permissions element 

We need to choose Uses Permission to add a new element. Select Uses Permission and then click 
the OK button. Next you need to choose a permission name using the drop-down box that contains all 
permissible values for you to choose from. We need the one labeled android.permission.VIBRATE. Figure 
10-22 shows this value selected. 

 

 

Figure 10-22. Selection of android.permission.VIBRATE 

Once that’s done, you can click the little disk icon under the Eclipse main menu to save your 
updates. Now you’ll need to go back through the Project Clean and Export process to create a new  
.apk file. 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

264 

Packaging Your Own Application 
Now that you know how to package an application using a template, we’ll use the same basic approach 
to package up our own application. The process is pretty simple for single Python script files. First, make 
a copy of the template in Eclipse by right-clicking the project and then choosing Copy from the menu. 
Next, right-click in an empty area of the Package Explorer window and choose Paste from the menu. This 
should present a popup like Figure 10-23. Give your new project a name and then click OK. 

 

 

Figure 10-23. Eclipse copy project dialog box 

Now comes the part where we insert our script. Make a copy of your script and paste it into the 
res/raw directory. The easiest thing to do here is delete the existing script.py file and rename your 
script to script.py. That way you won’t have to change any of the other locations that reference 
script.py. You’ll also need to rename the default package com.dummy.fooforandroid/your_package_name. 
You can use the Eclipse Refactor/Rename tool to do this for you. Then you need to update the package 
property in AndroidManifest.xml to reference your_package_name. 

At this point ,you should be able to go through the build-and-export process to create an .apk file for 
your script. 

Building with Ant 
For the really hard-core command-line junkies, there’s Ant. You’ll need either a Mac OS X or Linux box if 
you want to take this route. The configuration scripts are .sh files, so they must be run from a terminal 
on either of those operating systems. To start, you need to download and extract the same template file 
used in the previous section. You’ll also need to set the ANDROID_SDK variable to point to the root of your 
Android SDK. Here’s what that would look like: 

unzip -d <path/project_directory> script_for_android_template.zip 
export ANDROID_SDK=<SDK_root> 

Next, you need to execute the configure_package.sh script as follows: 

sh configure_package.sh <your_fully_qualified_package_name> 

If you were configuring for the actual dummy package in the template, the command would be this: 

sh configure_package.sh com.dummy.fooforandroid 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

265 

At this point, you need to copy your Python script into the res/raw directory and replace the existing 
script.py file. Again, it’s easier if you just rename your script to script.py. You will need to hand edit 
AndroidManifest.xml to uncomment all permissions your script needs. The actual build-and-run process 
uses the run-tests.sh script. To build your package, you need to open a terminal window and navigate 
to the root of your project directory. The command ant debug will create an .apk file inside the project 
/bin directory named <your_project_name>-debug.apk. This file will be signed with a debug key and 
aligned using the zipalign tool. 

Building a release version is a little more involved. For starters, you must sign your application with 
a suitable certificate. If you plan on publishing your application in the Android market, you must have a 
validity period ending after 22 October 2033. Debug certificates use the following defaults: 

• Keystore name: "debug.keystore" 

• Keystore password: "android" 

• Key alias: "androiddebugkey" 

• Key password: "android" 

• CN: "CN=Android Debug,O=Android,C=US" 

Your private release key must use different fields for all these values. You have two options when  
it comes to a private key: purchase one from one of the certificate-issuing vendors or create your own. 
The Java Development Kit (JDK) comes with a keytool utility that will generate a self-signed key for you. 
You’ll also need the jarsigner tool from the JDK. Here’s a sample command line to generate a private 
key: 

keytool -genkey -v -keystore my-release-key.keystore -alias alias_name -keyalg RSA –keysize 
 2048 -validity 10000 

With a valid key, you can build a release version of your application using the command ant 
release. By default, the Ant build script compiles the application .apk without signing it. You must use 
the jarsigner utility to actually sign the .apk file. You can accomplish it with this command: 

jarsigner -verbose -keystore my-release-key.keystore my_application.apk alias_name 

It’s a good idea to verify that your .apk file is properly signed. You can also use jarsigner with this 
command: 

jarsigner -verify my_signed.apk 

You can add -verbose or -certs if you want more information. At this point, all that’s left is to run 
the zipalign tool to ensure all uncompressed data is properly aligned. What actually happens with this 
tool is an adjustment of the final package so that all files are aligned on 4-byte boundaries. This greatly 
improves application-loading performance and reduces the amount of memory consumed by the 
running application. Here’s the command line to run zipalign: 

zipalign -v 4 your_project_name-unaligned.apk your_project_name.apk 

That should be the last step needed to create a fully releasable Android application. As a final note, 
you might want to consider updating your template project to include the latest versions of the core 
SL4A executables as they are continually updated. To do this you’ll need to download the most recent 
version of script_for_android_teplate.zip and extract the following files: 

libs/script.jar 
libs/armeabi/libcom_googlecode_android_scripting_Exec.so 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

266 

Copy these files into the same location in your project and then do a Refresh ➤ Clean ➤ Build using 
Eclipse or rebuild using Ant. 

Compiling SL4A 
If you want to make sure you have the absolute latest and greatest version of SL4A, you must compile it 
from source. This might be a bit risky if you’re looking for a stable release, but it also may fix an issue that 
your application needs. Either way, this is what you’ll need to do if you want to compile SL4A. The first 
thing you’ll need to do is get a copy of the SL4A source tree. You need to know that SL4A uses Mercurial 
as its source code management tool. You can get a copy of Mercurial clients for various Linux 
distributions, Mac OS X, and Windows on its download page 
(http://mercurial.selenic.com/downloads).  

For the purposes of this chapter, I’ll use TortoiseHg on a Windows 7 64-bit machine. The download 
page offers a number of options, including some that do not require administrator rights. I picked the 
TortoiseHg 2.0.4 with Mercurial 1.8.3 –x64 Windows option. This option provides integration with the 
Windows Explorer and makes it really simple to clone any repository to a specific location on a local 
drive. Once you have your client installed, you’ll need to clone the source tree. In Windows, you can do 
that from the file explorer by right-clicking the directory where you want to create the clone and then 
choosing TortoiseHg and Clone as shown in Figure 10-24. 

 

 

Figure 10-24. Create clone of SL4A source tree 

Selecting the Clone option will launch another dialog box in which you must specify the source URL 
of the repository and the destination location on your local computer. The URL I used is as follows: 

https://rjmatthews62-android-scripting.googlecode.com/hg/ 

The actual official URL is: 

https://android-scripting.googlecode.com/hg/ 

As of this writing, this appears to be the most current location containing all patches and updates. 
Figure 10-25 shows the dialog box in which you must enter this URL. 

 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

267 

 

Figure 10-25. Select SL4A source tree location 

Once you have the entire tree downloaded, you’ll need to import it into Eclipse. To do this, open 
Eclipse and choose Import from the File menu. Because the files already exist on the local disk, you must 
use the Select Root Directory option. Click the Browse button to navigate to the location where you 
performed the clone operation. Figure 10-26 shows the dialog box as it should appear after choosing the 
cloned directory. 

 

 

Figure 10-26. Eclipse import from local directory 

At this point, you don’t need all the projects from the cloned source tree. You can remove the 
following by right-clicking each and choosing Close Project: 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

268 

• BeanShellForAndroid 

• DocumentationGenerator 

• InterpreterForAndroidTemplate 

• JRubyForAndroid 

• LuaForAndroid 

• PerlForAndroid 

• RhinoForAndroid 

• TclForAndroid 

You should now be ready to perform a Project ➤ Build followed by a Project ➤ Clean ➤ Clean all. I 
had to again add the gen directory to a number of the projects. Once that is done, you should do a Clean 
build, and all should be good. You should see an Eclipse window resembling Figure 10-27 at this point. 

 

 

Figure 10-27. Eclipse window after building SL4A 

Now we need to add our template project from which to create our final application. To do this, 
right-click the ScriptForAndroidTemplate folder and make a copy. Then paste the new copy by right-
clicking in the Package Explorer area and choosing Paste. This will now be our target application. To 
connect this copy to the SL4A clone, you need to expand the project and right-click the build.xml file. 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

269 

Select Run As and then Ant Build. You can rename your project at this point if you want. One more Clean 
build, and you should have a working .apk ready to test. 

To test the app, either connect a real device to your workstation or simply use the emulator. From 
Eclipse you just have to right-click the copy of the template, choose Run As, and then choose Android 
Application (see Figure 10-28). 

 

 

Figure 10-28. Eclipse window after building SL4A 

At this point you have an .apk file for your application and an .apk for SL4A. If you distribute your 
application .apk file, it will prompt the user that Python 2.6.2 must be installed first (refer to Figure 10-
18).  

Finishing Touches 
There are a few things you’ll want to tweak if you intend to release your script to the public. The default 
template includes a resources directory named res. In this directory are a number of subdirectories that 
contain various files used by the application―including images representing the icon you will see when 
you browse for applications on the device and the name that will appear under that icon. To change the 
name you’ll need to edit the strings.xml file in the values subdirectory. Here’s what that file looks like in 
the default template: 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

270 

<?xml version="1.0" encoding="utf-8"?> 
<resources> 
    <string name="hello">Hello World!</string> 
    <string name="app_name">Dummy Script</string> 
</resources> 

To change the name, simply change the "app_name">Dummy Script line to reflect the name of your 
application. The other thing you might want to change is the application icon. To do this, you can use 
the draw9patch tool provided with the Android SDK. This can be launched from a terminal window by 
simply typing draw9patch. Figure 10-29 shows the draw9patch app with the default SL4A script logo 
loaded. 

■ Note Android icons use the .png format as a default. The term Nine Patch refers to a standard PNG image that 
includes a 1-pixel wide border. It’s typically used for buttons where the image must stretch to fit varying lengths of 
text labels. 

Figure 10-29. Draw9patch application with SL4A icon loaded 

Once the program is running, you can either drag an image and drop it on the open window or use 
the File ➤ Open 9-patch option. When you’re done, there’s a Save 9-patch option on the File menu to 
save your work. 



CHAPTER 10 ■ PACKAGING AND DISTRIBUTING 

 

271 

Winding Down 
SL4A offers an ideal solution for both the aspiring programmer looking to develop a market-ready 
application and the savvy smartphone user wanting to automate some functions to make their mobile 
life easier.  For the Python-literate, it represents the perfect opportunity to take advantage of their 
programming skills to use any Android device in much the same way as a desktop or laptop computer. 
For some, it might even be possible to replace a laptop with an Android-based tablet. This possibility will 
only become more likely as the processing and storage capabilities of mobile devices increase. 

The really great thing about SL4A is its open source nature. As the project becomes better known, 
there will be more users translating into a wider audience and greater participation. New contributors to 
the development effort have added significant new features such as the ability to use any native Python 
library. Updates to other Android platforms such as Google TV should allow SL4A to run there as well. 
There’s a fairly active forum on Google groups where you can ask questions and get help. 

Trying SL4A out is not as hard as you might think. You really can’t do anything directly harmful to 
your device, although it is possible to run up your data bill, depending on what your script does. The 
safest way to get started is to use the Android emulator. Working through the chapters in this book will 
give you a great foundation for using SL4A to make your Android device do things you never thought 
possible. 

Summary 
This chapter has described in great detail how to build distributable packages for your SL4A scripts.  

Here’s a list of take-aways for this chapter: 

• Create QR codes: QR codes give you a quick and easy way to distribute short 
scripts that anyone can directly load on an Android device. 

• Build .apk files: If you want to distribute your application using the Android 
market, you’ll have to learn how to build .apk files. 

• Use Eclipse: It makes the process of building and testing distributable 
applications much, much easier. 

• Spruce up your app: You really do need to spend some time creating an icon for 
your app if you want your users to actually use it. 



 

273 

Index 

■A 
Android application programming 

interface (Android API) 

Facades, 117 

ActivityResultFacade, 118 

AndroidFacade (see AndroidFacade) 

ApplicationManagerFacade, 121 

BatteryManagerFacade, 121, 122 

BluetoothFacade, 123 

CameraFacade, 123 

CommonIntentsFacade, 124, 125 

ContactsFacade, 125, 126 

EventFacade, 127 

EyesFreeFacade, 127 

LocationFacade, 127 

MediaPlayerFacade, 128 

MediaRecorderFacade, 128 

PhoneFacade, 128 

PreferencesFacade, 128 

SensorManagerFacade, 129, 130 

SettingsFacade, 130 

SignalStrengthFacade, 130 

SmsFacade, 131, 132 

SpeechRecognitionFacade, 132 

TextToSpeechFacade, 132 

ToneGeneratorFacade, 132 

UiFacade (see UiFacade) 

WakeLockFacade, 137 

WebCamFacade, 137 

WifiFacade, 137 

JSON 

getLaunchableApplications API call, 
113, 114 

pprint, 114, 115 

RPC call, 116 

SL4A API calls, 115 

Android Debug Bridge (ADB), 32, 68, 69 

Android scripting environment (ASE), 4 

Android SDK installation 

Linux, 39, 41 

Mac OS X, 41 

Windows, 41–43 

Android-SDK-windows directory, 60 

Android virtual device (AVD), 60–62 

android.bsh file, 7 

AndroidFacade 

getClipboard function, 118 

getConstants function, 120, 121 

makeIntent function, 121 

Notification message, 118 

setClipboard function, 118 

SL4A r4, 119 

startActivityForResultIntent, 121 

AndroidManifest.xml file, 251–253 



■ INDEX 

274 

Application Program Interface (API) 
browser 

prompt option, 54, 55 

tool, 54 

Application programming interface (API), 
3, 58 

■B 
Background Scripting with Python, 139 

■C 
Cascading style sheets (CSS) 

document.getElementById() line, 233 

JavaScript code, 231, 232 

snippet, 230 

standard elements, 230 

urlparse library tool, 233 

Comma-separated value (CSV) files, 21 

createTimePicker function, 201 

■D 
Dalvik debug monitor service (DDMS) 

features, 79 

file explorer, 80 

screen capture, 80, 81 

user interface, 79 

Dalvik virtual machine (DVM), 2 

Developing with Eclipse, 83 

droid.postEvent() JavaScript code, 231 

■E, F, G, H 
Eclipse 

Android Development Toolkit (ADT) 

Emulator Control Window, 98, 99 

MyTestApp, 94 (see also MyTestApp) 

New Android Project Wizard, 94, 95 

NotePad app, 94 

Reset Perspective, 98 

Android Manifest permissions tab, 262 

Android package export dialog box, 258 

copy project dialog box, 264 

definition of Projects, 93 

development machine 

ADT installation, 85, 86 

Aptana Studio, 87 

available updates, 87, 88 

Eclipse.exe file, 84 

eclipse SDK installation, 84 

Galileo, 83 

Pydev installation, 86, 87 

Workspace, 84 

workspace directory dialog box 
selection, 84, 85 

.zip file, 84 

Eclipse Help system, 89, 90 

export project checks, 259 

import from local directory, 267 

Multiple File Types 

drag-and-drop method, 108, 109 

Editor Selection menu, 109, 110 

File and Folder Operation, 108 

HTML tags, 109, 110 

Import directory chooser, 107, 108 

Import files tool, 107 

Open file option menu, 109 

SMS Sender program, 107 

New Project Wizard, 93, 94 

perspectives 

Customize perspective, 91, 92 

definition, 90 



■ INDEX 

275 

Open Perspective, 92, 93 

Pydev perspective Workspace, 90, 91 

project import dialog box, 254 

project import dialog boxarchive file 
selection, 255 

project preference dialog box, 256 

Pydev 

ADB tool, 104 

File comparison tool, 106 

Launch_app.py, 105 

New Pydev module, 102, 103 

New Pydev Project dialog box, 100, 
101 

Pydev application debugging, 105 

Pydev New Template, 103, 104 

Python developer, 99 

Python interpreter, Preferences 
window, 99, 100 

RPC mechanism, 103 

shortcut display window, 101, 102 

SL4A application, 103, 104 

welcome screen, 88, 89 

window after building SL4A, 268, 269 

Workbench Basics, 89 

Exploring the Android API, 113 

■I 
Immutable, 16 

Internet Information Services (IIS) 
Manager, 154 

Quick Launch menu, 153 

sync FTP site started status, 157 

Iterable, 15 

 

■J, K, L 
Java Development Kit (JDK), 265 

JavaScript Object Notation (JSON), 4, 6 

json.dumps() function, 6 

json.JSONDecoder, 6 

json.JSONEncoder, 6 

json.loads() functions, 6 

■M 
market_licensing directory, 59 

MyTestApp 

DDMS, 97, 98 

generic emulator, 96, 97 

New Android Project Wizard, 95, 96 

■N 
Native development kit (NDK), 4 

Navigating the Android SDK, 57 

Nine Patch, 270 

■O 
Open Intents File Manager, 242, 243 

■P, Q 
Packaging and Distributing, 249 

Python dialog box–based GUIs, 195 

alert dialog box, 197–200 

basic alert dialog box, 197 

convenience dialog boxes 

date picker dialog box, 201 

dialogCreateTimePicker, 202 

dialogGetResponse, 203 

get password dialog box, 203 

time picker dialog box, 201, 202 

dialogCreateAlert, 196 



■ INDEX 

276 

dialogCreateInput, 199 

dialogDismiss, 197 

dialogGetInput function, 197 

dialogGetResponse, 195, 198 

file listing with dialogCreateAlert, 207 

getInput API function, 195, 196 

getInput dialog box, 198 

input dialog box, 196 

Input dialog box, Google Book Search, 
200 

makeToast API function, 195 

makeToast dialog box, 196 

modal vs. non–modal dialog boxes, 205 

music player, 213 

mysettings App 

Airplane mode setting, 217 

android module, 219 

droid object, 219 

enumerate function, 218 

script name, 218 

/sdcard/sl4a/mysettings, 216 

standard Python code, 216 

toggles list, 218 

utility program, 216 

options menu, 207 

Podplayer App 

droid.dialogGetResponse() function, 
214 

file chooser dialog box, 213 

list of .mp3 files, Podplayer.py, 215 

os.path methods, 216 

os.path.splitext(target)[1].lower() 
code, 216 

Python os.listdir() function, 213 

progress dialog boxes, 203 

Python IDLE console, 198, 199 

Python IDLE tool, 196 

Python objects 

Cancel button, 213 

choosing items, 211 

choosing Multi option, 212 

choosing Single, 211, 212 

initial dialog box with list, 210 

UI list test code, 209, 210 

showDialog, 195 

SL4A, 195, 196 

Python GUIs with HTML, 221 

CSS  (see Cascading style sheets) 

dependencies 

CSV file, 244 

event handlers, 247 

filebrowser window, 245 

HTML and JavaScript file browser, 
244 

JavaScript and Python event, 246, 
247 

OI File Manager, 242, 243 

Python function, list of files, 243, 244 

setup configuration page, 246 

startActivityForResult API call, 242 

webViewShow API function, 246 

information display 

battery status, 222 

battstats.html file, 222 

webViewShow API call, 221 

WiFi access points, 223 

WiFi scan results, 223 

JavaScript 

contacts as  table, 226 



■ INDEX 

277 

contacts as list, 225 

table and hyperlink, 225 

<tr> and <td> tags, 226 

var droid = new Android() code, 224 

simple HTML forms, 228, 229 

SMS merger 

body and button, 236 

config file, 234, 235 

ConfigParser module, 234 

CSV file, 240 

File Load screen, 238, 239 

icons, UI elements, 236, 237 

JavaScript code, 241, 242 

menu, 237, 238 

Merge and Send SMS screen, 240 

Python code, 240, 241 

setup configuration page, 235 

showonlycsvfiles, 235, 236 

SMSMerge.zip file, 233, 234 

SMSSender.conf file, 234 

webViewShow API function, 233 

SMS sender, 247 

speakit.py file, 227 

text_to_speech.html file, 227 

webViewShow API call, 227 

Python Idle program execution 

editor window, 52, 53 

Hello World program, 51, 52 

scripts creation and modification, 51 

version number, 51 

Python installation 

Mac OS X, 43, 44 

Windows, 44, 45 

 

Python interpreter 

command prompt, 34, 35 

installation, 32, 33 

makeToast function call result, 34 

menu button, 35–37 

web page, 32, 34 

Python language 

case-sensitive language, 13 

dictionary, 14, 15 

list, 15 

Python Standard Library 

android.py, 24 

CSV files, 21 

datetime, 20 

dir(), 18 

docs.python.org, 18 

file open, 19 

glob module, 20 

Hello World input, 25 

hello_world.py script, 25 

int() function, 19 

itertools code, 21 

makeToast API call, 25, 26 

module’s attributes, 18 

number conversion, 19 

os module, 20 

shutil, 20 

SimpleHTTPServer, 24 

string.count method, 21 

struct module, 24 

urllib and urllib2 modules, 22, 23 

urllib.urlretrieve, 23 

weekday method, 22 

self argument, 14 



■ INDEX 

278 

string, 16, 17 

tuple, 17 

whitespace usage, 13 

Python scripting utilities, 165 

E-mail–based applications 

datetime library, 170 

E-mail message with SMS messages, 
171 

MIMEMultipart, 168 

sendEmail API call, 168 

smsGetAttributes function, 169, 170 

smsGetMessages, 169 

smsGetMessages function, 170 

telnet, 169 

HTTP Server 

httpd2.py Script, 185 

SimpleHTTPServer app example, 
186 

SimpleHTTPServer library, 184 

SimpleHTTPServer2 code, 185 

wifiGetConnectionInfo function, 
184 

killing a running app 

Python for Android, 187 

SimpleHTTPServer app example, 
187 

SL4A script monitor, 187 

libraries 

egg file, 167 

python_extras_r8.zip file, 166, 167 

python_r7.zip file, 166 

python_scripts_r8.zip file, 166 

setup.py file, 165 

site-packages directory, 166 

 

Python FTP server 

FireFTP Account Manager main 
page, 191 

FireFTP connected to Android 
phone, 191 

FireFTP Connection configuration 
page, 192 

ftpserver.py file, 190 

Log screen, 192, 193 

pyftpdlib, 190 

Track My Travel 

Android console, 180 

for line if f:syntax, 179 

geo fix command, 180 

GPS, 178 

os.mkdir, 178 

readLocation, 180 

startLocating API function, 178 

trackmylocation.py application, 181 

Tweet My Location 

application authorization, 176 

application details, 174, 175 

application registration, 173, 174 

CAPTCHA box, 174 

Consumer codes, 176 

Consumer key and secret, 175 

GPS location, 173 

OAuth protocol, 173 

PIN authorization code, 176 

readLocation API call, 172 

timeline, location message, 177, 178 

timeline, Python message, 177 

tweepy library, 173 

URL file retriever 

Filename dialog box, 188 



■ INDEX 

279 

progress dialog box, URL 
downloader, 189 

urllib library module, 188 

WiFi Scanner 

script output, 183 

SL4A script, 181 

toggleWifiState function, 181 

wifiGetScanResults, 182 

Python Standard Library, 149, 157 

■R 
Remote connection 

server launch, 49, 50 

variable and adb commands, 50 

Windows environment variable 
creation, 51 

Remote procedure call (RPC) 

authentication, 5 

mechanism, 4, 5, 103 

■S, T 
schedule.txt text file, 163 

Scripting Layer for Android (SL4A) 

activities, 3 

.apk files, 2 

application anatomy, 2, 3 

architecture, 4 

execution flow diagram, 5 

NDK, 4 

RPC, 4, 5 

background task 

Launch On Boot preferences screen, 
139, 140 

makeIntent function, 140 

packagename and 
componentname, 140 

script launch options, 139 

Beanshell, 1 

elapsed time-based triggers, 148, 150 

events, 7 

Flickr 

authorization screen, 159, 160 

uploader.py program, 158, 159 

uploadImage function, 160 

Yahoo Flickr login screen, 158, 159 

FTP file sync tool 

enabling Windows FTP server, 153 

firewall settings modification, 
Windows 7, 156 

ftplib module, 157 

IIS Management console, 153 

Mac OS X file sharing preferences, 
150, 151 

Mac OS X System Preferences, 150 

Site authentication settings, 155 

Site bindings and SSL settings, 155 

Site Information dialog box, 154 

sync FTP site started status, 157 

vsftp connection, Windows 
command prompt, 152 

vsftpd installation, Ubuntu 10.11, 
152 

Windows Features Control Panel 
tool, 153 

Google Docs, 160, 162 

history, 4 

installation 

.apk file download, 28 

color picker, 38 



■ INDEX 

280 

emulator, 29 

interpreter, 29–32 

launching .apk file, 28 

preferences menu, 37 

Python (see Python interpreter) 

resize dialog box, 36 

Terminal heading, 38 

intents 

primary attributes, 3 

secondary attributes, 4 

Java language, 1 

JSON, 4, 6 

languages 

Beanshell 2.0b4, 7, 8 

JRuby 1.4, 12 

Lua 5.1.4, 8, 9 

Perl 5.10.1, 9, 10 

PHP 5.3.3, 11 

Python (see Python language) 

Rhino 1.7R2, 11, 12 

shell script, 13 

location-based actions, 145, 146 

mobile operating systems, 2 

orientation-based actions 

debugging, 143 

log entries, 143, 144 

logcat, 143 

LOG.write, 145 

open log file, 144 

Python dictionary, 144 

startSensingTimed API call, 142 

text-to-speech (TTS) function, 143 

toggleRingerSilentMode call, 142 

rooting, 2 

script eidtor options menu, 53 

script launch, 53 

server mode, 50 

service, 50 

startup launcher, 162, 163 

Test.py program, 53 

time-based actions, 146–148 

triggers, 141, 142 

Script package and distribution 

Android emulator, 271 

Ant 

ANDROID_SDK variable, 264 

Debug certificates, 265 

Java Development Kit (JDK), 265 

script.py file, 265 

script_for_android_teplate.zip, 265 

.sh files, 264 

zipalign tool, 265 

application packages 

android.permission.VIBRATE 
selection, 263 

ANDROID_SDK variable, 256 

AndroidManifest.xml file, 251, 252, 
262 

.apk extension, 251 

bare-bones project skeleton, 253 

command-line project creation, 252 

destination directory, 260 

Eclipse Android Manifest 
permissions tab, 262 

Eclipse Android package export 
dialog box, 258 

Eclipse copy project dialog box, 264 

Eclipse export project checks, 258, 
259 



■ INDEX 

281 

Eclipse project import dialog box, 
253–255 

Eclipse project preference dialog 
box, 255, 256 

Eclipse Pydev Package Explorer 
window, 256, 257 

emulator screen with dummy script, 
261 

key creation dialog box, 259, 260 

missing permission notification, 262 

missing Python interpreter prompt, 
261 

new classpath variable entry dialog 
box, 255, 256 

problems and console tabs, 257, 258 

project keystore selection dialog 
box, 259 

script.py file, 264 

ScriptForAndroidTemplate, 256 

script_for_android_template.zip file, 
253 

draw9patch application, 270 

Nine Patch, 270 

Python library, 271 

QR codes 

add menu, 250 

barcode scanner app (ZXing), 249 

menu button popup dialog box, 249 

zxing.appspot.com/generator, 250, 
251 

resources directory, 269 

SL4A compilation 

.apk file, 269 

build.xml file, 268 

clone creation, 266 

Eclipse import from local directory, 
267 

Eclipse window after building SL4A, 
268, 269 

Mercurial tool, 266 

ScriptForAndroidTemplate folder, 
268 

source tree location, 267 

TortoiseHg, 266 

strings.xml file, 269 

Sequence, 15 

Software Development Kit (SDK), 1 

Android Debug Bridge (ADB), 68, 69 

Android emulator 

application launcher screen, 65, 66 

AVD, 60–63 

Bluetooth, 66 

e-mail configuration screen, 66, 67 

generic window, 64, 65 

key mappings, 63, 64 

screen resolution, 61 

scripts screen, 67, 68 

SL4A, 67 

components, 59, 60 

DDMS 

features, 79 

file explorer, 80 

screen capture, 80, 81 

user interface, 79 

documentation 

Alert dialog box, 59 

Android content provider, 58 

application programming interface 
(API), 58 

context menu vs. option menu, 59 



■ INDEX 

282 

.html files, 57 

makeToast fucntion, 59 

toast notification, 59 

Uniform Resource Identifier (URI), 
58 

WebView, 59 

files and applications, 69 

logcat command, 78 

shell 

adb shell command, 70 

am start command, 76 

contacts application, 78 

date command, 75 

dumpsys subcommand, 76–78 

NMEA command, 74 

Python, 74, 75 

SMS message, 73, 74 

telnet command, 71 

telnet session, 73 

UNIX epoch, 74, 75 

Windows 7 Control Panel programs, 
72 

Windows 7 features, 72 

 

 

 

■U, V, W, X, Y, Z 
UiFacade 

context menu, 137 

dialogCreateAlert, 133 

dialogCreateHorizontalProgress, 136 

dialogCreateSpinnerProgress, 136, 137 

dialogCreateTimePicker, 134 

dialogDismiss, 133, 137 

dialogGetInput, 133 

dialogGetPassword, 132 

dialogGetResponse, 134, 135 

dialogGetSelectedItems, 135 

multibutton alert dialog box, 134 

multi choice alert dialog box, 136 

multioption alert dialog box, 135 

options menu, 137 

Uniform Resource Identifier (URI) tool, 58 

USB driver 

adb command, 49 

ADB device properties, 46–48 

debugging, 49 

Device Manager, 46–48 

editing by Notepad, 48 

.inf file, 46 

Windows, 45, 46 

 

 



 

 

Pro Android Python 
with SL4A 

 

 

 

 

 

 

 

 

 

 

 

 

■ ■ ■                

Paul Ferrill 

 

 



 

Pro Android Python with SL4A 

Copyright © 2011 by Paul Ferrill 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval 
system, without the prior written permission of the copyright owner and the publisher. 

ISBN-13 (pbk): 978-1-4302-3569-9 

ISBN-13 (electronic): 978-1-4302-3570-5 

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol 
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only 
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of 
the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject 
to proprietary rights. 

President and Publisher: Paul Manning 
Lead Editor: Tom Welsh 
Technical Reviewer: Justin Grammens 
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Jonathan Gennick, 

Jonathan Hassell, Michelle Lowman, James Markham, Matthew Moodie, Jeff Olson, Jeffrey 
Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Matt 
Wade, Tom Welsh 

Coordinating Editors: Mary Tobin, Corbin Collins 
Copy Editor: Nancy Sixsmith 
Production Support: Patrick Cunningham 
Indexer: SPI Global 
Artist: April Milne 
Cover Designer: Anna Ishchenko 

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.  

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.  

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our 
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales. 

The information in this book is distributed on an “as is” basis, without warranty. Although every 
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have 
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused 
directly or indirectly by the information contained in this work.  

The source code for this book is available to readers at www.apress.com. You will need to answer 

questions pertaining to this book in order to successfully download the code. 



To my wife, Sandy, for your tireless support of me and our family. I could not have done this without you. 
And to my wonderful children who put up with a preoccupied daddy for way too long. 

—Paul Ferrill 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

v 

Contents 

About the Author ....................................................................................................... xi 

About the Technical Reviewer .................................................................................. xii 

Acknowledgments ................................................................................................... xiii 

Preface .................................................................................................................... xiv 
 

■Chapter 1: Introduction ........................................................................................... 1 

Why SL4A? ......................................................................................................................... 1 

The World of Android ......................................................................................................... 2 

Android Application Anatomy ............................................................................................ 2 

Activities ............................................................................................................................ 3 

Intents ............................................................................................................................... 3 

SL4A History ...................................................................................................................... 4 

SL4A Architecture .............................................................................................................. 4 

SL4A Concepts ................................................................................................................... 6 

JavaScript Object Notation (JSON) .................................................................................... 6 

Events ................................................................................................................................ 7 

Languages ......................................................................................................................... 7 

Beanshell 2.0b4 ........................................................................................................................................ 7 

Lua 5.1.4 ................................................................................................................................................... 8 

Perl 5.10.1 ................................................................................................................................................ 9 

PHP 5.3.3 ................................................................................................................................................ 11 

Rhino 1.7R2 ............................................................................................................................................ 11 



■ CONTENTS 

vi 

JRuby 1.4 ................................................................................................................................................ 12 

Shell ....................................................................................................................................................... 13 

Python .................................................................................................................................................... 13 

Summary ......................................................................................................................... 26 

■Chapter 2: Getting Started ..................................................................................... 27 

Installing SL4A on the Device .......................................................................................... 27 

Installing the Android SDK ............................................................................................... 39 

Linux ....................................................................................................................................................... 39 

Mac OS X ................................................................................................................................................ 41 

Windows ................................................................................................................................................. 41 

Installing Python .............................................................................................................. 43 

Remotely Connecting to the Device ................................................................................. 45 

Device Settings ....................................................................................................................................... 49 

Executing Simple Programs ............................................................................................. 51 

Summary ......................................................................................................................... 55 

■Chapter 3: Navigating the Android SDK ................................................................. 57 

Wading Through the SDK Documentation ........................................................................ 57 

Examining the Different SDK Components ...................................................................... 59 

Testing With the Android Emulator .................................................................................. 60 

Android Debug Bridge............................................................................................................................. 68 

Dalvik Debug Monitor Service (DDMS) ................................................................................................... 79 

Summary ......................................................................................................................... 81 

■Chapter 4: Developing with Eclipse ....................................................................... 83 

Installing Eclipse on a Development Machine ................................................................. 83 

Eclipse Basics .................................................................................................................. 88 

Perspectives ........................................................................................................................................... 90 

Projects .................................................................................................................................................. 93 



■ CONTENTS 

vii 

Android Development Toolkit ........................................................................................... 94 

Using Pydev ..................................................................................................................... 99 

Using Multiple File Types in Eclipse ..................................................................................................... 107 

Summary ....................................................................................................................... 110 

■Chapter 5: Exploring the Android API .................................................................. 113 

Exploring the Android APIs ............................................................................................ 115 

Android Facades ............................................................................................................ 116 

ActivityResultFacade ............................................................................................................................ 118 

AndroidFacade ..................................................................................................................................... 118 

ApplicationManagerFacade .................................................................................................................. 121 

BatteryManagerFacade ........................................................................................................................ 121 

BluetoothFacade ................................................................................................................................... 123 

CameraFacade ..................................................................................................................................... 123 

CommonIntentsFacade ........................................................................................................................ 124 

ContactsFacade .................................................................................................................................... 125 

EventFacade ......................................................................................................................................... 127 

EyesFreeFacade ................................................................................................................................... 127 

LocationFacade .................................................................................................................................... 127 

MediaPlayerFacade .............................................................................................................................. 128 

MediaRecorderFacade ......................................................................................................................... 128 

PhoneFacade ........................................................................................................................................ 128 

PreferencesFacade ............................................................................................................................... 128 

SensorManagerFacade ........................................................................................................................ 129 

SettingsFacade .................................................................................................................................... 130 

SignalStrengthFacade .......................................................................................................................... 130 

SmsFacade ........................................................................................................................................... 131 

SpeechRecognitionFacade ................................................................................................................... 132 

TextToSpeechFacade ........................................................................................................................... 132 

ToneGeneratorFacade .......................................................................................................................... 132 



■ CONTENTS 

viii 

UiFacade ............................................................................................................................................... 132 

WakeLockFacade.................................................................................................................................. 137 

WebCamFacade .................................................................................................................................... 137 

WifiFacade ............................................................................................................................................ 137 

Summary ....................................................................................................................... 138 

■Chapter 6: Background Scripting with Python .................................................... 139 

Background Tasks ......................................................................................................... 139 

Triggers ......................................................................................................................... 141 

Orientation-based Actions ............................................................................................. 142 

Location-based Actions ................................................................................................. 145 

Time-based Actions ....................................................................................................... 146 

Elapsed Time-based Triggers ........................................................................................ 148 

FTP File Sync Tool .......................................................................................................... 150 

Syncing Photos with Flickr ............................................................................................ 158 

Syncing with Google Docs ............................................................................................. 160 

A Startup Launcher ........................................................................................................ 162 

Summary ....................................................................................................................... 164 

■Chapter 7: Python Scripting Utilities ................................................................... 165 

Python Libraries ............................................................................................................. 165 

E-mail–Based Applications ............................................................................................ 168 

Location-Aware Applications ......................................................................................... 172 

Tweet My Location ............................................................................................................................... 172 

Killing a Running App ........................................................................................................................... 186 

URL File Retriever .......................................................................................................... 188 

Python FTP Server ......................................................................................................... 190 

Summary ....................................................................................................................... 194 



■ CONTENTS 

ix 

■Chapter 8: Python Dialog Box–based GUIs .......................................................... 195 

UI Basics ........................................................................................................................ 195 

Book Title Search ........................................................................................................... 199 

Convenience Dialog Boxes ................................................................................................................... 201 

Progress Dialog Boxes .......................................................................................................................... 203 

Modal versus Non–Modal Dialog Boxes ............................................................................................... 205 

Options Menu ....................................................................................................................................... 207 

File Listing with dialogCreateAlert ........................................................................................................ 207 

Dialog Boxes as Python Objects ........................................................................................................... 209 

Podplayer App ...................................................................................................................................... 213 

Building the mysettings App ................................................................................................................. 216 

Summary ....................................................................................................................... 220 

■Chapter 9: Python GUIs with HTML ...................................................................... 221 

HTML and Basic Information Display ............................................................................. 221 

HTML and JavaScript ..................................................................................................... 224 

HTML GUI Form Basics .................................................................................................. 226 

Simple HTML Forms ............................................................................................................................. 228 

Cascading Style Sheets ........................................................................................................................ 230 

SMS Merger .......................................................................................................................................... 233 

Summary ....................................................................................................................... 247 

■Chapter 10: Packaging and Distributing .............................................................. 249 

QR Codes ....................................................................................................................... 249 

Application Packages .................................................................................................... 251 

Packaging Your Own Application ................................................................................... 264 

Building with Ant ........................................................................................................... 264 

Compiling SL4A .............................................................................................................. 266 

Finishing Touches .......................................................................................................... 269 



■ CONTENTS 

x 

Winding Down ............................................................................................................... 271 

Summary ...................................................................................................................... 271 

 

Index ....................................................................................................................... 273 



 

xi 

About the Author 

■Paul Ferrill has a BS and MS in electrical engineering and has been 
writing about computers for more than 25 years. He currently serves as 
CTO for Avionics Test and Analysis Corporation, working on multiple DoD 
projects. Software development has been his primary focus, along with 
architecting large-scale data management and storage systems. He also 
serves on several DoD standards committees, providing input to the next 
generation of data recording and transmission standards. 

He has a long history with both Microsoft and open source 
technologies. His two favorite languages are Visual Basic and Python. He’s 
had articles published in PC Magazine, PC Computing, InfoWorld, 
Computer World, Network World, Network Computing, Federal Computer 
Week, Information Week, and multiple web sites.



 

xii 

About the Technical Reviewer 

■Justin Grammens has been writing software for 12 years, holds a masters 
degree in Software Systems, and has a patent pending on the process of a 
system to collect and rate digital media. He has written applications for a 
variety of mobile platforms in a number of different market sectors and is the 
cofounder of Recursive Awesome, LLC; owner of Localtone, LLC; and founder 
of Mobile Twin Cities. 

Justin has built online e-commerce systems, real-time mapping 
solutions, large-scale tax accounting software, and technology for Internet 
radio stations. Having worked with Android since version 1.0, Justin has 
spoken on mobile technology at conferences and software development 
groups since 2008. 

Justin has developed Android applications for Best Buy, McDonald’s, 
BuzzFeed, and Consolidated Knowledge; and is co-creator of a cross-platform 

streaming video service called Mobile Vidhub. Justin is employed by Code 42 as a Director of Mobile 
Technology and lives in St. Paul, MN, with his wife. 
 



 

xiii 

Acknowledgments 

I would like to acknowledge the excellent staff at Apress who managed to get this book completed on 
time through multiple delays and reworking of the original title. You’ve made the process much less 
frightening for a first-time author than I expected. 

A special thanks goes to coordinating editors Mary Tobin and Corbin Collins, and to Tom Welsh, the 
lead editor.  

I’d also like to thank Frank Pohlmann for convincing me to do this project in the first place. 
Thank you to the technical reviewer, Justin Grammens, for a keen set of eyes and helpful comments. 

A big thank you to Robbie Matthews, who has become one of the primary contributors to the SL4A 
project and provided help when things didn’t make sense. 

Thanks also to the folks at TechSmith, and Betsy Weber in particular, for their fantastic Snagit 
product, without which the screenshots would have been so much harder. 

Final thanks go to my son Micah Ferrill for his help with the Python code.



 

xiv 

Preface 

It’s no secret that traditional computing patterns are undergoing a radical change. The proliferation of 
smartphones with ever-increasing processing power will only accelerate the process. Tablet devices have 
seen a much broader adoption as extensions of the smartphone platform where previous attempts to 
downsize general-purpose computers failed. While the operating system of the most popular mobile 
devices may be different from the user’s perspective, it has more in common with a desktop system than 
you might think. 

Google’s Android platform has seen a huge increase over the last year and is challenging Apple’s iOS 
for market share. Apple’s wide lead in applications has been steadily dwindling although the jury is still 
out when it comes to quality. Building those applications has, for the most part, been restricted to 
Objective C for iOS and Java for Android. There are a few other options if you take into consideration the 
MonoTouch and MonoDroid projects, but that’s about it. 

Mobile devices will probably never completely replace traditional computers, although the division 
of activity will continue to swing toward the one you have access to the most. This book is about 
bringing some of the flexibility you get with a desktop computer in the form of writing simple programs 
or scripts to accomplish a specific task. I know I’ve learned a lot along the way, and it is my sincere hope 
that through reading this book you will glean a thing or two as well. 

 


	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Introduction
	Why SL4A?
	The World of Android
	Android Application Anatomy
	Activities
	Intents
	SL4A History
	SL4A Architecture
	SL4A Concepts
	JavaScript Object Notation (JSON)
	Events
	Languages
	Beanshell 2.0b4
	Lua 5.1.4
	Perl 5.10.1
	PHP 5.3.3
	Rhino 1.7R2
	JRuby 1.4
	Shell
	Python

	Summary

	Getting Started
	Installing SL4A on the Device
	Installing the Android SDK
	Linux
	Mac OS X
	Windows

	Installing Python
	Remotely Connecting to the Device
	Device Settings

	Executing Simple Programs
	Summary

	Navigating the Android SDK
	Wading Through the SDK Documentation
	Examining the Different SDK Components
	Testing With the Android Emulator
	Android Debug Bridge
	Dalvik Debug Monitor Service (DDMS)

	Summary

	Developing with Eclipse
	Installing Eclipse on a Development Machine
	Eclipse Basics
	Perspectives
	Projects

	Android Development Toolkit
	Using Pydev
	Using Multiple File Types in Eclipse

	Summary

	Exploring the Android API
	Exploring the Android APIs
	Android Facades
	ActivityResultFacade
	AndroidFacade
	ApplicationManagerFacade
	BatteryManagerFacade
	BluetoothFacade
	CameraFacade
	CommonIntentsFacade
	ContactsFacade
	EventFacade
	EyesFreeFacade
	LocationFacade
	MediaPlayerFacade
	MediaRecorderFacade
	PhoneFacade
	PreferencesFacade
	SensorManagerFacade
	SettingsFacade
	SignalStrengthFacade
	SmsFacade
	SpeechRecognitionFacade
	TextToSpeechFacade
	ToneGeneratorFacade
	UiFacade
	WakeLockFacade
	WebCamFacade
	WifiFacade

	Summary

	Background Scripting with Python
	Background Tasks
	Triggers
	Orientation-based Actions
	Location-based Actions
	Time-based Actions
	Elapsed Time-based Triggers
	FTP File Sync Tool
	Syncing Photos with Flickr
	Syncing with Google Docs
	A Startup Launcher
	Summary

	Python Scripting Utilities
	Python Libraries
	E-mail–Based Applications
	Location-Aware Applications
	Tweet My Location
	Killing a Running App

	URL File Retriever
	Python FTP Server
	Summary

	Python Dialog Box–based GUIs
	UI Basics
	Book Title Search
	Convenience Dialog Boxes
	Progress Dialog Boxes
	Modal versus Non–Modal Dialog Boxes
	Options Menu
	File Listing with dialogCreateAlert
	Dialog Boxes as Python Objects
	Podplayer App
	Building the mysettings App

	Summary

	Python GUIs with HTML
	HTML and Basic Information Display
	HTML and JavaScript
	HTML GUI Form Basics
	Simple HTML Forms
	Cascading Style Sheets
	SMS Merger

	Summary

	Packaging and Distributing
	QR Codes
	Application Packages
	Packaging Your Own Application
	Building with Ant
	Compiling SL4A
	Finishing Touches
	Winding Down
	Summary

	Index
	A
	B
	C
	D
	E, F, G, H
	I
	J, K, L
	M
	N
	O
	P, Q
	R
	S, T
	U, V, W, X, Y, Z




